New Jersey Institute of Technology Digital Commons @ NJIT

School of Applied Engineering and Technology Syllabi

NJIT Syllabi

Summer 5-15-2020

MET 302-450: Analysis and Design of Machine Elements II

Ahmed Belal

Follow this and additional works at: https://digitalcommons.njit.edu/saet-syllabi

Recommended Citation

Belal, Ahmed, "MET 302-450: Analysis and Design of Machine Elements II" (2020). *School of Applied Engineering and Technology Syllabi*. 46. https://digitalcommons.njit.edu/saet-syllabi/46

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in School of Applied Engineering and Technology Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

COURSE NUMBER	MET 302		
Course Name Course Structure	Analysis & Design of Machine Elements II (3-0-3) (lecture hr/wk - lab hr/wk – course credits)		
COURSE COORDINATOR/INSTRUCTOR COURSE DESCRIPTION	Dr. A. Sengupta/ Ahmed Belal A continuation of MET 301, including analysis and design of power screws, brakes, clutches, belts, chain drives, gears, gear trains, bearings, and other machine elements.		
PREREQUISITE(S) COREQUISITE(S)	MET 301		
REQUIRED, ELECTIVE OR SELECTED ELECTIVE REQUIRED MATERIALS	Text: Design of Machine Elements, 8 th Ed. by M.F. Spotts, T.E. Shoup and L.E. Hornberger, Prentice-Hall, 2004, ISBN 9780130489890		
COMPUTER USAGE COURSE LEARNING OUTCOMES (CLO)	 By the end of the course students should be able to: Design a helical spring (to determine standard wire diameter, mean helix radius, minimum volume of spring material and number of active coils) if maximum stress, static load and deflection are given. Calculate permissible values of maximum and minimum loads, if a helical spring is carrying fluctuating load. Calculate the stress in a bolt when it is designed to carry an impact load. Determine the pitch of a power screw to raise a given load at a given speed with a given power consumption. Determine the torque a cone clutch can exert, the engaging force required for steady operation and the friction power for a given speed. Determine angle of contact between lining and drum of a band brake exerting certain amount of torque, if the maximum pressure between the lining and the drum and the coefficient of pressure are given. Find the length of leg of a system of fillet welds used to weld a bracket/beam to a support, if the bracket/beam is loaded (steady & fluctuating) eccentrically. Find the permissible load for a riveted joint if the resultant shearing stress for the most highly stressed rivet is given. Evaluate load carrying capacity of 120°, 180° and 360° central partial journal bearings. Compute rating life of a ball bearing subjected to steady load and variable load. 		

CLASS TOPICS	 Find the contact ratio for a spur gear pair if diametral pitch and pressure angle are specified. Find the helix angle of a worm gear set if worm and wheel pitch diameters are given. Find the value of the diametral interference between the shaft and the hub when they are press fitted. Evaluate the maximum stress in the material of a disk fly wheel and the kinetic energy delivered due to fluctuation of speed. Springs, Screws, Belts, Clutches, Brakes and Chains, Welded Connections, Riveted Connections, Lubrication, Ball Bearings, Spur Gears, Helical, Bevel and Worm Gears, Shrink fit, Disk Flywheel
STUDENT OUTCOMES	The Course Learning Outcomes support the achievement of the following MET Student Outcomes and TAC of ABET Criterion 9 requirements
	 Student outcome a - an ability to select and apply the knowledge, techniques, skills, and modern tools of the discipline to broadly-defined engineering technology activities Course Learning Outcome – evaluate load carrying capacity of 120°, 180° and 360° central partial journal bearings.
	 Student outcome b - an ability to select and apply a knowledge of mathematics, science, engineering, and technology to engineering technology problems that require the application of principles and applied procedures or methodologies Course Learning Outcome – determine the pitch of a power screw to raise a given load at a given speed with a given power consumption.
	Student outcome f - an ability to identify, analyze, and solve broadly- defined engineering technology problems Course Learning Outcome – determine the torque a cone clutch can exert, the engaging force required for steady operation and the friction power for a given speed.
	 Student outcome m - technical expertise having added technical depth in mechanical design, solid mechanics, and electro-mechanical devices and controls. Course Learning Outcome – determine angle of contact between lining and drum of a band brake exerting certain amount of torque, if the maximum pressure between the lining and the drum and the coefficient of pressure are given.

GRADING POLICY	Homework	15 %	
Note: Grading Policy may be modified by Instructor for	Final Exam	34 % 31 %	
each Section in the Course)	Note : Cannot pass course if you having failing grades on tests and final exam. There are three tests during the semester. The lowest grade will be dropped. However, if you achieve an A for all three tests, you will not		
	be excused from one test, then the	the final. There will be no makeup tests – if you miss at is the test you will drop.	
Academic Integrity	NJIT has a zero- student behavior incidents will be cases the Honor from a minimum to expulsion from Avoid situations For more inform http://www.njit.	tolerance policy regarding cheating of any kind and that is disruptive to a learning environment. Any immediately reported to the Dean of Students. In the Code violations are detected, the punishments range of failure in the course plus disciplinary probation up m NJIT with notations on students' permanent record. where honorable behavior could be misinterpreted. ation on the honor code, go to edu/academics/honorcode.php	
Student Behavior	 No eating or workshops, a Cellular pho are expecting No headphor Unless the probe closed du During labor professor yo Class time sl discussion 	drinking is allowed at the lectures, recitations, and laboratories. nes must be turned off during the class hours – if you g an emergency call, leave it on vibrate. nes can be worn in class. rofessor allows the use during lecture, laptops should ring lecture. ratory, if you are finished earlier, you must show the ur work before you leave class hould be participative. You should try to be part of a	
Modification to Course	The Course Out or in the event o in class of any cl	line may be modified at the discretion of the instructor f extenuating circumstances. Students will be notified hanges to the Course outline.	
PREPARED BY COURSE COORDINATED BY	Ahmed Belal Dr. A. Sengupta		

CLASS HOURS

Wednesday 6:00 PM – 9:00 PM

Instructor Scheduled Webex Meeting

OFFICE HOURS:

By Appointment: asb62@njit.edu

HOMEWORK - IMPORTANT

- 1. Homework practice problems will be assigned each class. These problems will <u>not</u> be collected. A Quiz based on the lecture and practice problems will be given each class.
- 2. Quiz problems should done using the "Given and Find" format and all equations should be defined symbolically prior to calculating any values.

SYNCHRONOUS ONLINE INFORMATION

The instructor will discuss these requirements on the first day of the course and/or post on their Learning Management System (LMS). Please become familiar

- Webex: <u>http://ist.njit.edu/webex</u>
- Online Proctoring: <u>https://ist.njit.edu/online-proctoring/</u>

GRADING LEGEND

GRADE	NUMERIC RANGE
А	90 to 100
B+	85 to 89
В	80 to 84
C+	75 to 79
С	70 to 74
D	60 to 69
F	0 to 59

COURSE OUTLINE

WEEK	DATE	TOPICS	SECTIONS	ASSIGNMENTS
1	5/20	Springs	4-1 thru 4-12, 4-17	4.1, 4, 9, 10, 12
2	5/27	Screws	5-1 thru 5-9	5.2, 3, 4, 9, 16
3	6/3	Belts, Clutches, Brakes, and Chains	6-1 thru 6-8	6.1, 3, 8, 10, 11 6.13, 15, 27, 28
4	6/10	Quiz No. 1 Welded Connections	7-1 thru 7-12	7.2, 3, 5, 8, 9
5	6/17	Riveted Connections	7-13 thru 7-18	7.15, 17, 19, 20, 27
6	6/24	Lubrication Quiz No. 2	8-1 thru 8-10	8.1, 2, 3, 5, 7 8.10, 15, 19, 25
7	7/1	Ball and Roller Bearings	9-1 thru 9-15	9.1, 5, 6, 9
8	7/8	Spur Gears	10-1 thru 10-16	10.3, 5, 6 10.10, 13, 25
9	7/15	Helical, Bevel and Worm Gears Quiz No. 3	11-1 thru 11-8	11.4, 12, 16, 19, 21
10	7/22	Impact Stress Curved Beams	12.7 to 12.10 12.14 to 12.16	12.20, 21, 22, 29
11	7/29	Shrink & Press Fits Gaskets & Seals	12-2 12-11	
15	TBD	FINAL EXAM		