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The Corrected Allan Variance: Stability Analysis of
Frequency Measurements With Missing Data

Lorenzo Galleani, Senior Member, IEEE, and Ilaria Sesia, Member, IEEE

Abstract—Atomic clocks are essential elements in a variety
of applications, such as global navigation satellite systems. Con-
sequently, monitoring their performances is fundamental. The
Allan variance is the key statistical tool for the performance
characterization of atomic clocks. This article proves that the
Allan variance computed from frequency measurements with
missing data is affected by a bias which can make it dramatically
different from the expected behavior in the full data case.
Furthermore, it shows how to eliminate (or largely reduce)
this bias by correcting the Allan variance. The corrected Allan
variance is obtained for some of the most common atomic
clock noise components, and it is validated through numerical
simulations.

TIPS: VII (e) - Category: FREQUENCY CONTROL -
Subcategory: Frequency measurement and statistics.

I. INTRODUCTION

Atomic clocks play a key role in many applications, such as
global navigation satellite systems (GNSS). In GNSSs, such
as the global positioning system (GPS) and Galileo, position
is estimated from the measurements of the time of flight of
the signals travelling from the system satellites to the receiver,
and hence an error in time results in an error in position. An
accurate characterization of the atomic clocks performances is
therefore fundamental. The key quantity for the performance
characterization of an atomic clock is frequency stability,
whose standard measure is the Allan variance [1]-[4]. The
Allan variance can be evaluated from the measurements of the
time deviation of the clock with respect to a time reference,
or, equivalently, from frequency deviation measurements. In
some cases, such as for optical clocks and primary frequency
standards, only frequency measurements are available.

Unfortunately, missing data are common. Data can be
missing for several reasons. First, the clock may not be
always working properly, as happens, for example, with optical
clocks, which exhibit unprecedented stability performances but
are still not reliable as cesium or rubidium clocks. Second,
in space applications the clock measurements may not be
available all the time due to satellite maintenance operations,
or the satellite may not be visible all the time. For example, in
the atomic clock ensemble in space (ACES) experiment [5],
the atomic clocks onboard the international space station (ISS)
will be visible for approximately 5 minutes of the ISS pass, out
of 90 minutes of its orbital period, resulting in approximately
94% of missing data. Third, particularly in pre-processing, it
might be necessary to remove data with anomalous behaviors,
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such as outliers [6], which could otherwise spoil the clock
performance analysis.

Although missing data are common and sometimes repre-
sent a challenging percentage of the total available data, it is
still fundamental to compute the Allan variance and character-
ize the clock stability, because of its central role in the clock
performance characterization. This article shows two things.
First, that the Allan variance for frequency measurements
with missing data can have a strong bias, namely, it can be
profoundly different from its expected behavior. Second, how
to remove this bias by correcting the Allan variance.

Before summarizing these results and illustrating the struc-
ture of the article, it is fundamental to review the concept
of bias, a key quantity in estimation theory [7]. Suppose that
the temperature of a human body is measured. Assume that
y = 37 ◦C is the true temperature value. The measurements are
obtained by using a thermometer which produces the estimates
ŷ1 = 36.2 ◦C, ŷ2 = 35.8 ◦C, ŷ3 = 36.1 ◦C, . . . The
corresponding estimation errors are e1 = ŷ1 − y = −0.8 ◦C,
e2 = −1.2 ◦C, e3 = −0.9 ◦C, . . . The estimates ŷ1, ŷ2, ŷ3,
. . . , can be modeled as the realizations of a random variable
Ŷ , referred to as the estimator. Also the estimation errors e1,
e2, e3, . . . , can be modeled as the realizations of a random
variable ε = Ŷ − y. In the considered example, one averages
all of the (infinite) measurements and obtains E[Ŷ ] = 36 ◦C.
The average estimation error B = E[ε] = E[Ŷ ] − y = −1
◦C is referred to as bias. Since B 6= 0, the estimator Ŷ is
said to be biased. This bias might be due to the fact that the
thermometer was inadvertently placed on the fabric of the vest,
rather than directly on the skin. If the thermometer is correctly
placed on the skin, the body temperature estimator Ŷ returns,
on the average, E[Ŷ ] = 37 ◦C, therefore B = 0 and the
estimator is unbiased. Summarizing, the estimates produced by
an unbiased estimator fluctuate about the true value, whereas
the estimates produced by a biased estimator fluctuate about
a value different from the true value.

When full time or frequency measurements are used, the
Allan variance estimator is unbiased, and the estimates of
the Allan variance fluctuate about the true value, namely, the
Allan variance as defined by Allan in 1966 [1]. The Allan
variance estimator is still unbiased when time measurements
with missing data are considered, as proved in Appendix 4.
For this case, an effective estimator which takes into account
long blocks of missing data and outliers is developed in [8].
Conversely, when frequency measurements with missing data
are used, the Allan variance estimates fluctuate with respect
to a value different from the true Allan variance, and the
estimator is biased. For example, Fig. 1 shows Allan deviation
estimates (thin blue lines) obtained from N = 540 frequency
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measurements of a white frequency modulation (WFM) noise,
and the corresponding Allan deviation (dashed blue line),
obtained by averaging an infinite number of estimates, or,
equivalently, by analytic calculations. The thin black lines
represent instead Allan deviation estimates obtained from
the previous frequency measurements when 94% of data are
removed, with the pattern of regularly missing data blocks
described at the beginning of Sect. IV-A, and similar to
the ACES experiment previously discussed. The estimates
fluctuate about an Allan deviation (dashed black curve) which
is dramatically different from the expected true value. There-
fore, the Allan variance estimator is biased for frequency
measurements with missing data. Unfortunately, when data are
missing, it is not possible to recover time measurements from
frequency measurements [9], and one cannot use the estimator
developed in [8]. Nevertheless, this article shows how to define
a corrected Allan variance which corresponds to the expected
true value, and whose estimator is consequently unbiased. The
proposed method can be used for any pattern of missing data,
and, moreover, it does not replace the missing data by using,
for example, interpolation techniques, as in [10]. Note that,
because of the way the Allan variance is defined, the correction
can be computed in a given observation interval region only
if the dominant noise component in that region is known. The
advantage of the corrected Allan variance is that it provides
an estimate of the level of the dominant noise component in
every observation interval region, which is the key parameter
for the assessment of the clock stability performances.

The corrected Allan variance is developed for a WFM, a
white phase modulation (WPM), and a random walk frequency
modulation (RWFM), three of the most common noise com-
ponents of atomic clocks [11]. The developed method can be
used also when multiple noise components are present. Note
that, as commonly done in stability analysis, the method as-
sumes that deterministic components, such as frequency drifts,
have been removed from the data. Nonstationary behaviors,
such as clock anomalies, typically increase the Allan variance
and reduce the stability performances, as happens, for instance,
in presence of a sinusoidal term, which generates bumps in the
Allan variance. This behavior occurs also when missing data
are present. On one hand, to avoid pessimistic estimates of the
clock stability, nonstationary behaviors due to known causes,
such as maintanaince operations, should be removed from
frequency measurements before computing the corrected Allan
variance. On the other hand, to avoid optimistic estimates
of the clock stability, anomalous nonstationarity behaviors
not corresponding to known causes, should not be removed,
but rather revealed and characterized with the dynamic Allan
variance (DAVAR) [12]-[15], a sliding Allan variance which
produces a surface function of time and the observation
interval. This surface changes with time when an anomaly
occurs. When data are missing, to reveal and characterize
such nonstationary clock behaviors, one can slide the corrected
Allan variance on the data, therefore obtaining a corrected
DAVAR.

The corrected Allan variance is validated on simulated
frequency measurements both for individual noise compo-
nents and for multiple noise components. For individual noise

components, the cases of regularly spaced blocks of missing
data and uniformly distributed missing data are considered.
This second case is interesting because in the recent years
the Allan variance has been spreading out to a variety of
fields other than precise timing, and patterns of missing data
are common in many applications. The results show that the
corrected Allan variance completely removes the bias. For
multiple noise components, the cases of WPM plus WFM,
WPM plus RWFM, and WFM plus RWFM are considered,
first for regularly spaced blocks of missing data, and then, for
the case of WPM plus WFM, also for blocks of missing data
with random positions. In all of these cases, the corrected
Allan variance either removes, or largely reduces, the bias.
Additional results show that, when the wrong dominant noise
components are chosen, the corrected Allan variance does not
satisfy the properties expected from a clock stability measure,
and this fact can be used to detect a model mismatch.

Note that the basic idea behind the method presented in this
article is sketched in the conference paper [16]. Specifically,
[16] shows that a correction factor is needed to eliminate
the bias of the Allan variance, but it does not derive it.
The present article derives instead the correction factor for
WFM, WPM, RWFM, and it also discusses the case of mul-
tiple noise components. Furthermore, it obtains the correction
factor through a matrix calculus technique which allows a
straightforward software implementation. Finally, [16] shows
simulation results for WFM only, whereas the present article
shows simulation results for WFM, WPM, RWFM, and for
multiple noise components.

The article is organized as follows. Section II discusses
the standard definition of the Allan variance for frequency
measurements, first for the case of a complete data set, and
then for the case of missing data. Then, Sect. III introduces
the corrected Allan variance for WFM, WPM, and RWFM,
and discusses its estimation for multiple noise components.
Finally, Sect. IV validates the proposed method on simulated
data, both for individual and multiple noise components.

II. THE ALLAN VARIANCE

This section first reviews the classical definition of the Allan
variance in the case of full data for WFM, WPM, and RWFM.
Then, it shows the proposed modified definition for the case
of missing data.

A. Full Data

The Allan variance is defined as [1], [2]

σ2
y(τ) =

1

2

〈
(ȳ(t+ τ)− ȳ(t))2

〉
(1)

where τ is the observation interval, 〈〉 indicates an average
over the entire time axis, and the average frequency deviation
ȳ(t) is defined as

ȳ(t) =
1

τ

∫ t

t−τ
y(t′)dt′ (2)

The quantity y(t) is the normalized frequency deviation,
defined as

y(t) =
ν(t)− ν0

ν0
(3)
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Fig. 1. Bias of the Allan deviation computed from frequency measurements
with missing data. The dashed blue curve represents the theoretical Allan
deviation for a WFM when all of the frequency measurements are available.
This Allan deviation follows the expected k−1/2 behavior, and it can be
obtained either from analytic calculations, or by averaging an infinite number
of estimates. The solid blue curves represent a few of such estimates, obtained
from N = 540 WFM data. These estimates fluctuate about the Allan deviation
for full data. When 94% of the data are removed with the pattern of missing
data blocks described at the beginning of Sect. IV-A, the Allan deviation
for missing data (dashed black curve) shows a large difference, or bias, with
respect to the Allan deviation for full data. The corresponding estimates of the
Allan deviation in the missing data case (solid black curves) fluctuate about
this biased Allan deviation. Note that the Allan variance for missing data,
and its estimator, can be seen as approximations of the Allan variance for full
data, and its estimator, where the approximaton error is the bias. This bias,
or approximation error, is due to the fact that the Allan variance for missing
data is computed by using only the available frequency measurements.

where ν0 is the nominal frequency of the clock, and ν(t) its
instantaneous frequency. The normalized frequency deviation
y(t) is connected to the time deviation x(t) through the
relationship

y(t) =
dx(t)

dt
(4)

In practical applications, it is common to use sampled average
frequency measurements defined as

y[n] =
1

τ0

∫ nτ0

(n−1)τ0
y(t′)dt′ (5)

where τ0 is the sampling time, and n = t/τ0 is discrete time.
By using (4), frequency measurements can be written with
respect to time measurements as

y[n] =
x[n]− x[n− 1]

τ0
(6)

where x[n] = x(nτ0).
When N frequency measurements y[n] are available, for

n = 1, . . . , N , the Allan variance becomes

σ2
y[k] =

1

2

1

N − 2k + 1

N−k∑
n=k

E
[
(yk[n+ k]− yk[n])

2
]

(7)

where k = τ/τ0 is the discrete-time observation interval, E
is the ensemble average operator (expected value), and the
average frequency measurements yk[n+ k], yk[n] are defined
as

yk[n+ k] =
1

k

k∑
m=1

y[n+m] (8)

yk[n] =
1

k

k∑
m=1

y[n−m+ 1] (9)

When N is even, the maximum observation interval at which
we can evaluate σ2

y[k] is k = N/2. To carry out calculations,
it is useful to rewrite the Allan variance as

σ2
y[k] =

1

2

1

N − 2k + 1

×
N−k∑
n=k

(
E[y2k[n+ k]] + E[y2k[n]]− 2E[yk[n+ k]yk[n]]

)
(10)

The quantity σ2
y[k] is a theoretical value, because infinite real-

izations of the random process y[n] are needed to evaluate the
ensemble average E. In practical applications, one typically
has a single realization of the frequency measurements y[n],
and the Allan variance is evaluated through the estimator

σ̂2
y[k] =

1

2

1

N − 2k + 1

N−k∑
n=k

(yk[n+ k]− yk[n])
2 (11)

The Allan variance can be also written with respect to
time measurements. First, by using (6), the average frequency
measurements (8) and (9) are rewritten as

yk[n+ k] =
x[n+ k]− x[n]

kτ0
(12)

yk[n] =
x[n]− x[n− k]

kτ0
(13)

Then, they are replaced in (7), obtaining

σ2
y[k] =

1

2

1

N − 2k + 1

×
N−k∑
n=k

E
[
(x[n+ k]− 2x[n] + x[n− k])

2
]

k2τ20
(14)

The corresponding Allan variance estimator for time measure-
ments is given by

σ̂2
y[k] =

1

2

1

N − 2k + 1

×
N−k∑
n=k

(x[n+ k]− 2x[n] + x[n− k])
2

k2τ20
(15)

1) White Frequency Modulation: A WFM y(t) can be
modeled by a white Gaussian noise with zero mean and
autocorrelation function

Ry(t′, t′′) = E[y(t′)y(t′′)] = σ2δ(t′ − t′′) (16)



4

where δ(t) is a Dirac delta function. Consequently, from (5),
the frequency measurements y[n] are Gaussian and have mean
and variance given by, respectively,

E[y[n]] = 0 (17)

E[(y[n]− E[y[n]])2] = E[y2[n]] =
σ2

τ0
(18)

Moreover, from (5), it can be also shown that the frequency
measurements are uncorrelated, namely, the autocorrelation
function for n 6= m is given by

E[y[n]y[m]] = 0 (19)

Therefore, since the frequency measurements are Gaussian and
uncorrelated, they are statistically independent.

Appendix 1 shows that the Allan deviation for WFM with
full data is given by [2]

σy[k] = σ(kτ0)−1/2 (20)

In continuous time,

σy(τ) = στ−1/2 (21)

2) White Phase Modulation: A WPM can be modeled by
Gaussian time measurements x[n] with mean and variance
given by, respectively,

E[x[n]] = 0 (22)

E[(x[n]− E[x[n]])2] = E[x2[n]] = σ2 (23)

and autocorrelation function given by, for n 6= m,

E[x[n]x[m]] = 0 (24)

Being Gaussian and uncorrelated, the time measurements are
statistically independent. Consequently, from (6), also the fre-
quency measurements are Gaussian, with mean and variance
given by, respectively,

E[y[n]] = 0 (25)

E[(y[n]− E[y[n]])2] = E[y2[n]] =
2σ2

τ20
(26)

and autocorrelation function given by, for n 6= m,

E[y[n]y[m]] =

{
−σ

2

τ2
0
, for |n−m| = 1

0, for |n−m| > 1
(27)

Appendix 2 shows that the Allan deviation for WPM is
given by [2]

σy[k] =
√

3σ(kτ0)−1 (28)

In continuous time

σy(τ) =
√

3στ−1 (29)

3) Random Walk Frequency Modulation: An RWFM can
be modeled by a normalized frequency deviation defined as

y(t) =

∫ t

0

ξ(t′)dt′ (30)

where ξ(t) is a white Gaussian noise with mean value and
autocorrelation function given by, respectively,

E[ξ(t)] = 0 (31)

E[ξ(t′)ξ(t′′)] = σ2δ(t′ − t′′) (32)

By using (5), the corresponding frequency measurement y[n] is
Gaussian, with mean value and variance given by, respectively,

E[y[n]] = 0 (33)

E[(y[n]− E[y[n]])2] = E[y2[n]] = σ2τ0

(
n− 2

3

)
(34)

and autocorrelation function given by, for n 6= m,

E[y[n]y[m]] = σ2τ0

(
min(n,m)− 1

2

)
(35)

The function min(n,m) returns the minimum between n and
m. Appendix 3 shows the derivation of (34) and (35).

Appendix 3 also proves that the Allan deviation for RWFM
is [2]

σy[k] =
σ√
3

(kτ0)1/2 (36)

In continuous time,

σy(τ) =
σ√
3
τ1/2 (37)

B. Missing data

Suppose now that some of the frequency measurements
y[1], . . . , y[N ] are missing, as happens, for example, in Fig.
1. As explained at the beginning of Sect. IV-A, the time series
used to generate this picture is made by 3 samples of WFM,
then 51 missing samples, another 3 samples of WFM, then
51 missing samples, and so on. If the corresponding Allan
variance is estimated by considering the average frequency
deviations yk[n + k] and yk[n] obtained only when all of
the required frequency measurements in (8)-(9) are available,
then the Allan variance could be estimated for k = 1 only, a
basically useless result for stability analysis. To estimate the
Allan deviation at any k value, we replace yk[n+k] and yk[n]
in (8)-(9) with the average frequency deviations y′k[n + k]
and y′k[n], obtained even if some of the required frequency
measurements are missing,

y′k[n+ k] =
1

#I1(n, k)

∑
m∈I1(n,k)

y[n+m] (38)

y′k[n] =
1

#I2(n, k)

∑
m∈I2(n,k)

y[n−m+ 1] (39)

where I1(n, k) is the set of discrete time instants at which
y[n+m] is available, for a given n and k, and #I1(n, k) is its
number of elements. The set I2(n, k) is defined accordingly.
Specifically, if Iy represents the set of discrete-time values
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at which the frequency measurements y[n] are available, then
I1(n, k) and I2(n, k) are defined as

I1(n, k) = {n+ 1, ..., n+ k} ∩ Iy (40)
I2(n, k) = {n− k + 1, ...n} ∩ Iy (41)

where ∩ is the set intersection. Consequently, the Allan
variance becomes

σ2
y[k] =

1

2

1

#I(k)

∑
n∈I(k)

E
[
(y′k[n+ k]− y′k[n])

2
]

(42)

where I(k) is the set of time instants n at which both y′k[n+k]
and y′k[n] are available for a given k. Similarly, the Allan
variance estimator becomes

σ̂2
y[k] =

1

2

1

#I(k)

∑
n∈I(k)

(y′k[n+ k]− y′k[n])
2 (43)

Clearly, at those values of k for which y′k[n + k] and y′k[n]
are both unavailable, the corresponding Allan variance value
cannot be computed. Note that when all of the measurements
are available, it is Iy = {1, . . . , N}, I1(n) = {n+ 1, . . . , n+
k}, I2(n) = {n−k+1, . . . , n}, I3(k) = {k, . . . , N−k}, and,
therefore, #Iy = N , #I1(n, k) = #I2(n, k) = k, #I(k) =
N−2k+1, and the Allan variance for missing data (42) equals
the Allan variance for full data (7).

III. THE CORRECTED ALLAN VARIANCE

As shown by Fig. 1, it is, in general,

σ2
y[k] (Full data) 6= σ2

y[k] (Missing data) (44)

where the Allan variance for full data and missing data are
defined in (7) and (42), respectively. This bias is due to the
fact that the terms y′k[n+ k], y′k[n] in (38)-(39) are averaged
over the available frequency measurements only, whereas the
terms yk[n+k], yk[n] in (8)-(9) are averaged over the full set
of frequency measurements.

To eliminate this bias, we propose the corrected Allan
variance

σ2
y[k] =

1

2

1

#I(k)

∑
n∈I(k)

α2(n, k)E
[
(y′k[n+ k]− y′k[n])

2
]

(45)
where α2(n, k) is a correction factor given by

α2(n, k) =
E
[
(yk[n+ k]− yk[n])

2
]

E
[
(y′k[n+ k]− y′k[n])

2
] (46)

With this correction, it is immediate to see that

σ2
y[k] (Corrected) = σ2

y[k] (Full data) (47)

This equality holds at those k values where the corrected Allan
variance exists. Consequently, the corrected Allan variance
estimator is defined as

σ̂2
y[k] =

1

2

1

#I(k)

∑
n∈I(k)

α2(n, k) (y′k[n+ k]− y′k[n])
2 (48)

The matrix technique discussed in the next section simplifies
the calculation of the correction factor.

Note that all of the figures in the examples have been
obtained by directly implementing the corrected Allan vari-
ance estimator defined in (48), through the matrix calculus
technique described in Sect. III-A. This algorithm is far from
being optimal. A fast algorithm can be obtained by improving
this algorithm in several ways. For example, when many data
are missing, one can take advantage of the sparsity of the
vector I(k) in (48). To give an estimate of the computational
cost required to generate the displayed figures, two facts can
be considered. First, that for all of the figures in the paper,
the corrected Allan variance estimator is approximately 1.1-
10.5 times slower than the Allan variance estimator without
correction, depending on the figure. Second, more importantly,
that any estimate of the corrected Allan variance shown in the
paper required a computational time < 25 s on a commercial
desktop computer, with 1.9 s being the fastest estimate.

A. Correction Factor: Matrix Calculus Technique

The correction factor α2(n, k) can be obtained from the
expanded form

α2(n, k) =
E
[
(yk[n+ k]− yk[n])

2
]

E[y′2k [n+ k]] + E[y′2k [n]]− 2E[y′k[n+ k]y′k[n]]
(49)

For WFM, WPM, and RWFM, the numerator is derived in
Appendices 1-3, whereas the terms E[y′2k [n + k]], E[y′2k [n]],
and E[y′k[n + k]y′k[n]] at the denominator can be computed
by introducing a matrix notation. Specifically,

E[y′2k [n+ k]] =
1

#I21 (k)

∑
i∈I1(k)

∑
j∈I1(k)

A[i, j] (50)

E[y′2k [n]] =
1

#I22 (k)

∑
i∈I2(k)

∑
j∈I2(k)

B[i, j] (51)

E[y′k[n+ k]y′k[n]] =
1

#I1(k)#I2(k)

∑
i∈I1(k)

∑
j∈I2(k)

C[i, j]

(52)

where the k-by-k matrices A, B, and C are defined as

A = E[y′k[n+ k]y′k[n+ k]T ] (53)

B = E[y′k[n]y′k[n]T ] (54)

C = E[y′k[n+ k]y′k[n]T ] (55)

and the k-by-1 vectors y′k[n+ k], y′k[n] are given by

y′k[n+ k] =

 y[n+ 1]
...

y[n+ k]

 , y′k[n] =

 y[n− k + 1]
...

y[n]


(56)

The notation y′k[n + k]T indicates the transpose of y′k[n +
k]. The matrices A, B, and C can be computed for WFM,
WPM, and RWFM by using the corresponding variances and
autocorrelation functions given in Sects. II-A1-II-A3, as shown
in the subsequent sections.
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B. Correction Factor: White Frequency Modulation
The correction factor for WFM is given by

α2
WFM(n, k) =

2k−1

1
#I1(k)

+ 1
#I2(k)

(57)

This result is obtained by first using (99) for the numerator of
(49). Then, for the denominator of (49), one notes that

AWFM = BWFM =
σ2

τ0
I (58)

CWFM = 0 (59)

where I is the k-by-k identity matrix. The terms on the main
diagonal of the matrices AWFM and BWFM are obtained by
using the variance (18), whereas the off-diagonal terms and the
matrix CWFM are obtained from the autocorrelation function
(19). By substituting these results in (50)-(52), it is

E[y′2k [n+ k]] =
1

#I1(k)

σ2

τ0
(60)

E[y′2k [n]] =
1

#I2(k)

σ2

τ0
(61)

E[y′k[n+ k]y′k[n]] = 0 (62)

As an example, the derivation of (60) is

E[y′2k [n+ k]] =
1

#I21 (k)

∑
i∈I1(k)

∑
j∈I1(k)

AWFM[i, j] (63)

=
1

#I21 (k)

σ2

τ0

∑
i∈I1(k)

I (64)

=
1

#I21 (k)

σ2

τ0
#I1(k) (65)

=
1

#I1(k)

σ2

τ0
(66)

The same procedure is used for E[y′2k [n]] and E[y′k[n +
k]y′k[n]].

C. Correction Factor: White Phase Modulation
The correction factor for WPM is given by

α2
WPM(n, k) = 6k−2

 1

#I21 (k)

∑
i∈I1(k)

∑
j∈I1(k)

A′WPM[i, j]

(67)

+
1

#I22 (k)

∑
i∈I2(k)

∑
j∈I2(k)

B′WPM[i, j] (68)

−2
1

#I1(k)#I2(k)

∑
i∈I1(k)

∑
j∈I2(k)

C ′WPM[i, j]

−1
(69)

where

A′WPM = B′WPM =



2 −1 0 · · · 0

−1 2 −1
. . .

...

0 −1
. . . . . . 0

...
. . . . . . . . . −1

0 · · · 0 −1 2


(70)

C ′WPM =


0 · · · 0 −1
...

. . . . . . 0
...

. . . . . .
...

0 · · · · · · 0

 (71)

To obtain this result, one first uses (106) for the numerator of
(49), whereas, for the denominator, it is

AWPM = BWPM =
σ2

τ20
A′WPM (72)

CWPM =
σ2

τ20
C ′WPM (73)

The terms on the main diagonal of the symmetric tridiagonal
matrices AWPM and BWPM are obtained by using the variance
(26), whereas the off-diagonal terms and the matrix CWPM are
derived from the autocorrelation function (27).

D. Correction Factor: Random Walk Frequency Modulation

The correction factor for RWFM is given by

α2
RWFM(n, k) =

2

3
k

 1

#I21 (k)

∑
i∈I1(k)

∑
j∈I1(k)

A′RWFM[i, j]

(74)

+
1

#I22 (k)

∑
i∈I2(k)

∑
j∈I2(k)

B′RWFM[i, j] (75)

−2
1

#I1(k)#I2(k)

∑
i∈I1(k)

∑
j∈I2(k)

C ′RWFM[i, j]

−1
(76)

where

A′RWFM =


n+ 1

3 n+ 1
2 · · · n+ 1

2 n+ 1
2

n+ 1
2 n+ 4

3 · · · n+ 3
2 n+ 3

2
...

...
. . .

...
...

n+ 1
2 n+ 3

2 · · · n+ k − 5
3 n+ k − 3

2
n+ 1

2 n+ 3
2 · · · n+ k − 3

2 n+ k − 2
3


(77)

B′RWFM =
n− k + 1

3 n− k + 1
2 · · · n− k + 1

2 n− k + 1
2

n− k + 1
2 n− k + 4

3 · · · n− k + 3
2 n− k + 3

2
...

...
. . .

...
...

n− k + 1
2 n− k + 3

2 · · · n− 5
3 n− 3

2
n− k + 1

2 n− k + 3
2 · · · n− 3

2 n− 2
3


(78)

C ′RWFM =


n− k + 1

2 n− k + 3
2 · · · n− 3

2 n− 1
2

n− k + 1
2 n− k + 3

2 · · · n− 3
2 n− 1

2
...

...
. . .

...
...

n− k + 1
2 n− k + 3

2 · · · n− 3
2 n− 1

2
n− k + 1

2 n− k + 3
2 · · · n− 3

2 n− 1
2


(79)
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This result is obtained by first using (135) for the numerator
of (49), whereas, for the denominator, it is

ARWFM = σ2τ0A
′
RWFM (80)

BRWFM = σ2τ0B
′
RWFM (81)

CRWFM = σ2τ0C
′
RWFM (82)

The terms on the main diagonals of the matrices ARWFM and
BRWFM are derived from the variance (34), whereas the off-
diagonal terms and the matrix CRWFM are obtained by using
the autocorrelation function (35).

E. Multiple Noise Components

Suppose that the normalized frequency deviation of a clock
is made by the sum of two statistically independent noise
components, such as, for instance, WFM and WPM,

y(t) = yWFM(t) + yWPM(t) (83)

Then, when all of the frequency measurements are available,
it is

σ2
y[k] (Full data) = σ2

y,WFM[k] (Full data)

+ σ2
y,WPM[k] (Full data) (84)

Appendix 5 shows how to derive this classical result. When
data are missing, for a given set of observation interval values
the correction can be computed for one noise component only,
therefore,

σ2
y[k] (Corrected) 6= σ2

y[k] (Full data) (85)

As Appendix 6 in fact shows, for a WFM correction, it is

σ2
y[k] (Corrected) = σ2

y,WFM[k] (Full data)

+ σ2
y,WPM[k] (Corrected for WFM) (86)

However, if WFM is a dominant noise component in a given
region of the observation interval, namely,

σ2
y,WFM[k] (Full data)� σ2

y,WPM[k] (Full data) (87)

then
σ2
y[k] (Full data) ≈ σ2

y,WFM[k] (Full data) (88)

and the numerical simulations show that this result holds also
for the corrected Allan variance, namely,

σ2
y[k] (Corrected) ≈ σ2

y[k] (Full data) (89)

where the correction is computed for WFM. This approxima-
tion should be derived analytically, but the proof is difficult
because it must be obtained for any pattern of missing data
Iy . Anyway, Monte Carlo simulations, such as those presented
in Sect. IV-B, show that this approximation is effective.
In general, clock specifications establish the dominant noise
component in every observation interval region.

IV. EXAMPLES

The corrected Allan variance and its estimator are now
validated through Monte Carlo simulations first for WFM,
WPM, and RWFM components individually, and then for
multiple noise components. The problem of choosing wrong
noise components is also discussed.
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Fig. 2. Simulated frequency measurements for WFM with blocks of missing
data. The time series is made by 3 WFM data, then 51 missing data, another
3 WFM data, then 51 missing data, and so on. (The pattern of missing data
is described in detail at the beginning of Sect. IV-A.) The first 1000 samples
of the time series can be seen in Fig. 3.
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Fig. 3. The first 1000 samples of the WFM shown in Fig. 2. The missing
data blocks can be clearly seen.

A. Individual Noise Components

A time series with N = 10800 samples, made of 200
blocks with 54 samples each, is simulated. Each block has
3 data and then 51 missing data. The percentage of missing
data is therefore 51/54× 100 ≈ 94%. The case of uniformly
distributed missing data is also considered for WFM and
WPM. A time series with N = 10800 data is simulated, and
then 94% of the data are randomly removed by selecting their
discrete-time instants from a uniform distribution.

1) White Frequency Modulation: Figure 2 shows the simu-
lated frequency measurements y[n] for a WFM with blocks of
missing data. To better illustrate the structure of the missing
data blocks, the first 1000 samples are shown in Fig. 3.
The corresponding stability analysis is given in Fig. 4. The
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Fig. 4. Stability analysis for the WFM with blocks of missing data of Fig. 2.
The blue curve is the Allan deviation for the full data case, whereas the black
curve is the Allan deviation for the missing data case without correction. The
estimated Allan deviation for missing data without correction is represented by
the dotted black curve. The red circles represent the corrected Allan deviation,
whereas the dotted red curve is the estimate of the corrected Allan deviation.
The red bars are 95% confidence intervals for the corrected Allan deviation
estimator.
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Fig. 5. Simulated frequency measurements for WFM with uniformly dis-
tributed missing data. This pattern of missing data is described in detail at
the beginning of Sect. IV-A.

blue line represents the theoretical Allan deviation for full
data, which exhibits the expected τ−1/2 behavior (k−1/2 in
discrete-time). The solid black line represents the theoretical
Allan deviation for missing data. This curve is dramatically
different from the expected behavior. It is in fact flat for small
observation intervals, and then it decreases with a slope similar
to the τ−1/2 behavior. The black dotted curve is the estimated
Allan deviation for missing data without the correction, and, as
expected, it is consistent with the theoretical Allan deviation
for missing data. The red dotted curve is the estimated Allan
deviation for missing data with the correction, and it follows
the expected theoretical behavior. The red circles represent

10 0 10 1 10 2

10 -1
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Fig. 6. Stability analysis for the WFM with uniformly distributed missing
data of Fig. 5. The blue curve is the Allan deviation for the full data case,
whereas the black curve is the Allan deviation for the missing data case
without correction. The estimated Allan deviation for missing data without
correction is represented by the dotted black curve. The red circles represent
the corrected Allan deviation, whereas the dotted red curve is the estimate of
the corrected Allan deviation. The red bars are 95% confidence intervals for
the corrected Allan deviation estimator.

the corrected Allan deviation, obtained through Monte Carlo
simulations. The red circles are located on the theoretical Allan
deviation for full data, and this result validates the calculations
of the corrected Allan deviation for the WFM case. Finally,
the red bars are 95% confidence intervals obtained through
Monte Carlo simulations.

Figure 5 instead shows the simulated frequency measure-
ments for uniformly distributed missing data. The correspond-
ing stability analysis is given in Fig. 6. The Allan deviation for
missing data (solid black curve) exhibits again a flat behavior
for small observation intervals, and then it follows the expected
τ−1/2 behavior (blue curve). The estimated Allan deviation
with the correction (red dotted curve) follows the expected
behavior for full data.

2) White Phase Modulation: The simulated frequency mea-
surements for a WPM with blocks of missing data are given in
Fig. 7. Figure 8 shows instead the corresponding stability anal-
ysis. The Allan deviation for missing data (solid black curve)
does not follow the expected τ−1 behavior represented by the
Allan deviation for full data (blue curve), because it is flat for
small observation interval values, and then it decreases with
a slope that does not correspond to τ−1. The estimated Allan
deviation for missing data with the correction (red dotted line)
follows the expected behavior, and the confidence intervals
(red bars) are smaller than in the WFM case. The corrected
Allan deviation (red circles), obtained through Monte Carlo
simulations, follows the Allan deviation for full data, therefore
validating the correction for WPM.

The simulated frequency measurements for the case of
uniformly distributed missing data are shown in Fig. 9, and
the corresponding stability analysis is represented in Fig. 10.
Surprisingly, the Allan deviation for missing data (solid black
curve), shows a τ−1/2 behavior, corresponding to WFM, rather
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Fig. 7. Simulated frequency measurements for WPM with blocks of missing
data. This pattern of missing data is described in detail at the beginning of
Sect. IV-A.
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Fig. 8. Stability analysis for the WPM with blocks of missing data of Fig. 7.
The blue curve is the Allan deviation for the full data case, whereas the black
curve is the Allan deviation for the missing data case without correction. The
estimated Allan deviation for missing data without correction is represented by
the dotted black curve. The red circles represent the corrected Allan deviation,
whereas the dotted red curve is the estimate of the corrected Allan deviation.
The red bars are 95% confidence intervals for the corrected Allan deviation
estimator.
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Fig. 9. Simulated frequency measurements for WPM with uniformly dis-
tributed missing data. This pattern of missing data is described in detail at
the beginning of Sect. IV-A.
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Fig. 10. Stability analysis for the WPM with uniformly distributed missing
data of Fig. 9. The blue curve is the Allan deviation for the full data case,
whereas the black curve is the Allan deviation for the missing data case
without correction. The estimated Allan deviation for missing data without
correction is represented by the dotted black curve. The red circles represent
the corrected Allan deviation, whereas the dotted red curve is the estimate of
the corrected Allan deviation. The red bars are 95% confidence intervals for
the corrected Allan deviation estimator.

than WPM. This discrepancy is eliminated by the corrected
Allan deviation (red circles), along with its estimate (dotted
red curve).

3) Random Walk Frequency Modulation: The simulated
frequency measurements for RWFM in the case of blocks of
missing data are shown in Fig. 11. The corresponding stability
analysis is represented in Fig. 12. The Allan deviation for full
data (blue curve) has the typical τ1/2 behavior. The Allan
deviation for missing data (solid black curve) does not follow
this expected behavior, but it is flat for small and medium
observation interval values, and it gets closer to the blue
curve only for large observation interval values. The corrected
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Allan deviation (red circles) eliminates this divergence, and
its estimate (red dotted curve) follows the τ1/2 behavior. The
confidence intervals (red bars) are larger than for the WFM
and WPM cases.

B. Multiple Noise Components

First, similarly to the case of individual noise components
of Sect. IV-A, a time series with N = 10800 samples,
made of 200 blocks with 54 samples each, is simulated. Each
block has now 15 data and then 39 missing data, resulting
in approximately 72% of missing data. For WPM-WFM, the
case of blocks of missing data with fixed length but random
position is also considered.

1) WPM-WFM: Figure 13 shows the simulated frequency
measurements in case of blocks of missing data for the sum of
a WPM and a WFM. The corresponding stability analysis is
represented in Fig. 14. The Allan deviation of the individual
WPM and WFM components is represented by the dashed
blue lines, with slopes τ−1 (k−1 in discrete time) and τ−1/2

(k−1/2 in discrete time), respectively. From (84), for the case
of full data, the Allan deviation of the sum of WPM and WFM
(solid blue line) is given by

σy[k] (Full data) =√
σ2
y,WPM[k] (Full data) + σ2

y,WFM[k] (Full data)
(90)

The black circles indicate the Allan deviation for missing data
without correction, and the red circles indicate the corrected
Allan deviation. The estimated Allan deviation without cor-
rection is indicated by the black dots, and the estimate of the
corrected Allan deviation by the red dots. The correction is
for WPM at small observation interval values, and for WFM
at large interval values, where these noise components are
dominant. In the transition region, located in the intermediate
observation interval region, the correction is not computed be-
cause a dominant noise component does not exist. In the WPM
region the corrected Allan deviation completely removes the
bias. In the WFM region the corrected Allan deviation largely
reduces the bias, and only a residual bias remains, as predicted
in Sect. III-E. The red bars are 95% confidence intervals.

Figure 15 shows the first 1000 samples of the frequency
deviation for the sum of WPM and WFM when random blocks
of missing data are considered. As in the previous case, the
time series as N = 10800 samples, and it is made by 200
blocks with 54 samples, with 15 data and 39 missing data
each. The position of the sub-block with the 15 data is now
randomly distributed within each block. The corresponding
stability analysis is shown in Fig. 16. This picture is basically
identical to Fig. 14, the only difference being that the Allan
deviation without correction shows a larger bias for k = 60.
The picture is a further proof that the proposed method can
work with any pattern of missing data.

2) WPM-RWFM: Figure 17 shows the frequency deviation
for the sum of a WPM and an RWFM noise components with
the fixed blocks of missing data described at the beginning
of Sect. IV-B. The corresponding stability analysis is shown
in Fig. 18. The dashed blue lines with slopes τ−1 (k−1 in
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Fig. 11. Simulated frequency measurements for RWFM with blocks of
missing data. This pattern of missing data is described in detail at the
beginning of Sect. IV-B.
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Fig. 12. Stability analysis for the RWFM with blocks of missing data of Fig.
11. The blue curve is the Allan deviation for the full data case, whereas the
black curve is the Allan deviation for the missing data case. The estimated
Allan deviation for missing data without correction is represented by the
dotted black curve. The red circles represent the corrected Allan deviation,
whereas the dotted red curve is the estimate of the corrected Allan deviation.
The red bars are 95% confidence intervals for the corrected Allan deviation
estimator.
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Fig. 13. Simulated frequency measurements for the sum of a WPM and a
WFM with blocks of missing data. The time series is made by 15 WPM+WFM
data, then 39 missing data, another 15 WPM+WFM data, then 39 missing
data, and so on. (Figure 3 illustrates this pattern of missing data for WFM.)
This pattern of missing data is described in detail at the beginning of Sect.
IV-B.
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Fig. 14. Stability analysis for the sum of WPM and WFM with blocks of
missing data shown in Fig. 13. The dashed blue curves with slopes τ−1

and τ−1/2 (k−1 and k−1/2 in discrete time) are the Allan deviations for
the individual WPM and WFM components, respectively, in the full data
case, whereas the solid blue curve is the Allan deviation for the sum of the
two noise components, obtained through (90). The black circles indicate the
Allan deviation for the missing data case. The estimated Allan deviation in
the missing data case without correction is represented by the dotted black
curve. The red circles represent the corrected Allan deviation. The red bars
are 95% confidence intervals for the corrected Allan deviation estimator. The
corrected Allan deviation completely removes the bias for WPM, and largely
reduces the bias for WFM.
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Fig. 15. Simulated frequency measurements for the sum of a WPM and a
WFM with random blocks of missing data. The plot shows the first 1000
samples of a WPM+WFM noise. Within each of the 200 blocks made of 54
samples each, the position of the 15 WPM+WFM data is chosen randomly.
This pattern of missing data is described in detail at the beginning of Sect.
IV-B.
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Fig. 16. Stability analysis for the sum of WPM and WFM with random blocks
of missing data shown in Fig. 15. As in Fig. 14, the corrected Allan deviation
(red circles) completely removes the bias for WPM, and largely reduces the
bias for WFM. The only difference is that, for k = 60, the Allan deviation
without correction (black circles) shows a larger bias with respect to Fig. 14.

discrete time) and τ1/2 (k1/2 in discrete time) represent the
Allan deviations for WPM and RWFM, respectively, when all
of the data are available. The solid blue line is their sum,
obtained through (90). The black circles represent the Allan
deviation for missing data without correction, the red circles
the corrected Allan deviation for missing data. The black and
red dots represent estimates of the Allan deviation for missing
data without correction, and of the corrected Allan deviation,
respectively. The red bars are 95% confidence intervals. The
correction is computed for WPM for small observation interval
values, where WPM dominates, and for RWFM for large
observation interval values, where RWFM dominates. As in
Fig. 14, the correction is not computed in the intermediate
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Fig. 17. Simulated frequency measurements for the sum of WPM and RWFM
with blocks of missing data. This pattern of missing data is described in detail
at the beginning of Sect. IV-B.
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Fig. 18. Stability analysis for the WPM plus RWFM noise with blocks of
missing data shown in Fig. 17. The dashed blue lines represent the Allan
deviation for WPM and RWFM in the full data case, whereas their sum,
obtained through (90), is the solid blue line. The corrected Allan deviation
(red circles) removes the bias of the Allan deviation without correction (black
circles) in the WPM region (small observation interval values), and reduces
it in the RWFM region (large observation interval values). The red and
black dots are estimates of the Allan deviation with and without correction,
respectively. The red bars are 95% confidence intervals.

observation interval region, where no noise dominates. The
bias of the Allan deviation without correction for WPM is
completely removed, whereas the smaller bias of the Allan
deviation without correction for RWFM is reduced.

3) WFM-RWFM: Figure 19 shows the frequency deviation
for the sum of a WFM and an RWFM with the pattern of
missing data blocks described at the beginning of Sect. IV-B.
The corresponding stability analysis is displayed in Fig. 20.
The dashed blue lines with slopes τ−1/2 (k−1/2 in discrete
time) and τ1/2 (k1/2 in discrete time) represent the Allan
deviation for WFM and RWFM when all of the data are
available, respectively, whereas their sum, obtained thorough
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Fig. 19. Simulated frequency measurements for the sum of WFM and RWFM
with blocks of missing data. This pattern of missing data is described in detail
at the beginning of Sect. IV-B.

(90), is represented by the solid blue line. The Allan deviation
for missing data without correction is represented by the black
circles, and the corrected Allan deviation for missing data
by the red circles. Estimates of the Allan deviation without
correction and of the corrected Allan deviation are represented
by black and red dots, respectively. The red bars are 95%
confidence intervals. The correction is computed for WFM at
small observation interval values, where WFM dominates, and
for RWFM for large observation interval values, where RWFM
dominates. Similarly to the previous cases, the correction is not
computed for intermediate observation interval values, where
a dominant noise does not exist. The picture shows that the
corrected Allan deviation completely removes the bias in the
WFM region, and it reduces the smaller bias in the RWFM
region, resulting in a negligible bias.

C. Choosing Wrong Noise Components

As previously mentioned, the only way to correct the
mathematical definition of the Allan variance is by introducing
a correction factor which depends on the type of noise
component dominating in every observation interval region.
The correction factor is not computed in the transition regions
where a dominant noise does not exist. Consequently, the
corrected Allan variance is a parametric estimator based on
a stochastic model of the data. The parameters of the model
are the types of noise components and the corresponding
dominance regions. As in any parametric estimator, when the
wrong model is used, the corresponding estimation results
can have poor performances. Fortunately, the analysis of the
obtained results can be used to decide if a model mismatch
occurred. This concept is better illustrated through an example.

Fig. 21 shows frequency measurements made by the sum
of a WFM and an RWFM with blocks of missing data.
The percentage of missing data is 94%, and the pattern of
missing data is described at the beginning of Sect. IV-A.
Figure 22 shows, for the full data case, the Allan deviation
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Fig. 20. Stability analysis for the WFM plus RWFM noise with blocks of
missing data shown in Fig. 19. The Allan deviation for WFM and RWFM in
the full data case is represented by the dashed blue lines, whereas their sum,
obtained through (90), is the solid blue line. The corrected Allan deviation (red
circles) completely removes the bias of the Allan deviation without correction
(black circles) for WFM (short observation interval values), and reduces the
bias for RWFM (large observation interval values). The red and black circles
are estimates of the Allan deviation with and without correction, respectively.
The red bars are 95% confidence intervals.

for WFM (dashed blue line with k−1/2 slope), for RWFM
(dashed blue line with slope k1/2), and for the sum of them
(solid blue line), obtained through 90. The solid red line
represents the corrected Allan deviation obtained when the
wrong noise components are selected. In the short observation
interval region where WFM dominates, in fact, the correction
is computed for RWFM, whereas in the large observation
interval region where RWFM dominates, the correction is
computed for WFM. The obtained corrected Allan deviation
has large estimation errors. It is immediately clear, though,
that a model mismatch occurred, because the estimated Allan
deviation is not consistent with the the bathtub diagram shown
in Fig. 23. A proper Allan deviation must in fact follow the
convex function in this diagram (provided that all deterministic
components, such as frequency drifts, have been removed).
Since the corrected Allan deviation in Fig. 22 is a non-convex
function, it does not represent a proper Allan deviation, and
hence the wrong noise model has been used. The consistency
between the corrected Allan deviation and the bathtub diagram
could be used to design a model mismatch detector, as it is
done in several fields, such as, for instance, radar detection
[17], machine learning [18], and chemical engineering [19].

V. CONCLUSIONS

The Allan variance computed from frequency measurements
with missing data can be profoundly different from the full
data case. This difference, referred to as bias, can be corrected
by modifying the definition of the Allan variance. The cor-
rected Allan variance eliminates the bias, or largely reduces
it, and, on the average, returns the Allan variance behavior
expected for the full data case. This article shows how to
correct the Allan variance for WFM, WPM, and RWFM, three
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Fig. 21. Simulated frequency measurements for the sum of a WFM and an
RWFM with blocks of missing data. This pattern of missing data is described
in detail at the beginning of Sect. IV-B.
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Fig. 22. Stability analysis for the WFM plus RWFM noise with blocks
of missing data shown in Fig. 21. The dashed blue lines represent the
Allan deviation of the WFM and RWFM noise components for the full data
case (k−1/2 and k1/2 slopes, respectively), whereas their sum, obtained
through (90), is the solid blue line. The corrected Allan deviation (red line)
is a poor estimate of the desired full data case, because the correction is
wrongly computed for RWFM in the short observation interval region, where
WFM dominates, and for WFM in the large observation interval region,
where RWFM dominates. This model mismatch is clearly revealed by the
disagreement with the convex behavior of the bathtub diagram in Fig. 23,
which any proper Allan deviation must follow.
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Fig. 23. Bathtub diagram. Any proper Allan deviation must follow this convex
function, whose actual shape depends on the type of noise components present
in the considered measurements. The Allan deviation for each individual noise
component is proportional to τµ, and therefore becomes a straight line in the
bilogarithmic representation.

of the most common noise components of atomic clocks.
The performances of the corrected Allan variance are vali-
dated through Monte Carlo simulations. When multiple noise
components are present, the corrected Allan variance is an
effective approximation of the expected Allan variance in the
observation interval regions where a dominant noise is present.
The corrected Allan variance can be also straightforwardly
embedded in the dynamic Allan variance (DAVAR) [12]-[15],
and the resulting corrected DAVAR can be used to perform
time-varying stability analysis when nonstationary frequency
measurements with missing data are considered.

Note that it would be interesting to extend the developed
method to other relevant quantities used in precise timing,
such as, for instance, the modified Allan variance (MVAR), the
Hadamard variance (HVAR), and the time deviation (TDEV).
Similarly, extensions to other noise components, such as flicker
phase modulation (FPM) and flicker frequency modulation
(FFM), are of interest. Finally, the characterization of the
corrected Allan variance in presence of deterministic periodic
components is a topic which deserves further investigation.

VI. APPENDIX 1: ALLAN VARIANCE FOR WFM

The Allan variance for the WFM defined in Sect. II-A1 can
be derived by using the form (10). It is

E[y2k[n+ k]] = E

(1

k

k∑
m=1

y[n+m]

)2
 (91)

=
1

k2

k∑
m′=1

k∑
m′′=1

E [y[n+m′]y[n+m′′]] (92)

From (19), when n + m′ 6= n + m′′, then
E [y[n+m′]y[n+m′′]] = 0, therefore

E[y2k[n+ k]] =
1

k2

k∑
m=1

E[y2[n+m]] (93)

Since, from (18), E[y2[n + m]] = σ2/τ0 regardless of the n
and m values, it is

E[y2k[n+ k]] =
σ2

kτ0
(94)

Similarly

E[y2k[n]] =
σ2

kτ0
(95)

From (8) and (9),

E[yk[n+k]yk[n]] =
1

k2

k∑
m′=1

k∑
m′′=1

E[y[n+m′]y[n−m′′+1]]

(96)
But n+m′ > n−m′′ + 1, for m′,m′′ = 1, . . . , k, therefore,
from (19),

E[y[n+m′]y[n−m′′ + 1]] = 0 (97)

and, consequently,

E[yk[n+ k]yk[n]] = 0 (98)

By using (94), (95), and (98), it is

E
[
(yk[n+ k]− yk[n])

2
]

=
2σ2

kτ0
(99)

Therefore, replacing in (7),

σ2
y[k] =

1

2

1

N − 2k + 1

N−k∑
n=k

2σ2

kτ0
(100)

=
σ2

kτ0
(101)

whose corresponding Allan deviation is (20).

VII. APPENDIX 2: ALLAN VARIANCE FOR WPM

The Allan variance for the WPM defined in Sect. II-A2 can
be obtained by using the form (14). It is

E
[
(x[n+ k]− 2x[n] + x[n− k])

2
]

=

E[x2[n+ k]] + 4E[x2[n]] + E[x2[n− k]]

− 4E[x[n+ k]x[n]] + 2E[x[n+ k]x[n− k]]

− 4E[x[n]x[n− k]] (102)

From (23),

E[x2[n+ k]] = E[x2[n]] = E[x2[n− k]] = σ2 (103)

whereas, from (24), and by noting that k ≥ 1,

E[x[n+ k]x[n]]=E[x[n+ k]x[n− k]]=E[x[n]x[n− k]]=0
(104)

By comparing (7) and (14), it is

E
[
(yk[n+ k]− yk[n])

2
]

=

E
[
(x[n+ k]− 2x[n] + x[n− k])

2
]

k2τ20
(105)
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By using (102)-(104),

E
[
(yk[n+ k]− yk[n])

2
]

=
6σ2

k2τ20
(106)

Replacing in (14),

σ2
y[k] =

1

2

1

N − 2k + 1

N−k∑
n=k

6σ2

k2τ20
(107)

=
3σ2

k2τ20
(108)

whose corresponding Allan deviation is (28).

VIII. APPENDIX 3: ALLAN VARIANCE FOR RWFM

The Allan variance for the RWFM defined in Sect. II-A3
can be derived by using the form (10). First, it is useful to de-
rive the autocorrelation function of the normalized frequency
deviation y(t),

Ry(t′, t′′) = E[y(t′)y(t′′)] (109)

=

∫ t′

0

∫ t′′

0

E[ξ(t′)ξ(t′′)]dt′dt′′ (110)

Replacing E[ξ(t′)ξ(t′′)] from (32),

Ry(t′, t′′) = σ2

∫ t′

0

∫ t′′

0

δ(t′ − t′′)dt′dt′′ (111)

When t′′ < t′,

Ry(t′, t′′) = σ2

∫ t′′

0

∫ t′′

0

δ(t′ − t′′)dt′dt′′ (112)

= σ2t′′ (113)

Similarly, when t′ < t′′,

Ry(t′, t′′) = σ2t′ (114)

Combining these two results, we obtain

Ry(t′, t′′) = σ2 min(t′, t′′) (115)

Then, by using (5), the variance of the frequency measure-
ment y[n] is given by

E[y2[n]] = E

( 1

τ0

∫ nτ0

(n−1)τ0
y(t)dt

)2
 (116)

=
1

τ20

nτ0∫∫
(n−1)τ0

E[y(t′)y(t′′)]dt′dt′′ (117)

Replacing (115),

E[y2[n]] =
σ2

τ20

nτ0∫∫
(n−1)τ0

min(t′, t′′)dt′dt′′ (118)

In the half plane where t′′ < t′, the double integral becomes
nτ0∫∫

(n−1)τ0

t′′dt′dt′′ =
τ30
6

(3n− 2) (119)

The identical result is obtained in the half plane where t′ ≤ t′′,
and since the integral values for the two half planes add up,
it is

E[y2[n]] =
σ2

τ20
2
τ30
6

(3n− 2) (120)

Simplifying

E[y2[n]] = σ2τ0

(
n− 2

3

)
(121)

which corresponds to (34). The same approach leads to

E[y[n]y[m]] =
σ2

τ20

∫ nτ0

(n−1)τ0

∫ mτ0

(m−1)τ0
min(t′, t′′)dt′dt′′

(122)
When m < n,

E[y[n]y[m]] =
σ2

τ20

∫ nτ0

(n−1)τ0

∫ mτ0

(m−1)τ0
t′′dt′dt′′ (123)

= σ2τ0

(
m− 1

2

)
(124)

Similarly, when n < m,

E[y[n]y[m]] =
σ2

τ20

∫ nτ0

(n−1)τ0

∫ mτ0

(m−1)τ0
t′dt′dt′′ (125)

= σ2τ0

(
n− 1

2

)
(126)

Combining the two results,

E[y[n]y[m]] = σ2τ0

(
min(n,m)− 1

2

)
(127)

which is (35).
Now that E[y2[n]] and E[y[n]y[m]] are known, the terms

E[y2k[n+ k]], E[y2k[n]], and E[yk[n+ k]yk[n]] in (10) can be
evaluated. It is

E[y2k[n+ k]] = E

(1

k

k∑
m=1

y[n+m]

)2
 (128)

=
1

k2

k∑
m′=1

k∑
m′′=1

E[y[n+m′]y[n+m′′]]

(129)

=
1

k2
E[y2[n+m]]

+
1

k2

k∑
m′=1

k∑
m′′=1

m′ 6=m′′

E[y[n+m′]y[n+m′′]] (130)

Replacing (118) and (127),

E[y2k[n+ k]] =
σ2τ0
k2

k∑
m=1

(
n+m− 2

3

)

+
σ2τ0
k2

k∑
m′=1

k∑
m′′=1

m′ 6=m′′

(
min(n+m′, n+m′′)− 1

2

)
(131)

These summations can be solved exactly, giving

E[y2k[n+ k]] = σ2τ0

(
n+

k

3

)
(132)
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With the identical procedure, one obtains

E[y2k[n]] = σ2τ0

(
n− 2

3
k

)
(133)

and

E[yk[n+ k]yk[n]] = σ2τ0

(
n− k

2

)
(134)

By using (132)-(134), one has that

E
[
(yk[n+ k]− yk[n])

2
]

=
2

3
σ2kτ0 (135)

Substituting in (10), it is

σ2
y[k] =

1

3
σ2kτ0 (136)

whose corresponding Allan deviation is (36).

IX. APPENDIX 4: BIAS OF THE ALLAN VARIANCE
ESTIMATOR FOR TIME MEASUREMENTS WITH MISSING

DATA

The Allan variance for time measurements with full data
(14) can be written as

σ2
y[k] =

1

2

1

N − 2k + 1

N−k∑
n=k

E[∆2[n, k]]

k2τ20
(137)

where ∆[n, k] = x[n + k] − 2x[n] + x[n − k]. For common
clock noise components it is

E[∆2[n, k]] = E[∆2[k]] (138)

therefore

σ2
y[k] =

1

2

E[∆2[k]]

k2τ20
(139)

In case of missing data, equivalently to (43) and (137), the
estimator (15) can be written as

σ̂2
y[k] =

1

2

1

#I ′(k)

∑
n∈I′(k)

∆2[n, k]

k2τ20
(140)

where I ′(k) is the set of discrete time values n at which the
triplet x[n+ k], x[n], x[n− k] is available for the given k. If
no triplet is available, then I ′(k) is the empty set and σ̂2

y[k] is
not defined for the given k. The corresponding expected value
is given by

E[σ̂2
y[k]] =

1

2

1

#I ′(k)

∑
n∈I′(k)

E[∆2[n, k]]

k2τ20
(141)

Replacing (138) gives (139). Therefore, for time measure-
ments,

E[σ̂2
y[k]] (Missing data) = σ2

y[k] (Full data) (142)

and, consequently, the Allan variance estimator for time mea-
surements with missing data is unbiased.

X. APPENDIX 5: ALLAN VARIANCE FOR MULTIPLE NOISE
COMPONENTS

If
y(t) = yWFM(t) + yWPM(t) (143)

where yWFM(t) and yWPM(t) are statistically independent noise
components, then, by using (5), it is

y[n] = yWFM[n] + yWPM[n] (144)

and, consequently, from (9),

yk[n] = yk,WFM[n] + yk,WPM[n] (145)

The corresponding Allan variance becomes

σ2
y[k] =

1

2

1

N − 2k + 1

N−k∑
n=k

E [(yk,WFM[n+ k]

+yk,WPM[n+ k]− yk,WFM[n]− yk,WPM[n])
2
]

(146)

Since yWFM(t) and yWPM(t) are statistically independent noise
components with zero mean, then

E [yk,WFM[n+ k]yk,WPM[n+ k]] = 0 (147)
E [yk,WFM[n+ k]yk,WPM[n]] = 0 (148)
E [yk,WPM[n+ k]yk,WFM[n]] = 0 (149)

Substituting,

σ2
y[k] = σ2

y,WFM[k] + σ2
y,WPM[k] (150)

where σ2
y,WFM[k] and σ2

y,WPM[k] are the Allan variances of the
individual noise components WFM and WPM, respectively.
This result corresponds to (84) and holds for any sum of
statistically independent noise components with zero mean.

XI. APPENDIX 6: CORRECTED ALLAN VARIANCE FOR
MULTIPLE NOISE COMPONENTS

Suppose that, as in Appendix 5, y(t) = yWFM(t)+yWPM(t),
where yWFM(t) and yWPM(t) are statistically independent noise
components. In case of missing data, the corresponding Allan
variance (146), corrected for WFM, is

σ2
y[k] (Corrected) =

1

2

1

#I(k)

∑
n∈I(k)

α2
WFM(n, k)

× E
[(
y′k,WFM[n+ k] + y′k,WPM[n+ k]

−y′k,WFM[n]− y′k,WPM[n]
)2]

(151)

Since (147) holds, the corrected Allan variance can be written
as

σ2
y[k] (Corrected) =

1

2

1

#I(k)

∑
n∈I(k)

α2
WFM(n, k)

× E
[(
y′k,WFM[n+ k]− y′k,WFM[n]

)2]
+

1

2

1

#I(k)

∑
n∈I(k)

α2
WFM(n, k)

× E
[(
y′k,WPM[n+ k]− y′k,WPM[n]

)2]
(152)
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Equivalently,

σ2
y[k] (Corrected) = σ2

y,WFM[k] (Full data)

+ σ2
y,WPM[k] (Corrected for WFM) (153)

The mixed term σ2
y,WPM[k] (Corrected for WFM) represents

the Allan variance of a WPM with missing data, corrected for
WFM rather than for WPM. This result corresponds to (86).
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