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Abstract—In this paper we go on with the analysis of the
asymptotic behavior of Lur’e–type systems with periodic nonlin-
earities and infinite sets of equilibria. It is well known by now
that this class of systems can not be efficiently investigated by
the second Lyapunov method with the standard Lur’e–Postnikov
function (“a quadratic form plus an integral of the nonlinear-
ity”). So several new methods have been elaborated within the
framework of Lyapunov direct method. The nonlocal reduction
technique proposed by G.A. Leonov in the 1980s is based on the
comparison principle. The feedback system is reduced to a low-
order system with the same nonlinearity and known asymptotic
behavior. Its trajectories are injected into Lyapunov function of
the original system. In this paper we develop the method of
nonlocal reduction. We propose a new Lyapunov–type function
which involves both the trajectories of the comparison system
and a modified Lur’e–Postnikov function. As a result a new
frequency–algebraic criterion ensuring the convergence of every
solution to some equilibrium point is obtained.

Index Terms—Nonlinear system, periodic nonlinearity,
Lyapunov–type function, point–wise stability.

I. INTRODUCTION

The paper is devoted to asymptotic behavior of Lur’e-
type systems with periodic nonlinearities and infinite sets
of equilibria. Such systems are usually called pendulum-
like systems or synchronization systems [1], [2]. This class
of systems involves models of damped pendulums, electric
motors, power generators, vibrational units, and various syn-
chronization circuits such as phase and frequency locked
loops [3]–[6]. Stability and oscillations of synchronization
systems have been investigated in many published works
(see [8] and bibliography there).

Because of specific character of these systems standard
Lyapunov function such as a quadratic form plus the integral
of the nonlinearity (Lur’e–Postnikov function) is of no good
here. That is why special methods have been elaborated within
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the framework of Lyapunov direct method.The most efficient
proved to be the method of periodic Lyapunov functions and
the method of nonlocal reduction.

The method of periodic Lyapunov functions has been pro-
posed in [9]. The method uses a modified Lur’e–Postnikov
function. By special procedure (Bakaev–Guzh technique) the
original periodic nonlinearity is substituted by a periodic
nonlinearity with a zero mean value.

The method of nonlocal reduction have been developed
by G.A.Leonov [10]–[15]. It is based on the “comparison
principle” [16]. A low-order comparison system with the same
nonlinearity as the original one and well-known asymptotic
behavior is exploited. Its trajectories are used to construct
Lyapunov-type functions for the original system. Each of the
two methods has its own advantages.

In this paper we combine the two aforementioned meth-
ods and the Kalman–Yakubovich–Popov (KYP) lemma [13],
obtaining new “frequency–algebraic” stability criteria. Along
with Lagrange stability, previously studied in [17], we estab-
lish a new criterion of “pointwise” stability, that is, conver-
gence of every solution to one of the equilibria.

II. THE STATEMENT OF THE PROBLEM

We consider the system of indirect control with periodic
nonlinearity:

dz(t)

dt
= Az(t) + bϕ(σ(t)),

dσ(t)

dt
= c∗z(t) + ρϕ(σ(t)).

(1)

Here A ∈ Rm×m, b, c ∈ Rm, ρ ∈ R, z : R+ → Rm,
σ : R+ → R, ϕ : R→ R, the symbol (*) means the Hermitian
conjugation.

We assume that matrix A is Hurwitz, the pair (A, b) is
controllable and the pair (A, c) is observable. The function ϕ



is C1-smooth, and ∆–periodic:

ϕ(σ + ∆) = ϕ(σ), ∀σ ∈ R. (2)

It has two zeros: 0 ≤ σ1 < σ2 < ∆ such that

ϕ′(σ1) > 0, ϕ′(σ2) < 0. (3)

We suppose for the definiteness that∫ ∆

0

ϕ(σ)dσ ≤ 0. (4)

Notice that if (z(t), σ(t))T is a solution of (1) then
(z(t), σ(t) + ∆k)T (k ∈ Z) also is a solution of (1). So (1)
has a cylindric phase space.

System (1) has a denumerable set of Lyapunov stable and
Lyapunov unstable equlibria Λ = {(0, σj + ∆k)T : j =
1, 2, k ∈ Z}. Its asymptotic behavior is described by two types
of stability: Lagrange stability (every solution is bounded) and
point-wise stability (every solution converges). The latter is
often characterized as gradient–like behavior.

In this paper we firstly establish a frequency-algebraic
criterion for Lagrange stability and then add the conditions
that guarantee the point-wise convergence of solutions.

III. LAGRANGE STABILITY

Consider the equation of the second order

σ̈ + aσ̇ + ϕ(σ) = 0 (a > 0). (5)

In case ϕ(σ) = sinσ − β (β ∈ (0, 1)) it is the equation
of mathematical pendulum. It also describes the phase-locked
loop with the integrating lowpass filter. It can serve as the
simplistic mathematical model for the synchronous machine.

The equation (5) is equivalent to the system

ż = −az − ϕ(σ) (a > 0),
σ̇ = z.

(6)

which has been exhaustively investigated (see for example [14,
pp. 185-201] and the bibliography there). Further we shall use
the results of this investigation.

Namely for any ϕ(σ) there exists a bifurcation value acr
such that for a > acr every solution of (6) converges and for
a ≤ acr the system (6) has solutions with z(t) = σ̇(t) ≥ ε >
0. It must be noted that points (0, σ2 +∆k) (k ∈ Z) are saddle
points for (6). They have two separatrices that “go into” them
as t −→ +∞.

Consider the first order equation

F (σ)
dF (σ)

dσ
+ aF (σ) + ϕ(σ) = 0 (F = σ̇ = z). (7)

associated with (6). If a > acr it has a solution F0(σ) with
the following properties:

F0(σ2) = 0, (8)

F0(σ) 6= 0, if σ 6= σ2, (9)

F0(σ) −→ ±∞ as σ −→ ∓∞. (10)

This solution “consists” of the two separatrices “going into”
(0, σ2).

Introduce the constants

µ1
∆
= inf
σ∈[0,∆)

ϕ′(σ), µ2
∆
= sup
σ∈[0,∆)

ϕ′(σ) (µ1, µ2 < 0),

(11)

ν
∆
=

∫∆

0
ϕ(σ)dσ∫∆

0
|ϕ(σ)| dσ

. (12)

λ0
∆
= min
i=1,...,m

|Reλi| (i = 1, . . . ,m), (13)

where λi is an eigenvalue of the matrix A.
Introduce the transfer function of the linear part of (1)

K(p) = −ρ+ c∗(A− pIm)−1b (p ∈ C), (14)

where Im is an m×m - unit matrix.
Theorem 1: Suppose there exist positive τ, ε, δ,

λ ∈ (0, z0), α1 ≤ µ1, α2 ≤ µ2 such that the following
conditions are satisfied:
1) the inequality

Re{K(iω − λ)− τ(K(iω − λ)+

+α−1
1 (iω − λ))∗(K(iω − λ) + α−1

2 (iω − λ))}−
−ε|K(iω − λ)|2 ≥ δ

(15)

is valid for all ω ≥ 0;
2) for κ1 ∈ [0, 1] the quadratic form

P (x, y, z) = λx2 + εy2 + δz2 + (1− κ1)νyz+
+acr

√κ1xy
(16)

is positive definite.
Then system (1) is Lagrange stable.

Proof:
Consider the system

dy

dt
= Qy(t) + Lη(t),

dσ

dt
= D∗y(t).

(17)

where y(t) = (z(t), ϕ(σ(t)))T , η(t) = d
dtϕ(σ(t)),

Q =

[
A b
0 0

]
, L =

[
0
1

]
, D =

[
c∗

ρ

]
. (18)

Introduce the quadratic form

G(y, η) = 2y∗H((Q+ λIm+1)y + Lη) + δ(L∗y)2+

+ε(D∗y)2 + κy∗LD∗y + τ(D∗y − α−1
1 η)(D∗y−

−α−1
2 η) (y ∈ Rm+1, η ∈ R).

(19)

By Kalman-Yakubovich-Popov lemma the inequality (15)
guaranties that there exists a matrix H = H∗ [13] such that

G(y, η) ≤ 0, ∀y ∈ Rm+1, η ∈ R. (20)

Let

H =

[
H0 h
h∗ α

]
(H0 ∈ Rm×m, h ∈ Rm, α ∈ R). (21)



Then for ȳ = (z, 0)T it is true that

G(ȳ, 0) = 2z∗H0(A+λIm)z+(ε+τ)(c∗z)2 ∀z ∈ Rm. (22)

Since the pair (A + λIm, b) is controllable the matrix H0 is
positive definite [18]. So if ϕ(σ(t̄)) = 0 one has

y∗(t̄)Hy(t̄) > 0, z(t̄) 6= 0. (23)

Consider the condition 2) of the Theorem. It implies that

ε >
a2
crκ1

4λ
+

(1− κ1)2ν2

4δ
. (24)

Let ε = ε1 + ε2, where

ε2
∆
=

(1− κ1)2ν2

4δ
. (25)

Then
ε1 >

a2
crκ1

4λ
. (26)

System
dotz = 2

√
λε1z + κ1ϕ(σ),

σ̇ = z.
(27)

by linear change of variable t can be transformed to the
system (6) with a = 2

√
λε1
κ1

. So the equation

F (σ)
dF (σ)

dσ
+ 2
√
λε1F (σ) + κ1ϕ(σ) = 0. (28)

in virtue of (26) has the solutions F0(σ) with the proper-
ties (8), (9), (10).

Introduce the Lyapunov function:

W (t) = y∗(t)Hy(t) (29)

with matrix H from (20) and the Lyapunov functions

Vk(t) = W (t)− 1

2
F 2
k (σ(t)) + κ2

∫ σk(t)

σ2

Ψ0(ζ)dζ, (30)

with κ2 = 1− κ1,

Ψ0(ζ)
∆
= ϕ(ζ)− ν|ϕ(ζ)|, (31)

and Fk(σ) = F0(σ + ∆k) (k ∈ Z).
It is obvious that ∫ ∆

0

Ψ0(ζ)dζ = 0. (32)

In virtue of system (17)

V̇k(t) + 2λVk(t) = 2y∗(t)H((Q+ λIm+1)y(t)+
+Lϕ(σ(t)))− F ′k(σ(t))Fk(σ(t))σ̇(t) + κ2Ψ0(σ(t))σ̇(t)−

−λF 2
k (σ(t)) + 2λκ2

∫ σ(t)

σ2

Ψ0(ζ)dζ.

(33)
Now we can apply the inequality (20)

V̇k(t) + 2λVk(t) ≤ −εσ̇2(t)−
−δϕ2(σ(t))− σ̇(t)ϕ(σ(t))+
+2
√
λε1Fk(σ(t))σ̇(t) + κ1ϕ(σ(t))σ̇(t)+

+κ2ϕ(σ(t))σ̇(t)− κ2ν|ϕ(σ(t))|σ̇(t)− λF 2
k (σ(t))+

+2λκ2

∫ σ(t)

σ2

Ψ0(ζ)dζ.

(34)

It follows from (4) and (32) that∫ σ

σ2

Ψ0(ζ)dζ ≤ 0, ∀σ. (35)

Then

V̇k(t) + λVk(t) ≤ −(ε2σ̇
2(t) + δϕ2(σ(t))+

+κ2ν|ϕ(σ(t))|σ̇(t))− (ε1σ̇
2(t)− 2

√
λε1Fk(σ(t))σ̇(t)+

+λF 2
k (σ(t))), ∀t ≥ 0,

(36)
whence in virtue of (25)

V̇k(t) + 2λVk(t) ≤ 0 ∀t ≥ 0. (37)

Hence

Vk(t)e2λt ≤ Vk(0), ∀t ≥ 0,∀k ∈ Z. (38)

Notice that

Vk(0) = y∗(0)Hy(0)− 1
2F

2
k (σ(0)) + κ2

∫ σ(0)

σ2

Ψ(ζ)dζ

(39)
The property (10) of F0(σ) implies that one can always choose
a natural k0 ∈ N in such a way that

V±k0(0) < 0. (40)

Then

V±k0(t) < 0, ∀t ≥ 0. (41)

The inequality (41) gives the opportunity to prove the La-
grange stability of (1).

Suppose t̄ is such that

σ(t̄) = σ2 + ∆K, K ∈ Z. (42)

Then ϕ(σ(t̄)) = 0, ∫ σ(t̄)

σ2

Ψ0(ζ)dζ = 0 (43)

and it follows from (23) that

y∗(t̄)Hy(t̄) = z∗(t̄)H0z(t̄) ≥ 0. (44)

The inequality (41) implies that

F 2
±k0(σ(t̄)) 6= 0 (45)

whence

σ2 −∆k0 < σ(t̄) < σ2 + ∆k0. (46)

Hence for any z(0), σ(0) there exist a k0 ∈ N such that

σ2 −∆k0 < σ(t) < σ2 + ∆k0, ∀t ≥ 0. (47)

Theorem 1 is proved.



IV. POINT–WISE STABILITY

Theorem 2: Suppose there exist positive τ, ε, δ,
λ ∈ (0, λ0), α1 ≤ µ1, α2 ≤ µ2 such that

τα−1
1 α−1

2 = 0, (48)

τ(α−1
1 + α−1

2 )ρ ≤ 0 (49)

and all the conditions of Theorem 1 are satisfied. Then the
following relations are true

lim
t→+∞

σ̇(t) = 0, (50)

lim
t→+∞

z(t) = 0, (51)

lim
t→+∞

ϕ(σ(t)) = 0, (52)

lim
t→+∞

σ(t) = q, (53)

where ϕ(q) = 0.
Proof: Consider separately a Lyapunov function W (t)

introduced by (29). In virtue of system (17) one has

dW

dt
+ 2λW (t) = 2y∗(t)H[(Q+ λIm+1)y(t) + Lϕ(σ(t))].

(54)
Since the frequency–domain inequality (15) is fulfilled there
exists a matrix H = H∗ such that the inequality (20) is valid,
whence
dW

dt
+2λW (t)+εσ̇2(t)+σ̇(t)ϕ(σ(t))+δϕ2(σ(t)) ≤ 0. (55)

It follows from (48) that the quadratic form G(y, η) is linear
with respect to η. Since G(y, η) is nonnegative for all y, η, we
conclude that

2HL = τ(α−1
1 + α−1

2 )D. (56)

Taking into account (21) we get

2h = τ(α−1
1 + α−1

2 )c, 2α = τ(α−1
1 + α−1

2 )ρ. (57)

Then

W (t) = z∗(t)H0z(t) + τ(α−1
1 + α−1

2 )c∗z(t)ϕ(σ(t))+
+ 1

2 (α−1
1 + α−1

2 )ρϕ2(σ(t)).
(58)

The relations (55) and (58) together with the equations (17)
imply:

dW
dt + (2λτ(α−1

1 + α−1
2 ) + 1)σ̇(t)ϕ(σ(t))−

−λτ(α−1
1 + α−1

2 )ρϕ2(σ(t)) + 2λz∗(t)H0z(t)+
+εσ̇2(t) + δϕ2(σ(t)) ≤ 0,

(59)

whence

d
dt{W (t) + (2λτ(α−1

1 + α−1
2 ) + 1)

∫ σ(t)

σ(0)

ϕ(ζ)dζ}+

+εσ̇2(t) + δϕ2(σ(t)) ≤ λτ(α−1
1 + α−1

2 )ρϕ2(σ(t))−
−2λz∗(t)H0z(t).

(60)
Notice that since H0 is positive definite and the inequality (49)
is true the first summand in the right part of (60) is negative.

Then one can deduce from (60) that

ε

∫ t

0

σ̇2(τ)dτ + δ

∫ t

0

ϕ2(σ(τ))dτ ≤W (0)−W (t)−

−(2λτ(α−1
1 + α−1

2 ) + 1)

∫ σ(t)

σ(0)

ϕ(ζ)dζ.

(61)
All the conditions of Theorem 1 are fulfilled here. So every

solution of system (17) is bounded for t ∈ R+. It follows that
right part of (61) is also bounded, for t ∈ R+. Thus∫ ∞

0

σ̇2(t)dt < +∞,
∫ ∞

0

ϕ2(σ(t))dt < +∞. (62)

It is easy to establish that the relations (50)– (53) follow
from (62) [14]. Theorem 2 is proved.

V. CONCLUSION

In this paper we combine two efficient methods for stability
investigation of Lur’e-type pendulum-like systems. Using the
Kalman-Yakubovich-Popov lemma and a novel Lyapunov–
type function, we obtain a new frequency-algebraic criterion
ensuring the converges of every solution to an equilibrium.
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