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ABSTRACT 

Background: Refractive surgery (RS) for myopia has made a very big progress regarding its safety and predictability of 
the outcome. Still, a small percentage of operations require retreatment. Therefore, both legally and ethically, patients 
should be informed that sometimes a corrective RS may be required. We addressed this issue using Neural Networks 
(NN) in RS for myopia. This was a recently developed validation study of a NN.   
Methods: We anonymously searched the Ophthalmica Institute of Ophthalmology and Microsurgery database for 
patients who underwent RS with PRK, LASEK, Epi-LASIK or LASIK between 2010 and 2018. We used a total of 13 factors 
related to RS. Data was divided into four sets of successful RS outcomes used for training the NN, successful RS outcomes 
used for testing the NN performance, RS outcomes that required retreatment used for training the NN and RS outcomes 
that required retreatment used for testing the NN performance. We created eight independent Learning Vector 
Quantization (LVQ) networks, each one responding to a specific query with 0 (for the retreat class) or 1 (for the correct 
class). The results of the 8 LVQs were then averaged so we could obtain a best estimate of the NN performance. Finally, 
a voting procedure was used to reach to a conclusion. 
Results: There was a statistically significant agreement (Cohen’s Kappa = 0.7658) between the predicted and the actual 
results regarding the need for retreatment. Our predictions had good sensitivity (0.8836) and specificity (0.9186). 
Conclusions: We validated our previously published results and confirmed our expectations for the NN we developed. 
Our results allow us to be optimistic about the future of NNs in predicting the outcome and, eventually, in planning RS. 
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INTRODUCTION 

Artificial Intelligence (AI) and Neural Networks (NN) are 
considered as powerful assistants when sensing, learning, 

reasoning, and making decisions are required, especially 
in tasks where “learning” of different tasks requires the 
processing of large amounts of data [1, 2]. 

Original Article 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Medical Hypothesis, Discovery & Innovation (MEHDI) Ophthalmology Journal

https://core.ac.uk/display/327183415?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc/4.0/
mailto:anogian@hotmail.com


 
  

Med Hypothesis Discov Innov Ophthalmol. 2020; 9(3)  

173 VALIDATION OF NEURAL NETWORK PREDICTIONS FOR THE OUTCOME OF REFRACTIVE SURGERY  

In ophthalmology, for a number of retinal diseases, Deep 
Learning (DL) algorithms, already make referral 
recommendations processing 3-dimensional optical 
coherence tomography (OCT) data [3]. The DL 
recommendations exhibit equal or better validity with 
experts’ ideas. DL algorithms, for instance, scan images for 
signs of diabetic retinopathy [4], have reduced the burden 
of interpretation of an ever-growing volume and 
complexity of diagnostic images. In another 
implementation in East and Southeast Asia, AI predicts the 
progression of myopia and detects high myopia in young 
adults, up to 8 years in advance of its onset [5]. Last but 
not least, a statistical classifier algorithm maximizes the 
use of “big data” [6] to predict refractive surgery (RS) 
outcome.  
RS already fulfills strict criteria for safety, efficacy and 
cost-effectiveness [7, 8]. However, regarding the 
predictability of refractive outcome a small, albeit not 
negligible percentage of patients require a corrective 
retreatment [9-11]. Not only considering medical ethics, 
in some countries, the law also requires that patients 
should be well informed of any possibility that corrective 
RS may be required. We focused on myopia because, in 
our experience, myopia correction is the most broadly 
used refractive correction and, by far, the most popular 
among young adults. In previous work [12], we developed 
a NN to predict the possibility of retreatment in RS 
performed to correct myopia. In that paper, we developed 
the mathematical and computational tools to tackle the 
problem and we isolated the necessary clinical 
parameters from a sample of more than 4500 RS myopia 
procedures to train and test the NN that we used to detect 
high-risk patients. The only criterion for the selection was 
that we had a complete set of data, for each and every 
patient we selected. on the parameters that we used for 
NN training and testing.  
The present paper was dictated by two basic 
considerations. First because “Replicating studies are 
important” [13], and there is a need “to establish nuanced 
solutions to improve transparency, accountability, and 
reporting of research]” [13] and, in addition, “Concern 
over the reliability of published biomedical results grows 
unabated” [14]. Second, by establishing the repeatability 
of our method and disseminating verified results, we can 
facilitate widely testing of our NN (which is available for 
anyone that requests it) in a clinical setting. 

METHODS 

This study adhered to the same principles as our original 
study [12]. We randomly selected patients who 
underwent RS with PRK, LASEK, Epi-LASIK and LASIK by the 
Ophthalmica surgeons from January 2010 to September 

2018. We investigated a total of 13 RS related factors as 
described in our original study [12].  
In our experience, success of NN training strongly depends 
on the way the parameters used are normalized, because 
the NN training is extremely sensitive to data [12, 15, 16] 
of the type of the 13 parameters we use. Although, 
theoretically, it is not necessary to normalize independent 
(i.e., numerical) data, it turns out that normalization of 
numerical data values often makes NN training more 
efficient, and it makes the NN a better predictor [17]. 
The training and application of used DL network is based 
on the so called “back propagation algorithm” which 
involves a two-stage procedure; a forward propagation 
stage (recognition) and a back-propagation stage. The 
computations performed either during training or 
application of the NN depends on the multiplication of 
real-valued weights by a real-valued activation function 
(forward propagation) or by the gradient mentioned 
above (back-propagation) [18]. This approach to 
normalization, eliminates most multiplications by forcing 
the weights to be binary [18]. To achieve this, we chose to 
represent each integer by a 12-bit serial code. 12-bit 
encoding was used because of the size and the negativity 
of the integers used. Thus, following this preprocessing 
stage, a vector of all the data values for each patient was 
encoded in a 1 x (13*12) = 1x156 bit size binary vector. 
To classify data, i.e., to determine which myopia RS needs 
a retreatment, we used a Learning Vector Quantizer (LVQ) 
NN, which is based on a self-organizing network approach 
whereby the training vectors recursively “tune” those 
hidden NN units which correspond to different categories 
of the inputs.  
A trained network categorizes an input vector as member 
of a class which is represented by the nearest hidden unit 
[19]. LVQ networks perform very well in pattern 
classification [20]. The reason we chose an LVQ NN was 
that LVQ NNs are characterized by non-linear classification 
properties [17]. LVQ NNs comprise two layers; a first layer 
maps input vectors into clusters determined during the 
learning phase and a second layer which consolidates 
these clusters into classes characterized by the target 
data. The first step in LQV NN design deals with setting 
the parameters of the two NN layers. The data vectors 
that will be used as input are divided into a training and 
a test group. During learning, a “codebook 
Initialization” is performed first. The codebook vector is 
a table that represents the average of all the vectors 
that belong to a cluster. Our NN then compares the 
number of codebook vectors that correspond to each 
target group with the number of occurrences for that 
group. Following that, these vectors are adjusted to the 
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center of the input range. In this way two training 
groups, a retreat and a non-retreat group are created.  
The training itself of an LVQ is a two-step procedure. 
During the first step, the initial positions of the codebook 
vectors are determined in the r-dimensional space, for a 
given number of classes using standard clustering 
algorithms. One such algorithm is the K-Means that 
partitions observations into k clusters so that the pairwise 
squared deviations of points within the same cluster are 
minimized. Another similar algorithm is the Linde–Buzo–
Gray algorithm (LBG algorithm). During the second step, 
the codebook vectors are iteratively updated in order in 
an attempt to minimize the total classification error of the 
training set. The codebook vectors are “marshaled” in the 
direction of data vectors of the same class, while being 
distanced from the data vectors of different classes [21, 
22]. Following codebook Initialization, a Winner decision 
is taken. The Euclidean distance is calculated between the 
training data vector and the codebook vector. Thus, 
whenever a member of the training set feature vector, is 
incorrectly classified, both involved correct and incorrect 
codebook vectors are updated. The LVQ network is self-
organizing since it is determined by the weights of the 
competition layer and it uses the training input vectors, to 
reflect distribution of the sample data patterns in the 
output layer. The LVQ pattern recognition algorithm is 
resultant from the Kohonen competitive algorithm [17, 
21]. The architecture of the LVQ network is depicted in 
Figure 1.  
During testing, the network reacts with an unknown vector P 
(see figure 1). The decision depends on the error difference 
between the output y vector and the reconstructed vector 
and it has two values; 0 for the correct class or 1 for the 
retreat class. It is designated as ynet. 
To improve the range of the values for both sensitivity and 
specificity of the individual NN predictions we resorted to 
a Voting Procedure among a number of NN to which we 
posed the same question. 
 In effect, the Winner decision of each NN queried is 
followed by a voting procedure among the NNs. This is 
akin to an information aggregation procedure and joint 
decision-making by more than one NNs. In our proposed 
system, the new query vector is tested against each of the 
K two-way classifiers. The result is the determination, by 
each NN, of the class it belongs to. The correct class 
indicates (with a high probability) that the RS myopia will 
be successful; in contrast, the retreat class reflects a 
particularly low probability for successful RS outcome. 
This procedure results in K scores from the K classifiers. 
Obtaining an “unambiguous” (i.e., highly probable) 
prediction for a given testing vector [23, 24] is achieved by 

reducing or eliminating false positives. In our case, all 
votes from the eight classifiers we use, are tallied and the 
class that receives the most votes becomes the final 
prediction. At this second step of the decision stage, 
therefore, false positives are in fact eliminated. In 
eliminating the false positives, the decision boundary is 
drawn between two “true” classes of training vectors, 
instead of one “true” class and its complementary 
“others” class, which is enormously complex. These 
classes are determined according to the test input and the 
decision threshold so that: 
If more than 4 NN “vote” “correct, (i.e., 1)” for a non-
retreat test vector than the result is “correct 
identification”.   
If less than 4 NN “vote” “retreat, (i.e., 0)” for a non-retreat 
test vector than the result is “not correct identification”.   
If more than 4 NN “vote” “correct, (i.e., 1)” for a retreat 
test vector than the result is “correct identification”.   
If less than 4 NN “vote” “retreat, (i.e., 0)” for a retreat test 
vector than the result is “not correct identification”.   
In this way, false positives are eliminated accurately. Also, 
for non-correct identification (or the cases that indeed 
require retreat) we set stricter criteria for securing correct 
identification. Thus, we adopted a larger range of votes 
(i.e., 0, 1, 2, 3 and 4) than the case for the correct 
identification to increase the specificity. The complete 
mathematical reasoning and development of our NN has 
been previously described [12]. 
From the January 1, 2010 to September13, 2018, a total of 
5210 RS operations were performed by fifteen ophthalmic 
surgeons in Ophthalmica. Of these, 5117 were original 
treatments and 93 corrective retreatments. Overall 
retreatment/treatment ratio was 0.01785, lower than the 
reported rates in the literature [10, 25-35].  
The previously calculated correlation of the experience of 
the individual surgeons with their RS outcomes was (r for 
number of treatments vs % of retreatments) very close to 
zero (-0.06352), which indicates the independence of the 
operating surgeon experience from the outcome. 
Therefore, surgeon identity was not included in the 13 
factors which are related to RS and used in the 
construction of the binary vector of 156-bit size, which 
encoded the parameters for each patient, as mentioned 
above. 
Of the above set of operations, following and matching 
exactly the protocol we used in our previous study, we 
randomly isolated from our cohort 2378 non-retreat and 
70 retreat patients from those 5210 treatments who were 
followed-up for over a year and complete data was 
available for the RS parameters that we used. 
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The 2378 non-retreat and 70 retreat vectors were 
constructed according to the Preprocessing Stage. The 
rest of the NN operation, strictly followed the description 
for Data Classification Stage and Decision Making. As 
mentioned, for the voting procedure, the above 
procedure was repeated, for every attempt to predict the 
RS outcome, eight times randomly, whereby each 
procedure represented a different training and testing 
NN. 
 

RESULTS 

To prove that the used neural classification test predicts 
the outcome of RS with a reasonable accuracy, we had to 
determine the validity of the prediction. To measure 
validity, one must use the values of sensitivity and 
specificity. For this a conventional two- by-two (2 x 2) 
table (Table 1) was used. Table 1 compares the outcome 
of RS that required no retreatment versus those who 
required retreatment. This comparison was made for each 

run of the NN algorithm before the voting stage is 
implemented.   
To understand whether a substantial agreement exists 
between the outcome of neural classification (“observed” 
agreement) and the RS outcome recorded in the database 
(“expected” agreement), we used Cohen’s Kappa [36, 37]. 
The Cohen’s Kappa range is between -1 and 1, whereby 1 
indicates a perfect agreement, 0 is what one would expect 
purely by chance, while negative values indicate a 
systematic disagreement (i.e., less than that expected by 
pure chance). 
Sensitivity, specificity and Cohen’s Kappa statistic were 
calculated for the results for our NN which consisted of 78 
neurons (see above Data Classification Stage and Decision 
Making), and it was trained for ≤ 100 epochs. Each training 
vector (both treatment and retreatment groups) was 30. 
Every time, the procedure continued until the mean 
square error was minimized within ≤ 100 epochs. The 
detailed presentation of the individual classification tests 
(before the voting procedure) is cumulatively presented 
(for 8 individual classification tests) in Table 1.

 

 

 

 
Figure 1. The architecture of the LVQ network. An input vector P with R dimensionality is used. S1 is the number of competitive neurons in the layer; 
IW1.1 is the matrix of the weight coefficients that join the input and competition layer; n1 is the input to the competition layer neuron; a1 symbolizes 
the competition layer neuron; LW2.1 is the matrix of the weight coefficients for the connections which is extracted through the competition between 
the comparative layers and the linear output layer [38]; n2 is the input to the linear output layer; a2 is the linear output layer neuron. The output of 
the training procedure is vector y. 

 

 

 

Table 1. Cumulative detailed presentation of the individual classification tests  
Retreat Case Non-Retreat Case 

Test positive to predict Retreat Cases True Positives (TP) 
a (TP) =416 

False Positives (FP) 
b (FP) =4880 

 
Total Test Positives 
a+b=5296 

Test positive to predict Non-Retreat Cases False Negatives (FN) 
c (FN)=144 

True Negatives (TN) 
d (TN)= 13584 

Total Test Negatives 
c+d=13728 

 Total  
a+c =560 

Total  
b+d= 18464  

Total Population 
a+b+c+d=19024 
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In table 1, cell “a” contains the cases who were correctly 
classified as retreat ones, i.e., true positives (TP). Cell “b” 
contains the cases who were incorrectly classified as 
retreat ones, i.e., false positives (FP). Cell “c” contains the 
cases who were incorrectly classified as non-retreat ones, 
i.e., false negatives (FN). Finally, cell “d” contains the cases 
who were correctly classified as non-retreat ones, i.e., 
true negatives (TN). Thus, sensitivity and the specificity 
were given by: 
Sensitivity = TP / (TP+FN) = 416 / (416+144) = 0.7429 
Specificity= TN / (TN+FP) = 13584 / (13584+4880) =0.7357 
The ranges of the values for the sensitivity and specificity 
of any individual NN predictions were 0.7429 and 0.7357 
respectively.  
However, following the voting procedure, which gives the 
final prediction the values both for the indexes were 
improved significantly reaching 0.8836 and specificity 
0.9186. With respect to the final prediction, Cohen’s 
Kappa test (0.7658) indicates a substantial agreement 
between the classification results and the actual outcome 
[36, 37]. The software in machine Learning was 
industrialized by the Laboratory of Information 
Technologies of the Ionian University in close 
collaboration with the Ophthalmica Institute of 
Ophthalmology and Microsurgery, Thessaloniki, Greece 
(which provided the necessary data for the software 
development and testing). It can be used as an 
experimental tool for assessing the probability that 
corrective treatment may be required following RS for 
myopia. The software, which can be used either for testing 
or to explore its capabilities using a researcher’s own data 
is available free on internet, where the relevant 
disclaimers for using our software are described [39]. 

DISCUSSION  

Although, major advances in RS took place during the last 
few decades and an excellent predictability of the 
refractive outcome [4, 5] has been achieved, a small 
percentage of RS outcomes require corrective 
retreatment [6-8]. Despite the general decline in the 
incidence of RS failures, there is still a place for 
improvement. In addition, the low incidence of 
retreatments brings about an enhanced anticipation for a 
perfect RS outcome to patients. Therefore, surgeons must 
explain to patients that sometimes a corrective RS may be 
necessary. Otherwise, they open themselves to ethical 
and legal questions about a potentially unacceptable or 
inferior (to what is accepted as gold standard), outcome. 
Our own research efforts have focused on the possible 
relevance of the numerical representation of five 
objective patient-related and eight objectives 

(clinical/operation) procedure-related parameters for 
identification (by NNs) of myopic patients who are at high-
risk for retreatment after RS. In the past, we used the 
above thirteen parameters to construct a NN which met 
this task. The NN we have developed predicts potentially 
unsatisfactory outcomes of RS for myopia with good 
sensitivity and specificity [12].  
Given that the replication of published results is of 
paramount importance, in the present article we 
attempted to validate the performance of NN that we 
previously developed; For this, we randomly selected 
2378 non-retreat and 70 retreat cases from a total of 5210 
treatments with a follow-up of over a year and for which 
we had complete sets of data on record.. All 5210 cases 
were recorded in the Ophthalmica Institute of 
Ophthalmology and Microsurgery database of RS (PRK, 
LASEK, Epi-LASIK or LASIK) and performed between 2010 
and 2018.  
The five, objective patient-related, parameters that our 
NN-based algorithm uses are age, axis of astigmatism (in 
degrees), thickness of the corneal stroma, keratometric 
values for the horizontal and the vertical axes of the 
cornea. The other eight objective parameters are related 
to the conditions under which the operation took place. 
These can be controlled by the surgeon in his surgical 
approach to the specific patient. The statistical strength 
(Cohen’s Kappa statistic = 0.7595 for correct predictions 
vs actual outcomes) [36, 37] and the resulted sensitivity 
(0.8836) and specificity (0.9186), allow us to be really 
optimistic about the future of NNs use in the outcome 
prediction and eventually planning of RS. 

 

CONCLUSION 

We validated our previously published results and 
confirmed our expectations for the NN we developed. Our 
results allow us to be optimistic about the future of NNs 
in predicting the outcome and, eventually, in planning RS. 
 
ETHICAL DECLARATIONS 

• Ethical approval: No need for ethical approval 
based on nature of study. 

• Conflicts of interest: None. 
 
FUNDING 
The author(s) received no specific funding for this work. 
 
ACKNOWLEDGEMENT  
None. 
 



 
  

Med Hypothesis Discov Innov Ophthalmol. 2020; 9(3)  

177 VALIDATION OF NEURAL NETWORK PREDICTIONS FOR THE OUTCOME OF REFRACTIVE SURGERY  

REFERENCES  

1. Bengio Y, Courville A, Vincent P. Representation 
learning: a review and new perspectives. IEEE Trans Pattern Anal 
Mach Intell. 2013;35(8):1798-828. doi: 10.1109/TPAMI.2013.50 
pmid: 23787338 
2. Schmidhuber J. Deep learning in neural networks: an 
overview. Neural Netw. 2015;61:85-117. doi: 
10.1016/j.neunet.2014.09.003 pmid: 25462637 
3. De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, 
Tomasev N, Blackwell S, et al. Clinically applicable deep learning 
for diagnosis and referral in retinal disease. Nat Med. 
2018;24(9):1342-50. doi: 10.1038/s41591-018-0107-6 pmid: 
30104768 
4. Lee K. AI device for detecting diabetic retinopathy 
earns swift FDA approval: American Academy of Ophthalmology; 
2018 [cited 2018 August 7, 2019]. Available from: 
https://www.aao.org/headline/first-ai-screen-diabetic-
retinopathy-approved-by-f. 
5. Lin H, Long E, Ding X, Diao H, Chen Z, Liu R, et al. 
Prediction of myopia development among Chinese school-aged 
children using refraction data from electronic medical records: A 
retrospective, multicentre machine learning study. PLoS Med. 
2018;15(11):e1002674. doi: 10.1371/journal.pmed.1002674 
pmid: 30399150 
6. Achiron A, Gur Z, Aviv U, Hilely A, Mimouni M, 
Karmona L, et al. Predicting Refractive Surgery Outcome: 
Machine Learning Approach With Big Data. J Refract Surg. 
2017;33(9):592-7. doi: 10.3928/1081597X-20170616-03 pmid: 
28880333 
7. Kohnen T. [Criteria for evaluating and publishing 
refractive surgery interventions]. Klin Monbl Augenheilkd. 
1999;215(6):326-8. pmid: 10637793 
8. Koch DD, Kohnen T, Obstbaum SA, Rosen ES. Format 
for reporting refractive surgical data. J Cataract Refract Surg. 
1998;24(3):285-7. doi: 10.1016/s0886-3350(98)80305-2 pmid: 
9559453 
9. Pokroy R, Mimouni M, Sela T, Munzer G, Kaiserman I. 
Myopic laser in situ keratomileusis retreatment: Incidence and 
associations. J Cataract Refract Surg. 2016;42(10):1408-14. doi: 
10.1016/j.jcrs.2016.07.032 pmid: 27839594 
10. Yuen LH, Chan WK, Koh J, Mehta JS, Tan DT, SingLasik 
Research G. A 10-year prospective audit of LASIK outcomes for 
myopia in 37,932 eyes at a single institution in Asia. 
Ophthalmology. 2010;117(6):1236-44 e1. doi: 
10.1016/j.ophtha.2009.10.042 pmid: 20153899 
11. Randleman JB, White AJ, Jr., Lynn MJ, Hu MH, Stulting 
RD. Incidence, outcomes, and risk factors for retreatment after 
wavefront-optimized ablations with PRK and LASIK. J Refract 
Surg. 2009;25(3):273-6. doi: 10.3928/1081597X-20090301-06 
pmid: 19370822 
12. Balidis M, Papadopoulou I, Malandris D, Zachariadis Z, 
Sakellaris D, Vakalis T, et al. Using neural networks to predict the 
outcome of refractive surgery for myopia. 4open. 2019;2. doi: 
10.1051/fopen/2019024  
13. The L. Research matters: challenges of replication. The 
Lancet. 2017;389(10072). doi: 10.1016/s0140-6736(17)30641-4  

14. Mogil JS, Macleod MR. No publication without 
confirmation. Nature. 2017;542(7642):409-11. doi: 
10.1038/542409a pmid: 28230138 
15. Goodfellow I, Bengio Y, Courville A. Deep Learning: MIT 
Press; 2016. 9780262035613 
16. Nielsen MA. Chapter 6. Neural Networks and Deep 
Learning2015.  
17. McCaffrey J. Neural Network Training using Particle 
Swarm Optimization, Dec 18, 2013: Visual Studio Magazine; 
2013 [cited 2013 January 7, 2019]. Available from: 
https://visualstudiomagazine.com/Articles/2013/12/01/Neural-
Network-Training-Using-Particle-Swarm-
Optimization.aspx?Page=1&p=1. 
18. Courbariaux M, Bengio Y, David J. Binaryconnect: 
Training deep neural networks with binary weights during 
propagations, Advances in Neural Information Processing 
Systems. 2015:3123-31.  
19. Hawickhorst B, Zahorian S, Rajagopal R. A Comparison 
of Three Neural Network Architectures for Automatic Speech 
Recognition. Intelligent Engineering Systems Through Artificial 
Neural Networks. 1995;5:221-6.  
20. Kohonen T. Statistical Pattern Recognition Revisited.  
Advanced Neural Computers1990. p. 137-44. 
21. Langari R, Won JS. Intelligent Energy Management 
Agent for a Parallel Hybrid Vehicle—Part I: System Architecture 
and Design of the Driving Situation Identification Process. IEEE 
Transactions on Vehicular Technology. 2005;54(3):925-34. doi: 
10.1109/tvt.2005.844685  
22. Poulos M, Rangoussi M, Alexandris N, Evangelou A. 
Person identification from the EEG using nonlinear signal 
classification. Methods Inf Med. 2002;41(1):64-75. pmid: 
11933767 
23. Ding CH, Dubchak I. Multi-class protein fold 
recognition using support vector machines and neural networks. 
Bioinformatics. 2001;17(4):349-58. doi: 
10.1093/bioinformatics/17.4.349 pmid: 11301304 
24. Kim B-K, Roh J, Dong S-Y, Lee S-Y. Hierarchical 
committee of deep convolutional neural networks for robust 
facial expression recognition. Journal on Multimodal User 
Interfaces. 2016;10(2):173-89. doi: 10.1007/s12193-015-0209-0  
25. Hersh PS, Fry KL, Bishop DS. Incidence and associations 
of retreatment after LASIK. Ophthalmology. 2003;110(4):748-54. 
doi: 10.1016/s0161-6420(02)01981-4  
26. Siedlecki J, Luft N, Kook D, Wertheimer C, Mayer WJ, 
Bechmann M, et al. Enhancement After Myopic Small Incision 
Lenticule Extraction (SMILE) Using Surface Ablation. J Refract 
Surg. 2017;33(8):513-8. doi: 10.3928/1081597X-20170602-01 
pmid: 28787515 
27. Kruh JN, Garrett KA, Huntington B, Robinson S, Melki 
SA. Risk Factors for Retreatment Following Myopic LASIK with 
Femtosecond Laser and Custom Ablation for the Treatment of 
Myopia. Semin Ophthalmol. 2017;32(3):316-20. doi: 
10.3109/08820538.2015.1088552 pmid: 27049689 
28. Mimouni M, Vainer I, Shapira Y, Levartovsky S, Sela T, 
Munzer G, et al. Factors Predicting the Need for Retreatment 
After Laser Refractive Surgery. Cornea. 2016;35(5):607-12. doi: 
10.1097/ICO.0000000000000795 pmid: 26967106 

http://dx.doi.org/10.1109/TPAMI.2013.50
http://www.ncbi.nlm.nih.gov/pubmed/23787338
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25462637
http://dx.doi.org/10.1038/s41591-018-0107-6
http://www.ncbi.nlm.nih.gov/pubmed/30104768
http://www.ncbi.nlm.nih.gov/pubmed/30104768
https://www.aao.org/headline/first-ai-screen-diabetic-retinopathy-approved-by-f
https://www.aao.org/headline/first-ai-screen-diabetic-retinopathy-approved-by-f
http://dx.doi.org/10.1371/journal.pmed.1002674
http://www.ncbi.nlm.nih.gov/pubmed/30399150
http://dx.doi.org/10.3928/1081597X-20170616-03
http://www.ncbi.nlm.nih.gov/pubmed/28880333
http://www.ncbi.nlm.nih.gov/pubmed/28880333
http://www.ncbi.nlm.nih.gov/pubmed/10637793
http://dx.doi.org/10.1016/s0886-3350(98)80305-2
http://www.ncbi.nlm.nih.gov/pubmed/9559453
http://www.ncbi.nlm.nih.gov/pubmed/9559453
http://dx.doi.org/10.1016/j.jcrs.2016.07.032
http://dx.doi.org/10.1016/j.jcrs.2016.07.032
http://www.ncbi.nlm.nih.gov/pubmed/27839594
http://dx.doi.org/10.1016/j.ophtha.2009.10.042
http://dx.doi.org/10.1016/j.ophtha.2009.10.042
http://www.ncbi.nlm.nih.gov/pubmed/20153899
http://dx.doi.org/10.3928/1081597X-20090301-06
http://www.ncbi.nlm.nih.gov/pubmed/19370822
http://dx.doi.org/10.1051/fopen/2019024
http://dx.doi.org/10.1051/fopen/2019024
http://dx.doi.org/10.1016/s0140-6736(17)30641-4
http://dx.doi.org/10.1038/542409a
http://dx.doi.org/10.1038/542409a
http://www.ncbi.nlm.nih.gov/pubmed/28230138
https://visualstudiomagazine.com/Articles/2013/12/01/Neural-Network-Training-Using-Particle-Swarm-Optimization.aspx?Page=1&p=1
https://visualstudiomagazine.com/Articles/2013/12/01/Neural-Network-Training-Using-Particle-Swarm-Optimization.aspx?Page=1&p=1
https://visualstudiomagazine.com/Articles/2013/12/01/Neural-Network-Training-Using-Particle-Swarm-Optimization.aspx?Page=1&p=1
http://dx.doi.org/10.1109/tvt.2005.844685
http://dx.doi.org/10.1109/tvt.2005.844685
http://www.ncbi.nlm.nih.gov/pubmed/11933767
http://www.ncbi.nlm.nih.gov/pubmed/11933767
http://dx.doi.org/10.1093/bioinformatics/17.4.349
http://dx.doi.org/10.1093/bioinformatics/17.4.349
http://www.ncbi.nlm.nih.gov/pubmed/11301304
http://dx.doi.org/10.1007/s12193-015-0209-0
http://dx.doi.org/10.1016/s0161-6420(02)01981-4
http://dx.doi.org/10.3928/1081597X-20170602-01
http://www.ncbi.nlm.nih.gov/pubmed/28787515
http://dx.doi.org/10.3109/08820538.2015.1088552
http://dx.doi.org/10.3109/08820538.2015.1088552
http://www.ncbi.nlm.nih.gov/pubmed/27049689
http://dx.doi.org/10.1097/ICO.0000000000000795
http://dx.doi.org/10.1097/ICO.0000000000000795
http://www.ncbi.nlm.nih.gov/pubmed/26967106


 
  

Med Hypothesis Discov Innov Ophthalmol. 2020; 9(3)  

178 VALIDATION OF NEURAL NETWORK PREDICTIONS FOR THE OUTCOME OF REFRACTIVE SURGERY  

29. Valdez-Garcia JE, Hernandez-Camarena JC, Martinez-
Munoz R. 3-Year follow-up after Lasik: assessing the risk factors 
for retreatment. Int Ophthalmol. 2016;36(1):91-6. doi: 
10.1007/s10792-015-0084-4 pmid: 25985886 
30. See B, Tan M, Chia SE, Gan WH, Low R, Nah G. 
Photorefractive keratectomy in young Asian aviators with low-
moderate myopia. Aviat Space Environ Med. 2014;85(1):25-9. 
doi: 10.3357/asem.3658.2014 pmid: 24479255 
31. Gazieva L, Beer MH, Nielsen K, Hjortdal J. A 
retrospective comparison of efficacy and safety of 680 
consecutive lasik treatments for high myopia performed with 
two generations of flying-spot excimer lasers. Acta Ophthalmol. 
2011;89(8):729-33. doi: 10.1111/j.1755-3768.2009.01830.x 
pmid: 20102346 
32. Shojaei A, Mohammad-Rabei H, Eslani M, Elahi B, 
Noorizadeh F. Long-term evaluation of complications and results 
of photorefractive keratectomy in myopia: an 8-year follow-up. 
Cornea. 2009;28(3):304-10. doi: 
10.1097/ICO.0b013e3181896767 pmid: 19387232 
33. Bragheeth MA, Fares U, Dua HS. Re-treatment after 
laser in situ keratomileusis for correction of myopia and myopic 
astigmatism. Br J Ophthalmol. 2008;92(11):1506-10. doi: 
10.1136/bjo.2008.143636 pmid: 18757469 
34. Alio JL, Muftuoglu O, Ortiz D, Perez-Santonja JJ, Artola 
A, Ayala MJ, et al. Ten-year follow-up of laser in situ 

keratomileusis for high myopia. Am J Ophthalmol. 
2008;145(1):55-64. doi: 10.1016/j.ajo.2007.08.035 pmid: 
17996210 
35. Alio JL, Galal A, Artola A, Ayala MJ, Merayo J. Hyperopic 
LASIK retreatments with the Technolas laser. J Refract Surg. 
2006;22(6):596-603. pmid: 16805124 
36. Viera AJ, Garrett JM. Understanding interobserver 
agreement: the kappa statistic. Fam Med. 2005;37(5):360-3. 
pmid: 15883903 
37. Sim J, Wright CC. The kappa statistic in reliability 
studies: use, interpretation, and sample size requirements. Phys 
Ther. 2005;85(3):257-68. pmid: 15733050 
38. Papavlasopoulos S, Poulos M, Evangelou A. Feature 
Extraction from Interictal Epileptic and Non- Epileptic 
Pathological Eeg Events for Diagnostic Purposes Using Lvq1 
Neural Network.  Mathematical Methods in Scattering Theory 
and Biomedical Engineering2006. p. 390-8. 

39. Software in Machine Learning by Laboratory of 
Information Technologies. http://lit.ionio.gr/node/27 date of 
access: June 1, 2020 

 

 

http://dx.doi.org/10.1007/s10792-015-0084-4
http://dx.doi.org/10.1007/s10792-015-0084-4
http://www.ncbi.nlm.nih.gov/pubmed/25985886
http://dx.doi.org/10.3357/asem.3658.2014
http://www.ncbi.nlm.nih.gov/pubmed/24479255
http://dx.doi.org/10.1111/j.1755-3768.2009.01830.x
http://www.ncbi.nlm.nih.gov/pubmed/20102346
http://dx.doi.org/10.1097/ICO.0b013e3181896767
http://dx.doi.org/10.1097/ICO.0b013e3181896767
http://www.ncbi.nlm.nih.gov/pubmed/19387232
http://dx.doi.org/10.1136/bjo.2008.143636
http://dx.doi.org/10.1136/bjo.2008.143636
http://www.ncbi.nlm.nih.gov/pubmed/18757469
http://dx.doi.org/10.1016/j.ajo.2007.08.035
http://www.ncbi.nlm.nih.gov/pubmed/17996210
http://www.ncbi.nlm.nih.gov/pubmed/17996210
http://www.ncbi.nlm.nih.gov/pubmed/16805124
http://www.ncbi.nlm.nih.gov/pubmed/15883903
http://www.ncbi.nlm.nih.gov/pubmed/15733050

