
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Fault-Independent Test-Generation for Software-Based Self-Testing / Georgiou, P.; Kavousianos, X.; Cantoro, R.;
Reorda, M. S.. - ELETTRONICO. - (2018), pp. 79-84. ((Intervento presentato al convegno 24th IEEE International
Symposium on On-Line Testing and Robust System Design, IOLTS 2018 tenutosi a Platja d'Aro, Spain nel 2-4 July
2018.

Original

Fault-Independent Test-Generation for Software-Based Self-Testing

Publisher:

Published
DOI:10.1109/IOLTS.2018.8474081

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2838575 since: 2020-07-06T22:07:42Z

Institute of Electrical and Electronics Engineers Inc.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO@iris (Publications Open Repository TOrino - Politecnico di Torino)

https://core.ac.uk/display/327178353?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fault-Independent Test-Generation for
Software-Based Self-Testing

Panagiotis Georgiou1,2, Xrysovalantis Kavousianos1,2, Riccardo Cantoro1 and Matteo Sonza Reorda1
1Dept. of Control and Computer Engineering, Politecnico di Torino, Italy

2Dept. of Computer Science and Engineering, University of Ioannina, Greece

Abstract—Software-based self-test (SBST) is being widely used
(often as a complement to other techniques) in both manufac-
turing and in-the-field testing of processor-based devices and
Systems-on-Chips. Unfortunately, the stuck-at fault model is
increasingly inadequate to match the new and different types
of defects in the most recent semiconductor technologies, while
the explicit and separate targeting of every fault model in SBST
is cumbersome due to the high complexity of the test-generation
process, the lack of automation tools, and the high CPU-intensity
of the fault-simulation process. Moreover, defects in advanced
semiconductor technologies are not always covered by the most
commonly used fault-models, and the probability of defect-
escapes increases even more. To overcome these shortcomings we
propose the first fault-independent SBST method. The proposed
method is almost fully automated, it offers high coverage of non-
modeled faults by means of a novel SBST-oriented probabilistic
metric, and it is very fast as it omits the time-consuming test-
generation/fault-simulation processes. Extensive experiments on
the OpenRISC OR1200 processor show the advantages of the
proposed method.

I. INTRODUCTION

Current ICs require advanced testing techniques for screen-
ing defective devices. However, the strict design constraints
and the need to test the target devices at the normal mode
of operation, sometimes impose the use of non-intrusive test
methods [15]. Therefore, design-for-testability solutions, like
scan or built-in self-test, can be complemented with functional
solutions, such as software-based-self-test for processor-based
ICs. SBST executes test-programs that activate potential faults
inside the circuit and propagate the errors to observable sites,
like the memory [22], [23], [29]. SBST is fully autonomous,
it does not alter the circuit structure and it does not affect its
performance. Moreover, it is applied exactly at the operating
conditions without over-testing the circuit, it facilitates the
periodic monitoring in-the-field with limited intrusiveness with
respect to the normal-mission operation [11], [20], and it does
not compromise the internal state of the circuit [23].

The major challenge of SBST is the generation of small test-
programs that offer high fault coverage in short test-time [21],
[31], [35]. SBST programs can be generated manually [28],
semi-automatically [12] or automatically, targeting different
processor architectures and fault models [29]. Various me-
thods target microprocessors with caches [9], shared-memory
schemes [2], floating-point units [36] and dual-issue processors

This work has been supported by the European Union through the H2020
project no. 637616 (MaMMoTH-Up).

[6]. Deterministic techniques exploit the regularity of sub-
modules [4], [5], [13], [17], [18], [24], [25], while others use
automatic-test-pattern-generation (ATPG) [27] and evolution-
ary algorithms [3], [27], [30]. In [7] the effectiveness of SBST
for a given level of dependability is evaluated.

Despite their benefits, SBST methods suffer from drawbacks
too. First of all, they often target the traditional stuck-at fault
model, which is inadequate for detecting many defects. In
addition, most SBST techniques are not systematic, therefore
they require extensive human intervention and long develop-
ment times. Moreover, they involve the CPU-intensive process
of fault-simulating multi-million gate designs for multi-million
clock cycles using multiple fault models and specialized
functional (non-scan) simulators. Besides these deficiencies,
the shrinking process technologies, the physical limits of
photo-lithographic processes and new materials introduce new
defects that are not always accurately modeled by the most
commonly used fault models [32]. Therefore, fast, low-cost
and highly effective SBST-based techniques are required to
improve the defect screening of processor-based devices.

In this paper we present the first fault-independent SBST
method. The proposed method offers short test-program gen-
eration time as it is almost fully systematic, and it exploits
multiple design models of the processor in order to maximize
the non-modeled fault coverage of the test-programs under
strict test-application-time and test-program-size constraints.
The test-programs are evaluated by means of a novel and very
effective SBST-oriented probabilistic metric, which considers
both the architectural model and the synthesized gate-level
netlist of the processor. The proposed metric is very fast as
it omits the time-consuming functional fault-simulation, and
it can be applied to any SBST-based method. In addition,
the very high fault-coverage ramp-up of the generated test-
programs offers additional test-time benefits in periodic-testing
and in abort-at-first-fail environments in manufacturing testing.

II. MOTIVATION

SBST methods typically target only the stuck-at fault model
[3]–[7], [12], [13], [17]–[20], [22]–[25], [27], [29], [30], [35],
[36]. However, the defect coverage of the test programs can
be enhanced by probabilistically evaluating their potential to
detect arbitrary defects without targeting any particular fault
model. Such an approach was proposed in [14], [26] for non-
scan sequential circuits modeled at the register-transfer level
(RTL). However, RTL models limit the effectiveness of these

1

Fig. 1. Output deviation calculation example

methods for detecting silicon defects. Moreover, these methods
require an automatic-test-equipment (ATE) to apply the test
sequences and to monitor the outputs at each clock cycle,
whereas processors have very few (or even none) observable
outputs (the main observation site is the embedded memory of
the system). Therefore, they are not suitable for SBST, which
is by definition fully autonomous and ready to be applied in-
the-field without the need of any ATE.

Gate-level output-deviations on the other hand are very
effective in detecting silicon defects in structural testing [16],
[33], [34]. They are probability measures that reflect the like-
lihood of error detection at circuit outputs; they are computed
without explicit fault grading, hence the computation (linear
in the number of gates) is feasible for large circuits. At first a
probability map, the confidence-level (CL) vector, is assigned
to every circuit gate. For every input pattern, each line i is
assigned signal probabilities p0i , p

1
i to be at logic 0 and 1,

respectively. The CL vector Ri of gate Gi with m inputs has
2m components r0...00i , r0...01i , . . . , r1...11i , each denoting the
probability that the gate output is correct for the respective
input combination. Let y be the output of a NAND gate with
inputs a, b. We have p0y = p0ap

0
b(1 − r00i) + p0ap

1
b(1 − r01i) +

p1ap
0
b(1 − r10i) + p1ap

1
br

11
i and p1y = p0ap

0
br

00
i + p0ap

1
br

01
i +

p1ap
0
br

10
i + p1ap

1
b(1 − r11i). Likewise, signal probabilities can

be computed for other gate types [33]. For any gate Gi let its
fault-free output value for input pattern tj be d, with d ∈ 0, 1.
The output deviation ∆Gi,j of Gi for tj is defined as P d′

Gi
(d′

is the complement of d), and it is a measure of the likelihood
that the gate output is incorrect for tj . The deviation values at
the circuit outputs are indicative of the probability for arbitrary
defects to be detected at these outputs.

Fig. 1 shows a circuit with three gates G1, G2, G3, and
confidence level vectors R1, R2 assigned to the NOR and
NAND gates [33]. For each input pattern, the output-deviation
is the probability the output ‘z’ to be faulty, which is shown
in bold in the two last columns of the Table. Note that the
most promising pattern for detecting defects is (a, b, c, d) =
(1, 1, 1, 1) as it provides the highest output deviation value.

In this paper we propose the first output-deviation-based
metric that exploits the architectural and the gate level models
of the processor to evaluate SBST sequences. Even though
this metric can enhance the non-modeled fault-coverage of any
SBST technique, we apply it on test macros [12], [19]. Test
macros are very effective for stuck-at faults, but they have
never been exploited for non-modeled faults. Every macro
is associated with one machine-level instruction executing a
specific function wrapped with additional instructions that set
the macro parameters (i.e., the operand values) and propagate

Synthesize TM1, TM2, ..., TMK

Generate N random instances
for each TMi

Run logic simulation and extract
functional test-vectors

Calculate W(TMi
j) for all i,j

Select next TMIi
j with the largest

weight W(TMi
j) and update weights

M
instances
selected?

i = 1

i = i+1i = K ?

Reorder all selected TMIi
j

No

Yes

No

Yes

l.movhi ra, XH
l.ori ra, ra, XL
l.movhi rb, YH
l.ori rb, rb, YL

l.add rc, ra, rb
l.sw Z(r0), rc

Test Macro

ra rb

ALU

rc

(a)

(b)

(d)

C
en

tr
al

 In
st

ru
ct

io
n

(C
I)

W
rapper Instructions (W

Is)
1

2

3

4

5

0110...1 1001...1

1111...1

CC 1
CC 2 (FV1)
CC 3
CC 4 (FV2)
CC 5
CC 6 (FV3)
CC 7
CC 8 (FV4)
 CC 9 (FV5)

 CC 10 (FV6)

Functional Test-Vectors

(c)

Fig. 2. (a) Test Flow (b) TMI example (c) Functional Vectors (d) ALU Test

the results to observable memory positions. At the architectural
level, instruction-based test-macros are synthesized that exer-
cise the various modules of the processor and observe the re-
sponses. Multiple instances of every test-macro are generated
by combining instructions that maximize the probability of
detecting non-modeled defects, and by randomly varying their
operands. Each test-macro instance (TMI) is evaluated by the
means of a novel output-deviation-based metric computed at
the gate-level netlist of the processor, and the most effective
ones are selected to synthesize test programs, according to
specific test-time and test-program-size constraints.

III. SBST USING OUTPUT-DEVIATIONS

Fig. 2a presents the proposed test-generation method, which
consists of five steps. Initially, one test-macro is manually gen-
erated for every instruction of the processor. This instruction
is called hereafter the Central-Instruction (CI) of the macro
and it exercises specific units of the processor. For example,
the instruction add rc, ra, rb of the OR 1200 processor [1]
executes the arithmetic operation rc = ra + rb (ra, rb, rc are
general purpose registers), and it exercises the ALU and the
control unit. If the result of the addition is observable then
this instruction constitutes a test for these units. The quality
of this test depends on the contents of ra, rb, rc, which are set
by the means of the Wrapper-Instructions (WIs). For example,
the test-macro generated for the instruction add rc, ra, rb is
shown in Fig. 2b. The first four instructions are WIs that
load the high/low 16-bit parts of registers ra, rb with the 16-

2

bit values XH , XL, YH , YL. The next instruction is the CI
and the last instruction is a WI that stores the result at the
physical address obtained by combining Z, r0.

Similar macros are generated for every instruction of the
processor, with two exceptions. First, the instructions used
as WIs do not become CIs, because the faults activated by
them are observable when they are executed as WIs. Second,
the CIs that do not produce directly observable results (e.g.
branch instructions) use WIs to provide the observable results.
For example, upon correct execution of a branch-based CI , a
WI stores a pre-determined value at an observable memory
position, thereby making the results of the branch instruction
observable. The generation of the test-macros requires some
knowledge of the instruction set and the architecture of the
processor, but it is an one-time and rather simple task.

The defect coverage of every test-macro depends on the
operands of the central and wrapper-instructions. To this
end, we propose a completely automated process to generate
test-macro instances (TMIs) with high non-modeled defect
coverage. Let K be the number of different macros TM1,
TM2, . . . , TMK generated at the first step (one for every
CI). Then, N random instances TMI1i , TMI2i , . . . , TMINi
are generated for every TMi at the second step, by randomly
varying every operand of TMi. For the particular macro shown
in Fig. 2b the TMIs are generated by varying the registers
ra, rb, rc, and their values, as well as the values X , Y and Z.

At the third step, we run logic simulation on the gate-level
netlist of the processor using the N × K TMIs generated
at the previous step, and the logic values generated at the
inputs/outputs of selected units of the processor are recorded at
the clock cycles when these units are excited by each TMIji .
For example, when the CI shown in Fig. 2b is executed, the
inputs/outputs of the ALU are recorded during the clock cycle
when the arithmetic values stored into registers ra and rb are
applied at the inputs of the ALU (see Fig. 2d). These logic
values constitute one functional test-vector/response applied
by the TMI . Every TMI generates a number of functional
test-vectors/responses that excite various units of the processor.
These vectors are generated during the clock cycles when their
responses are observable either immediately (e.g. the output of
the ALU stored into register rC) or later through the wrapper-
instructions. One example is shown in Fig. 2c for the test-
macro of Fig. 2b. The first four instructions require two clock
cycles to be executed (they are fetched from the memory),
and the functional test-vectors are generated at their second
clock cycles. The last two instructions require one clock cycle
to be executed (they are fetched from the cache), and the
functional test-vectors are generated at both clock cycles. The
more effective are the functional test-vectors of TMIji in
detecting defects, the higher is the test-quality of TMIji .

In order to evaluate the functional test-vectors of the TMIs
the combinational logic of every processor unit exercised by
a functional test-vector is used to calculate the deviations of
its outputs for this test-vector, as it is shown in Section II. For
example, in Fig. 2d we show the functional test-vector FV 5
generated during the execution of the CI shown in Fig. 2b,

where the ALU receives inputs from registers ra, rb and it
stores the result in register rc. The computation starts from
the inputs to the outputs of the ALU.

In order to identify the most effective functional test-vectors,
we apply first the vectors that excite one unit, and we calculate
the maximum deviation value that is generated at every output
p of that unit. This process is applied separately for every
TMi, because different test-macros exercise different parts
of the units. Let NVi be the number of functional test-
vectors generated by TMi. In the particular case of TMIji
FV (TMIji , 1), FV (TMIji , 2), . . . , FV (TMIji , NVi) are
generated. The output deviations of FV (TMIji , k) are com-
puted for j ∈ [1, N], k ∈ [1, NVi], and the proximity of
each deviation value to the highest deviation value found at
every output is calculated. Let Max(TMi, p, v) be the highest
deviation value found for all functional test-vectors of every
instance TM j

i of TMi (j ∈ [1, N]) at output p for logic
response v (v = 0, 1). Then, for each FV (TMIji , k) all the
pairs (p, v) with deviation values Dev(FV (TMIji , k), p, v)
higher than a threshold value constitute the set MS(TMIji , k)
(the rest of the pairs are not further considered for this func-
tional test-vector). This threshold value THR is a percentage
of the highest deviation value Max(TMi, p, v) at this output,
i.e., Dev(FV (TMIji , k), p, v) ≥ THR × Max(TMi, p, v),
with THR usually in the range 90% − 100%. Note that the
higher is the value of THR, the more strict is the selection
process towards pairs (p, v) with high deviation values.

Besides the high deviation values, the potential of
FV (TMIji , k) to detect defects at the outputs p and logic
response v with (p, v) ∈ MS(TMIji , k) depends on two
parameters. The first one is the number of faults that are
observable at output p, Faults(p), which is proportional to the
size of the logic cone driving p. Therefore, we set Faults(p)
equal to the number of gates in the fan-in cone size of p. The
second one is the number of functional test-vectors generated
by all random instances of TMi that provide high deviation
for each pair (p, v). The higher is this number, the higher is the
probability that, eventually, some of the selected TMIs will
provide functional test-vectors with high deviation values for
this pair. Therefore, this output-logic value pair is given low
priority PR(TMi, p, v) to bias the selection towards TMIs
that embed functional test-vectors with high deviation values at
more difficult pairs. PR(TMi, p, v) is set equal to the inverse
of the proportion of all functional test-vectors generated by
every random instance of TMi that offer high deviation value
for (p, v). FV (TMIji , k) is assigned a weight equal to

WFV (TMIji , k) =
∑

(p,v)∈MS(TMIj
i ,k)

Faults(p)× PR(TMi, p, v) (1)

Then, a weight is assigned to TMIji equal to the sum of the
weights of its functional test-vectors

W (TMIji) =
∑

k=1...NVi

WFV (TMIji , k) (2)

The higher is the value of W (TMIji), the more effective is
the instance TMIji for detecting non-modeled defects.

3

l.movhi ra, XH
l.ori ra, ra, XL
l.movhi rb, YH
l.ori rb, rb, YL
l.movhi rc, QH
l.ori rc, rc, QL

l.add rd, ra, rb
l.add rd, rc, rd
l.sw Z(r0), rd

A
cc

um
ul

at
ed

Te

st
 M

ac
ro

l.movhi ra, XH
l.ori ra, ra, XL
l.movhi rb, YH
l.ori rb, rb, YL
l.movhi rc, QH
l.ori rc, rc, QL

Independent Test Macro
l.movhi rd, PH
l.ori rd, rd, PL

l.add re, ra, rb
l.add rf, rc, rd
l.sw Z1(r0), re
l.sw Z2(r0), rf

(b)(a)

Fig. 3. (a) A-TM example (b) I-TM example

At the next step, for every test-macro TMi the M most
effective out of the N random instances TMIji are selected
as follows: at first, the instance TMIji with the highest weight
W (TMIji) is selected. Since TM j

i tends to detect many de-
fects at the outputs p ∈

⋃NVi

k=1 MS(TMIji , k) the effectiveness
of the rest of the instances with high deviations at these outputs
decreases (less defects tend to remain undetected at these
outputs). Therefore, we decrease the priority of these outputs
by a constant factor F and the weights of the remaining
instances are re-computed by applying again eq. (1), (2). Then,
the next instance with the highest weight is selected and the
same process continues until M instances are selected. The
higher is the value of F , the faster we select instances that
maximize the deviation values at all the outputs.

After the M most effective instances of every test-macro
are selected, all the M × K instances are evaluated again
and they are re-ordered in such a way to achieve the highest
defect-coverage ramp-up. In this case, all the M×K instances
are evaluated together by considering all the targeted units of
the processor. We set Faults(p) at their initial values and
the weights W (TMIji) are re-computed. The instance with
the highest weight is selected every time and the values of
Faults(p) are updated as shown before.

The test-macros generated using this method are very ef-
fective in detecting non-modeled defects. However, the use of
a single CI reduces the delay-defect coverage in units like
the ALU, which require the application of pairs of successive
functional test-vectors, and thus pairs of successive CIs. In
Fig. 3 we present: a) the Accumulated-Test Macro (A-TM) that
embeds two similar successive CIs (one operand of the second
CI is the result of the first CI), and b) the Independent-Test
Macro (I-TM) that embeds two independent successive CIs.
Since both CIs in every A-TM instance (A-TMI) consist of
the same instruction, the test-generation flow is exactly the
same with the flow shown in Fig. 2a except of the additional
functional test-vector of the second CI . However, in the case
of I-TMs separate evaluation and selection of the first and
second CI is required (note that both CIs detect defects, but
most of the delay-defects are detected by the second CI). To
this end, different priority values PR and sets MS of outputs
with high deviation values are manipulated for the first and the
second CI of all I-TMIs, while the generation of the I-TMIs
is done as follows: multiple random instances of regular TMIs
with a single CI are generated, but only the functional test-
vector of their CI is evaluated using eq. (1), (2). The two CIs
with the highest weights are combined to generate an I-TMI

(the CI with the highest weight is used as second in the pair to
favor the detection of delay defects). Then, the selected CIs
are removed and the same process is repeated for generating
the next N I-TMIs using the remaining CIs.

IV. EXPERIMENTAL RESULTS

In order to evaluate the proposed methodology we run
extensive experiments on the 32-bit scalar OR1200 RISC
processor [1], which has a Harvard micro-architecture, 5-stage
integer pipeline, virtual-memory support (MMU) and basic
DSP capabilities. The most important units of the processor
are the ALU, the Multiply-Accumulate (MAC), the Load-Store,
the Instruction-Decoder, the Register-File and the Exception-
Handling unit. The processor has one embedded instruction
cache and one embedded data cache of size 8KB each. The
RTL netlist of the processor was synthesized into a gate-level
netlist using the NanGate 45nm technology and commercial
tools. The gate-level netlist (excluding the memories) consists
of 17.6K cells. One instruction is fetched from the cache at
every clock cycle, while additional clock cycles are required
when the data are fetched from the memory and/or conditional
branch instructions are executed.

The proposed methodology was developed using C++ and
Python. All the major units of the processor were targeted
except of the exception-handling unit and the embedded
caches, which require special test-generation mechanisms. 122
A− TMs and 122 I − TMs were generated consisting of 3-
12 and 3-18 instructions, respectively (one A− TM and one
I − TM for every instruction used as CI). For each test-
macro 150 random instances were generated (overall 18,300
A−TMIs and 18,300 I−TMIs) and 12 test-programs were
automatically generated as follows:
• Baseline (A-TM): 2, 5 and 10 instances were selected

randomly out of the 150 instances generated for every
A− TM (overall 244, 610 and 1220 A− TMIs).

• Baseline (I-TM): 2, 5 and 10 instances were selected
randomly out of the 150 instances generated for every
I − TM (overall 244, 610 and 1220 I − TMIs).

• Prop. (A-TM): 244, 610 and 1220 A − TMIs were
selected using the proposed method.

• Prop. (I-TM): 244, 610 and 1220 I − TMIs were
selected using the proposed method.

For every baseline approach 3 different test-programs were
generated, and the average defect coverage is reported. The
running time of the proposed method on a single 64-bit CPU
running at 1.2GHz was less than one day in the worst case.

All test-programs were evaluated for detecting non-modeled
faults using two surrogate fault models: the stuck-at and the
transition-delay fault models. None of these models were ex-
plicitly targeted by the test-macro generation process. Instead,
they were used to evaluate the potential of the proposed
method to detect non-modeled faults. Even though the pro-
posed method does not involve any fault simulations, they
were applied using commercial tools for evaluating the gen-
erated test-programs on a server with 48 CPUs running at 2.5
GHz. The stuck-at fault-simulation time for each test-program

4

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

0.00	 0.04	 0.08	 0.12	 0.15	 0.19	 0.23	

St
uc
k-
A
t	
Fa
ul
t	
Co

ve
ra
ge
	

Time	(msec)	

20%	

25%	

30%	

35%	

40%	

45%	

50%	

55%	

60%	

0.00	 0.01	 0.02	 0.04	 0.05	 0.06	 0.07	

Tr
an

si
'o

n	
Fa
ul
t	C

ov
er
ag
e	

Time	(msec)	

ALU only
All targeted

units

30%	

35%	

40%	

45%	

50%	

55%	

60%	

65%	

70%	

75%	

0.00	 0.02	 0.05	 0.07	 0.10	 0.12	 0.14	 0.17	 0.19	 0.22	

Tr
an

si'
on

	Fa
ul
t	C

ov
er
ag
e	

Time	(msec)	

Baseline	(A-TM)	 Prop	(A-TM)	 Baseline	(I-TM)	 Prop	(I-TM)	

All targeted
units

Fig. 4. Stuck-At and Transition-Delay Fault Coverage (244 TMIs).

was between 3.5 days (for 244 TMIs) up to 12.5 days (for
1,220 TMIs), and the transition-delay fault-simulation time
was between 4.5 days and 2 weeks.

Fig. 4a and Fig. 4b present the stuck-at and the transition
fault-coverage of all the targeted units of the processor for
the test-programs with 244 TMIs. The x-axis presents the
test-time (clock cycles) and the y-axis presents the fault
coverage. It is obvious that the proposed methods drastically
outperform the baseline approaches in terms of stuck-at and
transition fault-coverage, but most importantly they offer very
high coverage ramp-up, which can further reduce the test-
time in strictly constrained manufacturing and periodic-test
applications. The proposed method cannot achieve complete
stuck-at fault coverage on the OR1200 processor, due to the
existence of functionally untestable faults, but it achieves a
stuck-at coverage very close to the one reported in [17] for
the same processor (although in that case test generation was
manual). Moreover, the use of general purpose processors for
specific applications may restrict the usage of certain parts
of the processor [10], thereby further reducing the maximum
attainable fault-coverage for these devices.

I−TMs are conjectured to offer higher delay fault coverage
than A−TMs as they do not suffer from correlation between
the operands of the first and the second CI . However, in the
case of the OR1200 processor, all possible CIs pairs that
exercise the MAC unit are inherently correlated because they
use accumulator-type instructions. This feature imposes an
additional WI between the first and the second CI in the
I − TMs to break this correlation, which adversely affects
the non-modeled delay fault coverage of this unit. As shown
in Fig. 4, I − TMs offer higher stuck-at coverage for the
processor, and higher transition-fault coverage for units like
the ALU that do not suffer from this limitation. However, the
reduced effectiveness of I − TMs for detecting delay defects
at the MAC unit adversely affects the defect-coverage of the
processor. Nevertheless, I−TMIs are expected to offer higher
delay-defect coverage than A−TMIs, except for units similar
to the MAC unit, where A− TMs should be used instead.

Table I presents the test-program size, the test-time, the
stuck-at fault-coverage and the transition fault-coverage for
the baseline (BSL) and the proposed approaches. We note
that the proposed method offers the highest benefits when a

TABLE I
SOFTWARE-BASED-SELF-TESTING RESULTS

Test Program Test Time Stuck-At Transition
Size (KBytes) (msec) Faults (%) Faults (%)

TMIs BSL Prop BSL Prop BSL Prop BSL Prop

A
-T

M

2x122 8.9 9.8 0.058 0.064 80.3 87.7 54.1 73.6
5x122 19.1 20.8 0.104 0.112 86.7 89.8 67.9 78.3

10x122 36.1 36.1 0.179 0.179 89.1 90.4 74.3 81.0

I-
T

M

2x122 9.6 13.8 0.061 0.081 81.9 88.9 52.2 70.3
5x122 21.0 27.7 0.111 0.139 88.5 90.7 65.3 75.3

10x122 39.9 47.4 0.193 0.224 91.0 91.2 72.7 76.7

small number of TMIs are selected because the proposed
output-deviation based metric is very effective in identifying
the TMIs with the highest non-modeled fault coverage.
Therefore, its effectiveness depends mostly on the potential of
the output-deviation based metric to identify the most effective
TMIs, and less on the amount of randomization (note that
when the number of the selected TMIs increases some less
effective ones are inevitably selected and the large gap between
the proposed and the baseline approach reduces). We also note
that the larger size (and test-time) of the test-programs based
on I−TMIs as compared to A−TMIs is due to the higher
number of WIs in I − TMIs (see Fig. 3). Moreover, the
proposed method tends to select TMIs with large numbers
of WIs, therefore it generates test-programs slightly larger
than the baseline method. Nevertheless, the defect coverage
of the proposed method remains higher even in cases that the
baseline test-programs contain more TMIs.

Finally, in Fig. 5 we compare test-programs with 244 and
610 A-TMIs generated using the proposed method against
various SBST programs [8]. The proposed test-programs out-
perform the rest of the programs in terms of both test-program-
size and test-time, while they offer higher (or similar) stuck-at
and transition fault-coverage. Similarly, our method achieves a
comparable stuck-at fault coverage with respect to [17], with
much lower test duration. Taking also into account that they
were generated very fast and almost fully systematically, the
superiority of the proposed method becomes apparent.

V. CONCLUSIONS

In this paper we have presented an SBST test generation
method that offers high non-modeled fault coverage in a semi-
automatic manner and with short computational time. Instead

5

60%	

70%	

80%	

90%	

P1	 P2	 P3	 P4	 P5	 Prop(244)	 Prop(610)	

Pe
rc
en

ta
ge
	o
f	F
au

lts
	D
et
ec
te
d	 Stuck-At	Fault	Coverage	 TransiEon	Fault	Coverage	

0	

20	

40	

60	

80	

100	

P1	 P2	 P3	 P4	 P5	 Prop(244)	 Prop(610)	

Kb
yt
es
	-	
Kc
yc
le
s	

Test	Program	Size	(Kbytes)	 Test	Time	(clock	Kcycles)	

Fig. 5. Comparisons against other SBST programs.

of applying time-consuming fault-simulations using multiple
fault-models, the proposed method uses logic simulation and
a novel SBST-oriented probabilistic metric that exploits both
the architectural and the gate-level model of the processor.
The proposed method is fast, it is almost fully automated, and
it achieves high non-modeled fault-coverage ramp-up. Exper-
iments on the OR1200 processor demonstrate the advantages
of the proposed SBST method.

REFERENCES

[1] “Openrisc 1200.” [Online]. Available: {https://opencores.org/ocsvn/
openrisc/openrisc/trunk/or1200/doc/openrisc1200 spec.pdf}

[2] A. Apostolakis, D. Gizopoulos, M. Psarakis, and A. Paschalis,
“Software-based self-testing of symmetric shared-memory multiproces-
sors,” IEEE Trans. on Computers, vol. 58, no. 12, pp. 1682–1694, 2009.

[3] P. Bernardi et al., “On-line software-based self-test of the address
calculation unit in risc processors,” in 17th IEEE ETS, May 2012.

[4] ——, “On the functional test of the register forwarding and pipeline
interlocking unit in pipelined processors,” in 14th Intern. Workshop on
Microprocessor Test and Verification, Dec 2013, pp. 52–57.

[5] ——, “On the in-field functional testing of decode units in pipelined risc
processors,” in IEEE Intern. Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFT), Oct 2014, pp. 299–304.

[6] ——, “Software-based self-test techniques of computational modules
in dual issue embedded processors,” in 20th IEEE European Test
Symposium (ETS), May 2015, pp. 1–2.

[7] P. Bernardi, M. Grosso, E. Sanchez, and O. Ballan, “Fault grading of
software-based self-test procedures for dependable automotive applica-
tions,” in Design, Automation Test in Europe, March 2011.

[8] G. R. Cantoro, E. Sanchez, and M. S. Reorda, “On the detection of
board delay faults through the execution of functional programs,” in
18th IEEE Latin American Test Symposium (LATS), 2017.

[9] S. D. Carlo, P. Prinetto, and A. Savino, “Software-based self-test of set-
associative cache memories,” IEEE Transactions on Computers, vol. 60,
no. 7, pp. 1030–1044, July 2011.

[10] H. Cherupalli, H. Duwe, W. Ye, R. Kumar, and J. Sartori, “Bespoke
processors for applications with ultra-low area and power constraints,”
in 2017 ACM/IEEE 44th ISCA, 2017, pp. 41–54.

[11] K. Constantinides, O. Mutlu, T. Austin, and V. Bertacco, “A flexible
software-based framework for online detection of hardware defects,”
IEEE Trans. on Computers, vol. 58, no. 8, pp. 1063–1079, Aug 2009.

[12] F. Corno, M. S. Reorda, G. Squillero, and M. Violante, “On the Test of
Microprocessor IP Cores,” in IEEE DATE, 2001, pp. 209–213.

[13] F. Corno, E. Sanchez, M. S. Reorda, and G. Squillero, “Automatic test
program generation: a case study,” IEEE Design Test of Computers,
vol. 21, no. 2, pp. 102–109, Mar 2004.

[14] H. Fang, K. Chakrabarty, A. Jas, S. Patil, and C. Tirumurti, “Functional
test-sequence grading at register-transfer level,” IEEE Trans. on VLSI
Systems, vol. 20, no. 10, pp. 1890–1894, Oct 2012.

[15] ISO/DIS26262, “Road vehicles - functional safety,” 2009.
[16] X. Kavousianos, V. Tenentes, K. Chakrabarty, and E. Kalligeros,

“Defect-oriented lfsr reseeding to target unmodeled defects using stuck-
at test sets,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 19, no. 12, pp. 2330–2335, Dec 2011.

[17] N. Kranitis, A. Merentitis, G. Theodorou, A. Paschalis, and D. Gizopou-
los, “Hybrid-sbst methodology for efficient testing of processor cores,”
IEEE Design Test of Computers, vol. 25, no. 1, pp. 64–75, Jan 2008.

[18] N. Kranitis, A. Paschalis, D. Gizopoulos, and G. Xenoulis, “Software-
based self-testing of embedded processors,” IEEE Transactions on
Computers, vol. 54, no. 4, pp. 461–475, April 2005.

[19] N. Kranitis, A. Paschalis, D. Gizopoulos, and Y. Zorian, “Effective
software self-test methodology for processor cores,” in DATE, 2002,
pp. 592–597.

[20] A. Paschalis and D. Gizopoulos, “Effective software-based self-test
strategies for on-line periodic testing of embedded processors,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 24, no. 1, pp. 88–99, Jan 2005.

[21] A. Paschalis, D. Gizopoulos, N. Kranitis, M. Psarakis, and Y. Zo-
rian, “Deterministic software-based self-testing of embedded processor
cores,” in Proceedings DATE 2001, 2001, pp. 92–96.

[22] M. Psarakis, D. Gizopoulos, E. Sanchez, and M. S. Reorda, “Micro-
processor software-based self-testing,” IEEE Design Test of Computers,
vol. 27, no. 3, pp. 4–19, May 2010.

[23] F. Reimann, M. Glaß, J. Teich, A. Cook, L. R. Gómez, D. Ull, H. J.
Wunderlich, U. Abelein, and P. Engelke, “Advanced diagnosis: Sbst
and bist integration in automotive e/e architectures,” in 2014 51st
ACM/EDAC/IEEE DAC, June 2014, pp. 1–6.

[24] D. Sabena, M. Reorda, and L. Sterpone, “A new SBST algorithm for
testing the register file of VLIW processors,” in DATE 2012, pp. 412–
417.

[25] E. Sanchez and M. S. Reorda, “On the functional test of branch
prediction units,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 23, no. 9, pp. 1675–1688, Sept 2015.

[26] A. Sanyal, K. Chakrabarty, M. Yilmaz, and H. Fujiwara, “Rt-level
design-for-testability and expansion of functional test sequences for
enhanced defect coverage,” in IEEE ITC, Nov 2010, pp. 1–10.

[27] M. Schölzel, T. Koal, and H. T. Vierhaus, “Systematic generation of
diagnostic software-based self-test routines for processor components,”
in 19th IEEE European Test Symposium, May 2014, pp. 1–6.

[28] P. Singh, D. L. Landis, and V. Narayanan, “Test generation for precise
interrupts on out-of-order microprocessors,” in 10th International Work-
shop on Microprocessor Test and Verification, Dec 2009, pp. 79–82.

[29] M. A. Skitsas, C. A. Nicopoulos, and M. K. Michael, “Daemonguard:
O/s-assisted selective software-based self-testing for multi-core sys-
tems,” in IEEE International Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFTS), Oct 2013, pp. 45–51.

[30] G. Squillero, “Artificial evolution in computer aided design: from the
optimization of parameters to the creation of assembly pro- grams,”
Computing, vol. 93, no. 2-4, pp. 103–120, Oct. 2011.

[31] S. M. Thatte and J. A. Abraham, “Test Generation for Microprocessors,”
IEEE Trans. on Computers, vol. C-29, no. 6, pp. 429–441, June 1980.

[32] B. Vermeulen, C. Hora, B. Kruseman, E. Marinissen, and R. Rijsinge,
“Trends in testing integrated circuits,” in ITC, 2004, pp. 688–697.

[33] Z. Wang and K. Chakrabarty, “Test-quality/cost optimization using
output-deviation-based reordering of test patterns,” IEEE Trans. on CAD,
vol. 27, no. 2, pp. 352 –365, 2008.

[34] Z. Wang, H. Fang, K. Chakrabarty, and M. Bienek, “Deviation-based
lfsr reseeding for test-data compression,” IEEE Trans. on CAD, vol. 28,
no. 2, pp. 259 –271, 2009.

[35] C. H. P. Wen, L.-C. Wang, and K.-T. Cheng, “Simulation-based func-
tional test generation for embedded processors,” IEEE Transactions on
Computers, vol. 55, no. 11, pp. 1335–1343, Nov 2006.

[36] G. Xenoulis, D. Gizopoulos, M. Psarakis, and A. Paschalis, “Instruction-
based online periodic self-testing of microprocessors with floating-point
units,” IEEE Trans. on Dependable and Secure Computing, vol. 6, no. 2,
pp. 124–134, April 2009.

6

