POLITECNICO DI TORINO

Repository ISTITUZIONALE

Correction to: Material description of fluxes in terms of differential forms

Original
Correction to: Material description of fluxes in terms of differential forms / Federico, Salvatore; Grillo, Alfio; Segev, Reuven. - In: CONTINUUM MECHANICS AND THERMODYNAMICS. - ISSN 0935-1175. - 31:(2019), pp. 361-362. [10.1007/s00161-018-0699-6]

Availability:

This version is available at: 11583/2831760 since: 2020-06-09T12:17:21Z

Publisher:
Springer

Published
DOI:10.1007/s00161-018-0699-6

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright
Springer postprint/Author's Accepted Manuscript

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature's AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s00161-018-0699-6
(Article begins on next page)

Correction to:
 "Material description of fluxes in terms of differential forms"
 "Dedicated to Prof. David Steigmann in recognition of his contributions"

Salvatore Federico • Alfio Grillo •
Reuven Segev

Received: date / Accepted: date

DOI: https://doi.org/10.1007/s00161-018-0699-6.
Available online: August 1, 2018
Journal: Continuum Mechanics and Thermodynamics (2019) 31: 361-362

Correction to: Continuum Mech. Thermodyn. (2016) 28:379-390
https://doi.org/10.1007/s00161-015-0437-2
Although the final result presented in Equation (34) of our work [?] is correct, the proof of Equation (34) contains an error. The text starting immediately after Equation (33) with "When a metric tensor \boldsymbol{g}..." and ending immediately before Equation (36) with "... in the alternative notation" should be replaced with the text below.

Correction to the Proof of Equation (34)

Let us assume that the space \mathcal{S} is equipped with a metric tensor \boldsymbol{g}, i.e., a symmetric and positive-definite tensor field valued in $[T S]_{2}^{0}$, defining the scalar product of two vectors \boldsymbol{u} and \boldsymbol{v} as $\boldsymbol{u} . \boldsymbol{v}=\boldsymbol{g}(\boldsymbol{u}, \boldsymbol{v})$. The metric \boldsymbol{g} induces the

[^0]musical isomorphisms $b: T \mathcal{S} \rightarrow T^{\star} \mathcal{S}: \boldsymbol{v} \mapsto b(\boldsymbol{v}) \equiv \boldsymbol{v}^{b}$, which maps a vector \boldsymbol{v} with components v^{c} to a covector \boldsymbol{v}^{b} with components $g_{a c} v^{c}$, and its inverse $\sharp: T^{\star} \mathcal{S} \rightarrow T \mathcal{S}: \boldsymbol{\alpha} \mapsto \sharp(\boldsymbol{\alpha}) \equiv \boldsymbol{\alpha}^{\sharp}$, which maps a covector $\boldsymbol{\alpha}$ with components α_{c} to a vector $\boldsymbol{\alpha}^{\sharp}$ with components $g^{a c} \alpha_{c}$, where $g^{a c}$ are the components of the inverse of the matrix $\llbracket g_{a b} \rrbracket$ of \boldsymbol{g}. The isomorphism \sharp and the metric tensor \boldsymbol{g} induce the scalar product of covectors $\boldsymbol{\alpha} . \boldsymbol{\beta}=\boldsymbol{g}\left(\boldsymbol{\alpha}^{\sharp}, \boldsymbol{\beta}^{\sharp}\right)=\boldsymbol{\alpha}\left(\boldsymbol{\beta}^{\sharp}\right)$.

The ($n-1$)-dimensional tangent bundle $T s$ of the hypersurface s determines a 1-dimensional sub-bundle of $T^{\star} \mathcal{S}$ containing the annihilators of $T s$, i.e., the covectors $\boldsymbol{\nu}$ such that $\boldsymbol{\nu} \boldsymbol{u} \equiv \boldsymbol{\nu}(\boldsymbol{u})=0$, for every $\boldsymbol{u} \in T s$. Moreover, using the scalar product of covectors, we can define the unit normal covector \boldsymbol{n} to the hypersurface s as the annihilating covector such that $\|\boldsymbol{n}\|^{2}=\boldsymbol{n} . \boldsymbol{n}=1$.

The integral (33) of an $(n-1)$-form $\boldsymbol{\omega}$ on the hypersurface s can be expressed in terms of the axial vector field \boldsymbol{w} of $\boldsymbol{\omega}$ with respect to the volume form $\boldsymbol{\mu}$, i.e., \boldsymbol{w} is such that $\boldsymbol{\iota}_{\boldsymbol{w}} \boldsymbol{\mu}=\boldsymbol{\omega}$. If we introduce the axial projector $\boldsymbol{a}=\boldsymbol{n}^{\sharp} \otimes \boldsymbol{n}$ (in components, $a^{a}{ }_{b}=n^{a} n_{b}$) and the transverse projector $\boldsymbol{t}=\boldsymbol{i}-\boldsymbol{n}^{\sharp} \otimes \boldsymbol{n}$ (in components, $t^{a}{ }_{b}=\delta^{a}{ }_{b}-n^{a} n_{b}$, where \boldsymbol{i} is the spatial identity tensor, it holds that $\boldsymbol{i}=\boldsymbol{a}+\boldsymbol{t}$ and that any vector field \boldsymbol{w} can be decomposed as

$$
\begin{equation*}
\boldsymbol{w}=\boldsymbol{i} \boldsymbol{w}=(\boldsymbol{a}+\boldsymbol{t}) \boldsymbol{w}=\boldsymbol{a} \boldsymbol{w}+\boldsymbol{t} \boldsymbol{w}=\boldsymbol{w}_{a}+\boldsymbol{w}_{t} \tag{C1}
\end{equation*}
$$

where $\boldsymbol{w}_{a}=\boldsymbol{a w}=(\boldsymbol{n w}) \boldsymbol{n}^{\sharp}$ and $\boldsymbol{w}_{t}=\boldsymbol{t w}=\boldsymbol{w}-(\boldsymbol{n} \boldsymbol{w}) \boldsymbol{n}^{\sharp}$ are the axial and the transverse component of \boldsymbol{w}, respectively. By construction, \boldsymbol{w}_{t} is an element of the tangent bundle of the $(n-1)$-dimensional manisold $s \subset \mathcal{S}$. Hence, due to linearity, the $(n-1)$-form $\boldsymbol{\omega}=\boldsymbol{\iota}_{\boldsymbol{w}} \boldsymbol{\mu}$ can be written as

$$
\begin{equation*}
\boldsymbol{\omega}=\boldsymbol{\iota}_{\boldsymbol{w}} \boldsymbol{\mu}=\boldsymbol{\iota}_{\left(\boldsymbol{w}_{a}+\boldsymbol{w}_{t}\right)} \boldsymbol{\mu}=\boldsymbol{\iota}_{\boldsymbol{w}_{a}} \boldsymbol{\mu}+\boldsymbol{\iota}_{\boldsymbol{w}_{t}} \boldsymbol{\mu} \tag{C2}
\end{equation*}
$$

Let now $\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n-1}\right\} \subset T s$ be a set of linearly indepdendent vectors spanning T s. Since \boldsymbol{w}_{t} can be expressed as a linear combination of $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n-1}$, we obtain

$$
\begin{equation*}
\left(\boldsymbol{\iota}_{\boldsymbol{w}_{t}} \boldsymbol{\mu}\right)\left(\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n-1}\right)=\boldsymbol{\mu}\left(\boldsymbol{w}_{t}, \boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n-1}\right)=0 \tag{C3}
\end{equation*}
$$

Comparing Eq. (C3) with the definition of $\boldsymbol{\omega}$ in Eq. (C2), we find

$$
\begin{equation*}
\boldsymbol{\omega}\left(\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n-1}\right)=\left(\boldsymbol{\iota}_{\boldsymbol{w}} \boldsymbol{\mu}\right)\left(\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n-1}\right)=\left(\boldsymbol{\iota}_{\boldsymbol{w}_{a}} \boldsymbol{\mu}\right)\left(\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n-1}\right) \tag{C4}
\end{equation*}
$$

and, since (C4) must hold true for all ($n-1$)-tuples $\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n-1}\right\} \subset T s$, we can write

$$
\begin{equation*}
\boldsymbol{\omega}=\boldsymbol{\iota}_{\boldsymbol{w}} \boldsymbol{\mu} \equiv \boldsymbol{\iota}_{\boldsymbol{w}_{a}} \boldsymbol{\mu} \tag{C5}
\end{equation*}
$$

${ }_{42}$ i.e., only the axial component of \boldsymbol{w}, which is the componet parallel to the vector \boldsymbol{n}^{\sharp} associated with the normal covector \boldsymbol{n} to the hypersurface s, contributes to $\boldsymbol{\omega}$. Finally, by exploiting the result $\boldsymbol{w}_{a}=(\boldsymbol{n} \boldsymbol{w}) \boldsymbol{n}^{\sharp}=(\boldsymbol{w} \boldsymbol{n}) \boldsymbol{n}^{\sharp}$ and the linearity of the interior product, Eq. (C5) becomes

$$
\begin{equation*}
\boldsymbol{\omega}=\boldsymbol{\iota}_{\boldsymbol{w}} \boldsymbol{\mu} \equiv \boldsymbol{\iota}_{\boldsymbol{w}_{a}} \boldsymbol{\mu}=(\boldsymbol{w} \boldsymbol{n}) \boldsymbol{\iota}_{\boldsymbol{n}^{\sharp}} \boldsymbol{\mu}=(\boldsymbol{w} \boldsymbol{n}) \boldsymbol{\alpha}, \tag{34corr.}
\end{equation*}
$$

46 where

$$
\begin{equation*}
\boldsymbol{\alpha}=\boldsymbol{\iota}_{\boldsymbol{n}}{ }^{\sharp} \boldsymbol{\mu} \tag{1}
\end{equation*}
$$

${ }_{47}$ is the $(n-1)$-form induced on the hypersurface s by the volume form $\boldsymbol{\mu}$ and
${ }_{48}$ the metric \boldsymbol{g}. Therefore, on the basis of these results, the flux of an exten49 sive quantity q across the hypersurface s can be expressed in the alternative
50 notation [...]
${ }_{51}$ References
52 1. S. Federico, A. Grillo, R. Segev, Material description of fluxes in terms of differ-
53 ential forms, Continuum Mechanics and Thermodynamics, 28(1-2), 379-390 (2016)
54 https://doi.org/10.1007/s00161-015-0437-2

[^0]: S. Federico

 Department of Mechanical and Manufacturing Engineering. The University of Calgary, 2500
 University Drive NW, Calgary, AB T2N1N4, Canada
 E-mail: salvatore.federico@ucalgary.ca
 A. Grillo

 DISMA - Department of Mathematical Sciences "G. L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
 R. Segev

 Department of Mechanical Engineering, Ben Gurion University, P.O. Box 653, 84105 BeerSheva, Israel

