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Abstract. Characterization and understanding of fluid flow phenomena in un-

derground porous media at the micro and macro scales is fundamental in reser-

voir engineering for the definition of the optimal reservoir exploitation strategy. 

Laboratory analyses on rock cores provide fundamental macroscale parameters 

such as porosity, absolute and relative permeability and capillary pressure 

curves. In turn, macroscale parameters as well as flow behavior, are strongly af-

fected by the micro geometrical features of the rock, such as pore structure, tor-

tuosity and pore size distribution. Therefore, a thorough comprehension of sin-

gle and multiphase flow phenomena requires analyses, observations and charac-

terization at the micro scale. In this paper we focus on the analysis of a 2D bina-

ry image of a real rock thin section to characterize the pore network geometry 

and to estimate tortuosity, effective porosity and pore size distribution. To this 

end, a geometrical analysis of the pore structure, based on the identification and 

characterization of the set of the shortest geometrical pathways between inlets 

and outlets pairs, is implemented. The geometrical analysis is based on the A* 

path-finding algorithm derived from graph theory. The results provided by the 

geometrical analysis are validated against hydrodynamic numerical simulation 

via the Lattice Boltzmann Method (LBM), which is well suited for simulating 

fluid flow at the pore-scale in complex geometries. The selected rock for this 

analysis is Berea sandstone, which is recognized as a standard rock for various 

applications such as core analysis and flooding experiment. Results show that 

the path-finding approach provides reasonable and reliable estimates of tortuos-

ity and can be successfully applied for analyzing the distribution of effective 

pore radius, as well as for estimating the effective porosity. 

Keywords: Tortuosity, Effective Porosity, Path-finding Algorithm, Lattice 

Boltzmann Method. 

1 Introduction 

 

An optimal reservoir exploitation strategy has to be defined taking into account of 

different aspects related to economical, technical and environmental issues [33] and 

requires a deep understanding of the fluid flow phenomena dominating the reservoir 

behavior. From the viewpoint of the description and understanding of the reservoir 
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dynamic behavior, all the information provided by technical disciplines (such as geol-

ogy, geophysics, log interpretation, laboratory measurements of fluids and rock prop-

erties, well testing, reservoir engineering and geomechanics) have to be taken into 

account, compared, combined and properly integrated [5, 12, 30, 31, 32, 34, 40, 41, 

44]. Furthermore, it is well known that any complex and nonlinear problem is affected 

by uncertainties. Therefore, the uncertainty associated to the interpretation provided 

by each discipline must be estimated [19, 42, 43] and, if possible mitigated by acquir-

ing new and necessary information at all stages of reservoir life, even during the pro-

duction stage of a mature field.  

In this view, characterization and understanding of fluid flow phenomena in under-

ground porous media at the micro and macro scales is a fundamental piece of infor-

mation that can minimize the uncertainties and contribute to maximize reservoir char-

acterization and understanding. In many cases, the flow mechanism can be understood 

from pore-scale phenomena, allowing predictions at the macro-scale, which can then 

be compared with experimental results [4]. At the macro-scale, the fluid flow is mod-

eled by averaging the microscopic continuity and momentum equations over a repre-

sentative elementary volume (REV) [4] and the porous medium is parameterized 

mainly by porosity and permeability [14]; the fundamental equation of fluid motion in 

porous media under the assumption of small Reynolds numbers is Darcy's equation 

[4]: 

𝐮 = −
𝐤

𝜇
∇𝑃  (1) 

where 𝐮 is the Darcy’s velocity, 𝐤 is the permeability tensor, 𝜇 the viscosity and ∇𝑃 

the pressure gradient.  

Porous media are complex materials characterized by a chaotic structure and tortu-

ous fluid flow, with pore and grains dimension varying over a wide range [14]. To 

address the crooked fluid paths of pore structure, the concept of tortuosity (𝜏) was 

introduced [9]. Two main types of tortuosity are defined in the literature: geometrical 

tortuosity (𝜏𝑔) and hydraulic tortuosity (𝜏ℎ). The geometrical tortuosity is defined as 

the shortest length between inflow and outflow points that avoids the solid obstacles 

divided by the distance between inlet and outlet [1, 11]. The hydraulic tortuosity is 

defined as the effective path length taken by the fluid divided by the length of the 

porous material measured along the flow direction [9]. Since the fluid flow path is 

always greater than the shortest geometrical path, hydraulic tortuosity is always great-

er than the geometrical tortuosity [11, 14]. For a complete review on the definitions of 

tortuosity, the reader can refer to [11] and to [14]. 

To account for pore space interconnections affected by the flow, the effective po-

rosity (𝜙𝑒) was introduced; this property is defined as the percentage of conductive 

pore space with respect to the bulk volume [21]: 

𝜙𝑒 =
𝑉𝑓𝑙𝑜𝑤

𝑉𝑏
  (2) 

where 𝑉𝑏 is the bulk volume and 𝑉𝑓𝑙𝑜𝑤  is the portion of volume contributing to the 

fluid flow. 
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The impact of pore network geometry on the flow behavior is well recognized. In 

the literature, several analytical expressions have been provided to link permeability 

to the pore structure as a function of porosity (or effective porosity), tortuosity and 

grain or pore dimension. One of the most used expressions is the Kozeny-Carman 

equation [9,47]: 

𝑘 =
𝜙𝑟𝐻

2

𝑐𝜏2   (3) 

where 𝑐 is the Kozeny’s constant and 𝑟𝐻 is the hydraulic radius, which gives a meas-

ure of the average pore dimension and is defined as [4]: 

𝑟𝐻 = 𝜙
𝑉𝑏

𝐴𝑤
  (4) 

where 𝐴𝑤 is the wetted surface. 

Several authors discussed the geometrical analysis of the pore structure from 2D 

and 3D images. Lindquist et al. [24] discussed the medial axes method to analyze 

structure properties such as pore throat and pore body size distributions and geometric 

tortuosity of a 3D digitalized image. Later, Sun et al. [37] used a shortest past ap-

proach based on Dijkstra’s algorithm to calculate the geometric tortuosity and con-

nected porosity; then, they applied a multiscale method approach to upscale the per-

meability. Al-Raoush and Madhoun [2] presented an algorithm for calculating geo-

metric tortuosity from 3D X-ray tomography images of real rocks based on a guided 

search for connected paths utilizing the medial surface of the void space of a 3D seg-

mented image. 

In this paper we estimate tortuosity, effective porosity and permeability from a 2D 

binary images of rocks. To this end, we applied an approach based on geometrical 

analysis, developed based on a A* path-finding procedure taken from the graph theo-

ry, of the porous medium. This approach was validated by numerical simulation via 

the Lattice Boltzmann Method (LBM). We report the results referred to a 2D image of 

Berea sandstone. Even if not reported here, a preliminary validation of the methodol-

ogies was carried out on a set of simplified synthetic cases for which the true value of 

the parameters of interest was analytically computed [45]. 

2 Methodology description  

Starting point for the presented methodology is a 2D binary image of a rock section. 

Such data can be obtained by image processing of the Scanning Electron Microscopy 

(SEM) image of a thin section or the slice of an X-ray micro-tomography image. In 

this paper we analyzed a binary image of Berea sandstone taken from [8]. On the 2D 

binary image we analyzed the pore structure in terms of pathways accessible by fluid 

flow in single-phase conditions and calculated the associated parameters: tortuosity, 

effective porosity and permeability. Two different approaches were applied to assess 

pathways: geometrical and hydrodynamic. The pore structure analysis was completed 

by calculation of pore radius variations along the path compared with the hydraulic 

radius. 
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2.1 Geometrical path calculation 

The pore structure of a binary 2D image is analyzed through a path-finding method 

based on graph representation. To this end, a set of inlets 𝑛𝑖𝑛 and outlets 𝑛𝑜𝑢𝑡 are 

placed along the inner and outer boundaries of the image of the porous domain or-

thogonal to the main flow direction (X or Y); the centroids of the pixels are used as 

reference grid node locations. These locations represent the points where the fluid 

enters and potentially leaves the porous system respectively. 

The shortest pathway between each couple of inlet-outlet points is obtained 

through the A* algorithm [18, 28]. A* is based on a cost function 𝑓(𝑛) to determine 

the optimal path between two nodes: 

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)  (5) 

where 𝑛 indicates the considered node, 𝑔(𝑛) the incremental distance from the con-

sidered node to the initial node and ℎ(𝑛) is a heuristic function used to obtain a prior 

estimation to reach the target from the considered node. 

The process of obtaining the optimal shortest path is achieved by steps. Starting at 

the initial node, the cost function 𝑓(𝑛) is calculated at each adjacent nodes in order to 

identify the one having the minimum cost which will be used as reference for the next 

calculation. This process is progressively repeated until the target is reached. The 

output is represented as a graph 𝐺 = (𝑁, 𝐸) with 𝑁 being a set of nodes with 𝑋 − 𝑌 

coordinates while 𝐸 the edges connecting the nodes (Fig. 1). 
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Fig. 1. Schematic of pore size and effective porosity estimation from path-finding approach. 

2.2 Hydraulic path calculation 

Hydrodynamic paths were obtained as a result of numerical simulation of single-

phase fluid flow at the pore-scale. To this end, we implemented a discrete mesoscopic 

computational method based on the Lattice Boltzmann Method (LBM). LBM has 

been shown to be a powerful technique for the computational modeling of a wide 

variety of complex fluid flow problems including single and multiphase flows in 

complex geometries and porous media [8, 16]. The use of the LBM to evaluate the 

hydraulic tortuosity in synthetic porous media was presented by [27]. The LBM be-

longs to the family of discrete mesoscopic computational methods; unlike the conven-

tional CFD methods, which numerically solve the Navier-Stokes (N-S) set of partial 

differential equations , the LBM solves the discrete lattice Boltzmann equation 

(LBE): 

𝑓𝑖(𝐱 + 𝐯𝑖 , 𝑡 + ∆𝑡) − 𝑓𝑖(𝐱, 𝑡) = Ω𝑖(𝑓𝑖(𝐱, 𝑡)) (6) 

where 𝑓𝑖 is the density distribution function, 𝐯𝑖 the lattice velocity and Ω𝑖  the collision 

operator. The fluid is modeled as consisting of fictive particles which perform con-

secutive streaming and collision processes over a discrete reticular grid called lattice 

mesh [17]. The propagation and interaction of the particles is simulated in terms of 

the time evolution of the density distribution function, representing an ensemble aver-

age of the particle distribution. The flow properties such as velocity, pressure or fluid 

density can be derived from the moments of the density distribution function. The 

rules governing the collisions are designed such that the time-average motion of the 

particles is consistent with the macroscopic hydrodynamics. Collision rules consti-

tutes a simplified mesoscopic kinetic model based on a Boltzmann-type equation that 

incorporate only the essential physics of microscopic or mesoscopic processes, avoid-

ing to follow each particle as in molecular dynamics simulations [46]. Due to its par-

ticulate nature and local dynamics, the LBM has several advantages over other con-

ventional CFD methods, especially in dealing with complex boundaries, incorporating 

of microscopic interactions, and parallelization of the algorithm [36]. The implemen-

tation adopted in this paper for single-phase flow simulation in porous media is based 

on a single-relaxation time (SRT) approximation of the collision operator, called 

Bhatnagar-Gross-Krook model (BGK) [7]: 

Ω𝑖 = −𝜔∆𝑡[𝑓𝑖(𝐱, 𝑡) − 𝑓𝑖
𝑒𝑞(𝐱, 𝑡)]  (7) 

where 𝜔 is the inverse of the relaxation time and 𝑓𝑖
𝑒𝑞

 the density distribution function 

at the equilibrium. The nine-velocity square lattice model D2Q9 was adopted to dis-

cretize the domain. At the fluid-solid interface, no-slip condition was imposed via 

halfway bounce-back [21]. Fixed pressure gradient between inlet and outlet was as-

sumed as the boundary condition, which was implemented via the non-equilibrium 

bounce-back approach [48]. 
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2.3 Characterization of pore structure 

A quantitative characterization of the porous medium is carried out through the esti-

mation of a series of parameters: pore size, tortuosity, effective porosity and permea-

bility. In the following we will not parametrize the pore structure in terms of pore 

throat and pore body; we will refer to the local aperture between the pore walls as 

pore size or to the semi-aperture as pore radius. 

Along the geometrical pathways identified by the A* algorithm, the pore size is 

calculated at each node location by measuring the extension of the pore section length 

orthogonal to the local path direction (Fig. 1). The local pore size estimation allows 

monitoring the pore radius (𝑟𝑝) evolution along each detected path. This information 

can be used for reconstructing 3D porous geometries [29] or for comparative analysis 

with hydrodynamic data. 

The output is also analyzed by a statistical representation of the pore radius distri-

bution of the sample, which is compared with the hydraulic radius (𝑟𝐻). The hydraulic 

radius for a 2D section is defined as [45]: 

𝑟𝐻 = 𝜙
𝐴𝑏

𝑃𝑤
  (8) 

where 𝐴𝑏 is the bulk area of the sample and 𝑃𝑤 is the wetted perimeter, i.e. the inter-

face between grains and void, which can be easily calculated by image processing 

routine; we used the Image Processing Toolbox of MATLAB [26]. 

The geometrical tortuosity 𝜏𝑔 within a porous medium, in a given flow direction 

(dir), is calculated through the ratio between the average of the shortest pathway 

lengths in that direction (〈𝐿𝑠ℎ,𝑑𝑖𝑟〉) by the length of the system domain along the fluid 

direction (𝐿𝑑𝑖𝑟) [14]: 

𝜏𝑔,𝑑𝑖𝑟 =
〈𝐿𝑠ℎ,𝑑𝑖𝑟〉

𝐿𝑑𝑖𝑟
  (9) 

where 〈𝐿𝑠ℎ,𝑑𝑖𝑟〉 is calculated as the average of the shortest pathway lengths calculated. 

Hydraulic tortuosity was defined by Carman [9] as the ratio of the average length 

of the fluid paths divided by the length of the sample: 

𝜏ℎ =
〈𝐿ℎ〉

𝐿
  (10) 

Koponen et al. [20] suggested to estimate tortuosity in a fixed direction from the ve-

locity field simulated with a CFD numerical simulator as: 

𝜏ℎ,𝑑𝑖𝑟 =
〈|𝑣|〉

〈𝑣𝑑𝑖𝑟〉
  (11) 

where |𝑣| is the absolute value of the local flow velocity, 𝑣𝑑𝑖𝑟  is the directional com-

ponent of that velocity and ⟨⟩ denotes the spatial average over the pore space. We 

made use of a numerical simulator based on the Lattice Boltzmann Method (LBM) to 

simulate the fluid flow in the porous media at the pore-scale and obtain the velocity 

field and calculate the hydraulic tortuosity (𝜏ℎ) with Eq. 11. We also verified the in-

variance of calculated tortuosity with respect to the variation of the applied pressure 
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gradient until laminar flow conditions are guaranteed (Re ≤ 2) [3], where Re is the 

Reynolds number. 

In [45], we proposed a purely geometrical calculation of the effective porosity based 

on path-finding: 

𝜙𝑒𝑔 =
𝑁𝑝𝑝

𝑁𝑝𝑥
  (12) 

where 𝑁𝑝𝑝 is the number of image pixels belonging to the portion of pore channels 

crossed by a pathway (in X or Y direction) and 𝑁𝑝𝑥 the total number of image pixels. 

The permeability can be calculated both applying the Darcy’s law (𝑘ℎ) and the 

Kozeny-Carman equation (𝑘𝐾𝐶,𝑔). The subscript ℎ indicate that in the first case the 

permeability is calculated by using the outputs of the numerical simulation, while in 

the second case the subscript 𝑔 indicate that values obtained by geometric approach 

were used as inputs in the Kozeny-Carman equation. In the first case, the Darcy’s 

velocity is computed from the hydrodynamical simulation velocity (v) as [15]: 

 

𝐮 =
1

𝐴
∫ 𝐯(𝑥, 𝑦) 𝑑𝐴

𝐴
                                (13) 

 

Then the permeability is estimated as: 

𝑘ℎ,𝑑𝑖𝑟 = −
𝑢𝑑𝑖𝑟𝜇

∇𝑑𝑖𝑟𝑃
  where  𝑑𝑖𝑟 = 𝑥, 𝑦  (14) 

In the second case, the Kozeny-Carman equation (Eq. 3) was modified substituting 

the porosity with the effective porosity calculated as in Eq. 12 and the tortuosity with 

the geometrical tortuosity calculated as in Eq. 9, obtaining an estimate of permeability 

only based on a geometrical analysis of the porous medium: 

𝑘𝐾𝐶,𝑔,𝑑𝑖𝑟 =
𝜙𝑒𝑔𝑟𝐻

2

𝑐𝜏𝑔,𝑑𝑖𝑟
2   (15) 

where in our case 𝑐 = 5 [4]. 

3 Case study: 2D image of Berea sandstone 

The geometrical and hydrodynamic characterization is carried out on an image ob-

tained from thin sections of 3D samples of Berea sandstone (𝐷50 = 23 𝜇𝑚 [11]). 

Berea sandstone is characterized by high difference between pore throat and pore 

body dimension [10] and the high porosity and permeability values make this rock a 

potential source of oil and natural gas. The image used in this study is reported in Fig. 

2. The image dimensions are 769×624 px2 (resolution of 4120 ppcm) and the 2D 

porosity calculated from the image is 0.3. 
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Fig. 2. 2D image of Berea sandstone 

3.1 Results and discussion 

In order to observe hydrodynamic behavior, the smallest pore size should be 4–5 lat-

tice units [36]. The parameters adopted for the numerical simulations are: nx=1706 

l.u., ny=1367 l.u., Δx=1.04 𝜇𝑚 /l.u. The fluid used for the numerical simulation has 

the following properties: viscosity 0.5 cP, density 1050 kg/m3. A pressure gradient of 

100 Pa/m was applied between inlet and outlet. Laminar flow occurs (Re=3.18E-04). 

The case study was analyzed separately in the X and Y directions to assess eventual 

discrepancy in tortuosity and permeability which indicates anisotropy in the medium. 

Results are summarized in Table 1. Fig. 3 compares the shortest paths obtained 

with the A* algorithm (red lines) with the velocity map resulting from the numerical 

simulation. The pore zones contributing to the flow and used for the calculation of the 

effective porosity are represented in red in Fig. 4. In Fig. 5 the pore size distribution 

(Fig. 5a) and the pore size variation along a path (Fig. 5b) are compared with the hy-

draulic radius. 

Table 1. Comparison of results obtained with the geometrical and hydrodynamic approaches 

 Geometric  Hydrodynamic  

𝝉𝒙 (-) 1.250 1.416 

𝝉𝒚 (-) 1.437 1.542 

𝝓𝒆(-) 0.277 0.256 
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(a) 

 

(b) 

Fig. 3. Simulated velocity map (|𝑣|) vs. detected geometrical paths considering flow in the X 

(a) and Y (b) directions. 
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Fig. 4. Pore volume interested by flow (red) and dead zones (white) identified by applying the 

path-finding algorithm (on the left) vs. a cutoff on the simulated velocity (on the right) 

 

 

                                        (a)                                                          (b) 

Fig. 5. Pore radius estimation from the path-finding approach: (a) pore radius distribution com-

pared with hydraulic radius (red line); (b) pore radius variation along a single vertical path, 

compared with the mode of the pore radius along the selected path (green line) and the hydrau-

lic radius (red line). 

 

Tortuosity values calculated with the two methods (Tab. 1) are comparable (the 

discrepancy is lower than 10%) and the geometrical tortuosity is slightly smaller than 

the hydraulic tortuosity, as expected [14]. Comparing our results with literature, the 

tortuosity results are coherent with the gamma-shaped distribution with a minimum 

value of 1.07 and a most probable value close to 2, reported in [24] and just below the 

range of 1.6–2.8 reported in [38]. The pore radius distribution obtained by path find-

ing algorithm appears to be reliable. The distribution in Fig. 5a is in good agreement 

with the literature: 31% of pore throats diameter of about 10 𝜇𝑚 [23]; 5 𝜇𝑚 as the 

most frequent pore throat radius [29]; 37% of relative pore volume characterized by 

7–10 𝜇𝑚 of pore radius [35]. Reasonable agreement (order of magnitude) is observed 
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between the hydraulic radius  (𝑟𝐻 = 14.6 𝜇𝑚)  and the mode of pore radius distribu-

tion (𝑟𝑝̃ = 7.29 𝜇𝑚 ) obtained by the path-finding approach (Fig. 5), thus suggesting 

that hydraulic radius formula (Eq. 8) is reasonably representative of the effective pore 

radius of the sample. 

The values of permeability calculated with hydrodynamic approach (𝑘ℎ) through 

Darcy’s law (Eq. 14) are of the order of magnitude of 1 D and comparable with those 

reported in [8].  As we expected [25], the permeability evaluated with the geometrical 

approach (𝑘𝐾𝐶,𝑔) through Kozeny-Carman equation (Eq. 15) was significantly higher 

than 𝑘ℎ, being of the order of magnitude of 6-7 D. It was observed that, if in Kozeny-

Carman equation the pore radius mode (𝑟𝑝̃) is adopted instead of the hydraulic radius 

(𝑟𝐻) the resulting permeability reduces to about 1.5 D, becoming comparable with the 

hydrodynamic one. Further investigation will be carried out in future works.  

 

4 Conclusions 

In this paper we adopt a geometrical analysis based on a path-finding algorithm for 

the characterization of the pore network geometry and connectivity of 2D binary im-

ages of rock samples representative of real geological formations. In order to validate 

the results, we used a hydrodynamic numerical simulator based on the LBM and 

compared the results. Results showed that even if hydrodynamic simulation was more 

accurate in reproducing the flow behavior, the path-finding approach could give rea-

sonable estimates of tortuosity and could also be successfully applied for analyzing 

the distribution of effective pore radius, as well as for estimating the effective porosi-

ty and for giving a reasonable order of magnitude of permeability. 
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