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Harmonic analysis and reduction of the
scattered field from electrically large cloaked
metallic cylinders

BARBARA CAPPELLO* AND LADISLAU MATEKOVITS

Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24,
10129 Torino, Italy.
*barbara.cappello@polito.it

Abstract: In this paper an analysis of the spectral composition of the scattered field from
coated metallic cylinders is performed, focusing particularly on the cloaking of electrically large
structures. An expression of the scattering coefficients is derived considering both a dielectric and
a metasurface coating. Modelling the metasurface as a surface impedance boundary condition,
the surface impedance which annuls one harmonic of the scattered field is formulated in a
closed and compact form. Moreover, in the case of cylinders with radius comparable with the
wavelength of interest, it is demonstrated that a reduction of the scattering is possible by using a
homogeneous metasurface coating which presents a positive surface reactance. In particular, a
reduction of the scattering width of 4 dB is achieved for a cylinder radius 0 = 0.917_0.

© 2020 Optical Society of America

1. Introduction

In last years, metamaterials and metasurfaces have been widely studied [1–4]. Usually, they
consist in (quasi-) periodic structures that present equivalent properties that are not present in
natural materials, such as for example negative permittivity or permeability [5, 6]. Thanks to
their particular characteristics, these materials can be used to control the propagation of waves,
and have found different applications in electromagnetics such as absorbers [7, 8], lenses [9, 10],
leaky wave antennas [11], etc.

One interesting application of metamaterials is the possibility to use them to cover an object in
order to control its scattered field and in particular to cloak the object by strongly reducing its
scattering in such a way to not affect the wave propagation in the surrounding environment of the
object.

One of the first methods developed to realize a cloaking effect was the so-called Transformation
Optics, which is based on the use of strongly anisotropic materials with the aim of controlling
the wave propagation and bending it around the object [12]. The principal drawbacks of this
technique were the important dimension of the coating structure and the need of a material with
an anisotropic permittivity and permeability, which can also assume negative values.
In later years, a different approach based on scattering cancellation was proposed. Both

Plasmonic [13] and Mantle Cloaking [14] methods belong to this category. However, while
Plasmonic Cloaking is based on the characterization of the coating layer in terms of permittivity
YA , and still requires a negative value of YA , Mantle Cloaking focuses on a formulation of the
problem in terms of surface impedance boundary condition. Moreover, it has the advantage of
requiring a thin patterned metasurface rather than a bulk 3D metamaterial coating.
For these reasons, many studies in recent years have been focused on the Mantle Cloaking

approach. Nevertheless, the cloaking of electrically large objects in terms of wavelength is still
challenging. The principal problem in this scenario is represented by the increasing number of
harmonics that contributes to the scattered field. In order to overcome this problem, different
solutions where proposed such as the use of multiple cloaking layers [15, 16], or the use of



active components inserted in the metasurface [17,18]. However, in the first case, the coating
thickness becomes important with respect to the object dimensions, making the object bulk and
heavy; moreover, the design and the manufacturing of the cloaking is more complex; while, in
the second case, the cost of fabrication is increased with respect to passive systems also due to
the presence of the active elements and of the control network. Other approaches based on an
anisiotropic metasurface coat and therefore on the definition of a tensorial surface impedance
were also proposed [19, 20].

Therefore, the goal of this paper is to investigate the scattering reduction that can be achieved
by using passive, homogeneous and single layered structures, which will be the main focus
throughout the paper. In particular, a theoretical analysis of the scattered field of a coated metallic
cylinder in terms of harmonic content is performed and the spectral composition of the field is
studied for different boundary conditions, namely for a dielectric coated metallic cylinder and for
a metasurface cloaked one.
Moreover, considering the cloaked structure, the surface admittance that annuls a specific

harmonic of the scattered field is derived in a closed and compact form.
The effects of the surface impedance and of the geometrical and material parameters of

the structure are investigated for a real-life configuration with the aim to globally reduce the
scattering coefficients and therefore the scattered field. In particular, the possibility to use
a homogeneous surface impedance condition to cloak an electrically large object, i.e., with
dimensions comparable to the wavelength of interest, is discussed. With this aim, the use of an
appropriate dielectric thickness and permittivity and a positive surface reactance is proposed as a
possible solution, and it is validated with a numerical analysis.
The paper is structured as follows. In Sec. 2 an analysis of the scattered field from a bare

metallic cylinder and from a dielectric coated cylinder is performed. An analytical formulation of
the scattering coefficients is given, showing how the thickness and the relative permittivity of the
dielectric layer can control the position of the zeros and the maxima of the coefficients. In Sec. 3,
a similar analysis is performed for cloaked cylinders, focusing the attention on non-electrically
small structures. Moreover, a formulation of the surface impedance which annuls one harmonic
of the scattering is derived and compared with previous literature results. Finally in Sec. 4 the
theoretical results are validated with a numerical simulation.

2. Metallic and dielectric coated cylinders

The considered structure is composed by an infinite long perfectly electric conductor (PEC)
cylinder with radius 0, covered by a dielectric layer with thickness C and relative permittivity YA ,
such that the total radius of the cloaked structure is 1 = 0 + C. On the dielectric, a metasurface is
present. Usually this consists of a periodic metallic pattern printed on the dielectric substrate,
which is therefore necessary in order to avoid short circuits between the PEC cylinder itself and
the metallic loads. In order to analytically study the structure, the metasurface is modelled as a
homogeneous surface impedance boundary condition on the dielectric-background interface.

The structure is illuminated by a normally incident homogeneous planewave with electric field
polarized along Î, i.e., parallel to the cylinder axis, as represented in Fig. 1.

In order to analyse the problem, the Lorenz-Mie approach is followed [17]. The electric field
is expanded in a sum of cylindrical harmonics, and in particular, the scattered field EB in the
background medium can be written as:

EB (d, i) = Î�0

∞∑
==−∞

9−=2=�
(2)
= (:0d) exp( 9=i) (1)

where = is the harmonic order, 2= represents the scattering coefficients and therefore the weight
of the associated harmonic in the scattering, � (2)= are the Hankel functions of second order, :0 is
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Fig. 1. CAD model of the considered structure. A metallic cylinder is coated by a
dielectric layer and a homogeneous surface impedance, and it is illuminated by a TM
polarised planewave.

the wavenumber in the background medium, hereafter considered as being vacuum, d and i are
the radial and azimuthal cylindrical coordinates.

To understand how the scattered field is modified when a metasurface cover is present on the
cylinder, it can be useful to consider, as a first analysis, a bare PEC cylinder and successively a
dielectric covered PEC cylinder.
In the bare case, it is known that 2= = − �= (:00)

�
(2)
= (:00)

= − �= (:00)
�= (:00)− 9.= (:00) [21] (where 0 is the

cylinder radius). Therefore, the modulus of the coefficients 2= is minimum in correspondence of
the zeros of the Bessel functions of first kind �= (:00), while is maximum, and equal to 1, in the
zeros of the Neumann functions .= (:00).

In Fig. 2 the scattering spectral content of a PEC cylinder is shown for different values of the
cylinder radius normalised with respect to the free space wavelength of excitation 0_ = 0/_0. It
can be noticed that: (i) while at low frequency regime only the harmonics with modal index = =
0,1,2 contribute significantly to the scattering and, in particular, the harmonic with order = = 0 is
dominant; (ii) at higher frequencies a richer harmonic contribution is observed, and a principal
harmonic cannot be defined, but different harmonics are equivalently present in the scattered
field.
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Fig. 2. Absolute value of the scattering coefficients 2= with = = 0:10, for different
normalised radius of a bare metallic cylinder.

When the cylinder is covered by a dielectric layer of thickness C = 1−0 and relative permittivity



YA , writing the field inside the dielectric and in the background as a sum of harmonics, and by
imposing a continuity boundary condition at the media interfaces, a closed formulation for the
scattering coefficients 2= can be obtained as follows (the detailed demonstration is reported in
the Appendix):

2= = −
�
′
= (:01)?= −

√
YA �= (:01)@=

�
′ (2)
= (:01)?= −

√
YA�

(2)
= (:01)@=

(2)

where @= and ?= are the cross products of Bessel functions as denoted in [22], being :3 the
wavenumber in the dielectric layer:

?= = �= (:30).= (:31) − .= (:30)�= (:31) (3)

@= = �= (:30).
′
= (:31) − .= (:30)�

′
= (:31) (4)

Remembering that: � (2)= (G) = �= (G) − 9.= (G), the coefficients can be written in the form:
2= = *=/(*= − 9+=) and, therefore, their absolute value will be maximum and equal to 1
when the condition += = .

′
= (:01)?= −

√
YA.= (:01)@= = 0 is satisfied, while they will annul if

*= = �
′
= (:01)?= −

√
YA �= (:01)@= = 0.

Following Eq. (2), Fig. 3 illustrates the absolute value of the first three scattering coefficients
20,1,2 versus the normalised cylinder radius 0_, when a dielectric coated PEC cylinder is
considered. In this case the PEC cylinder radius is 0 = 2 cm, the thickness of the dielectric layer
is set to 1 = 1.150. It can be noticed that by varying the dielectric permittivity and thickness, it is
possible to control and to tune the zeros (and the maxima) of different harmonics.
Moreover, since, as seen before, for high values of 0_ three scattering coefficients are not

sufficient to describe the scattering, a complete representation of the significant 2= is reported in
Fig. 4.
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Fig. 3. Absolute value of the first three scattering coefficients 2= with respect to the
cylinder normalised radius 0_, for a dielectric coated metallic cylinder with 0 = 2 cm,
1 = 1.150 and YA = 2,5,10 (a,b,c).

3. Cloaked cylinders

In this section, the harmonic composition of the scattered field from a metasurface cloaked
cylinder is analysed. When the metasurface is present on the boundary of the cloaked cylinder, it
can be modelled enforcing an impedance boundary condition that relates the discontinuity of
the magnetic field on the object-background interface, i.e., d = 1, with the tangential electric
field, such that E(1, i) = /B d̂ × (H(1+, i) −H(1−, i)). In this case, losses are neglected, and
therefore the surface impedance /B is purely imaginary: /B = 9 -B = 1/.B .
Following the same procedure as before, considering the field in the two media (dielectric

layer and background), and imposing the impedance boundary condition, the expression of the
coefficients 2= is derived in terms of the geometrical and materials parameters and the surface
impedance value [17]:
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Fig. 4. Absolute value of the scattering coefficients 2=, for = = 0:15, with respect to the
cylinder normalised radius 0_, for a dielectric coated metallic cylinder with 0 = 2 cm,
1 = 1.150 and YA = 2,5,10 (a,b,c).
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�= (:31) + :3
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�
′
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:0
9l`

�
′
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�
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9l`
.
′
= (:31)/B −
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�
′ (2)
= (:01)/B
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Solving the two determinants it is possible to obtain a closed and compact form to express the
coefficients 2= (the detailed derivation is reported in the Appendix):

2= =
−.B�= (:01)?= − 9.0�

′
= (:01)?= + 9.0

√
YA �= (:01)@=

.B�
(2)
= (:01)?= + 9.0�

′ (2)
= (:01)?= − 9.0

√
YA�

(2)
= (:01)@=

(6)

and therefore:

2= = −
�= (:01)
�
(2)
= (:01)


9.̃B − �

′
= (:01)
�= (:01) +

√
YA

@=
?=

9.̃B − �
′ (2)
= (:01)
�
(2)
= (:01)

+ √YA @=?=

 (7)

where .̃B is the surface admittance normalized with respect to the background characteristic
admittance .0, i.e., .̃B = .B/.0.

It can be noticed that in the limit of .B →∞, 2= = − �= (:01)
�
(2)
= (:01)

. In fact, in this case, the cloaked
structure is equivalent to a bare PEC cylinder with radius 1.

From Eq. (7) it is possible to compute the normalized surface admittance boundary condition
which vanishes a certain coefficient 2= and therefore causes the total annulment of one harmonic:

.̃B = − 9
(
�
′
= (:01)
�= (:01)

− √YA
@=

?=

)
(8)



Interestingly, this result is perfectly coherent with the conclusion of a different approach based
on a cylindrical transmission line analysis studied in [23]. In fact, starting from a formulation
based on the study of the problem in terms of the contrast of the structure with respect to the
background medium, the authors in [23] have described the cloaking phenomena as a cylindrical
transmission lines matching problem and derived an expression of .̃B:

.̃B = − 9
�
′
= (:01)
�= (:01)

+ 9√YA

[
�
′ (2)
= (:31) + W(:30)�

′ (1)
= (:31)

�
(2)
= (:31) + W(:30)� (1)= (:31)

]
(9)

where W(:30) = −�
(2)
= (:30)

�
(1)
= (:30)

.
If the Hankel functions in Eq. (9) are substituted by their expression in terms of Bessel and

Neumann functions, the expression of .̃B as denoted in Eq. (8) is obtained.
From Eq. (8), it can be noticed that with the use of a single homogeneous surface impedance

(and therefore a homogeneous metasurface), is it possible to completely cancel one harmonic at
one frequency, or to partially reduce different harmonics. In the following, the results on the
scattered field of these two approaches will be discussed.
The surface reactances -B required to suppress the first three harmonics of the coated PEC

cylinder are computed using Eq. (8) and are represented in Fig. 5a versus 0_, which is varied
from 0.1 to 1.5. Similarly as before, 1 = 1.150 and YA= 10.
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Fig. 5. (a) Surface reactance that cancels the first three harmonics of the scattered field
of a cloaked PEC cylinder with respect to the normalised radius 0_, setting 1 = 1.150
and YA = 10. (b) Detail for low values of 0_.

As detailed in Fig. 5b, for a normalised radius between 0.1 and 0.2, the surface reactances
assume negative values and decrease linearly, in agreement with results in [24, 25]. With the
increasing of the normalised radius, resonances are present in correspondence of the normalized
radius in which the coefficients of the dielectric coated structure approach the zero.

In order to characterize the cloaking performances, a possibility is to compute the Scattering
Width ((,), which is proportional to the ratio of the scattered and incident power:

(, = f2� = lim
d→∞

2cd
[
|EB |2

|E8 |2

]
(10)

By substituting in Eq. (10) the scattered field as formulated in Eq. (1) and considering the
asymptotic form of � (2)= (G) for large values of G [22]:

lim
G→∞

�
(2)
= (G) =

√
2
cG

exp
(
− 9

(
G − =c

2
− c

4

))
(11)



and setting i = 0, it can be proven [21, 26] that:

(, =
2_
c

����� ∞∑
==−∞

2=

�����2 (12)

For small values of the cylinder radius, since the first harmonic is the principal component
of the field, as a first approximation, it is sufficient to impose the -B that annuls the coefficient
20. However, even in the quasi static limit, it can be proved that the surface reactance which
corresponds to the minimum of the (, (from now on referred to as optimum surface reactance
->?C ) is not equivalent to the one that cancels the dominant harmonics, as illustrated in Fig. 5.
At higher frequencies, a dominant harmonic cannot be identified, therefore, to achieve a

minimum of the scattered field, it is necessary to consider the admittance .B that corresponds
to a minimum of the (, , and consequently to an overall reduction of the coefficients 2=. The
optimum surface reactance is reported in Fig. 5 for 0 = 2 cm, 1 = 1.150 and YA = 10.
In [24] it is proven that for low values of the normalized cylinder radius 0_, the cloaking

metasurface must have a capacitive behaviour for metallic cylinders, and an inductive one for
dielectric structures, and it is confirmed in results reported in Fig. 5b.
However, this in no more valid when the cylinder dimension increases. In fact, when the

dielectric thickness C > _3/4 where _3 is the wavelength in the dielectric, the surface impedance
changes sign. Therefore, when the static limit is overcome, positive values of -B should be
considered to obtain a scattering reduction. This behaviour can be easily understood considering
the problem in terms of transmission lines. In fact, the input impedance of the cloaked structure
is equal to the parallel of the surface impedance and the (moved) grounded dielectric layer
impedance. To reduce the scattering, this input impedance should be equal to the one of the
background medium. However, when the dielectric thickness C > _3/4, the impedance of the
grounded dielectric layer, and therefore -B , changes sign.
This is shown in Fig. 6, which represents the normalised (, of the cloaked cylinder with

respect to the bare PEC one, for a value of 0_ varying from 0.1 to 1.5 when -B is swept from
-1000 Ω to 1000 Ω with a step of 1 Ω.

As expected, a decrease of the (, is obtained for a small 0_ and negative impedances.
However, it can be noticed that there exists also another part of the response in which the (, is
lower with respect to the bare case when the normalised radius increases, which corresponds
to positive values of -B. This periodic behaviour continues with the increasing of the cylinder
dimension, even though, it must be underlined that in this case the reduction of the (, will be
smaller due to the increasing number of harmonics that constitutes the scattered field.

To further prove this concept, the ->?C and the correspondent (, values are shown in Fig. 7
with respect to 0_ considering different properties of the dielectric layer. The (, of the cloaked
cylinder are compared to the results obtained for the PEC bare case considering a reference of –3
dB from the PEC results.
As expected, for low 0_ important reductions of the (, are obtained by using a negative

reactance value. However, when the cylinder radius is comparable to the wavelength, a reduction
of the (, is still possible by using positive values of -B if appropriate values of 1 and YA are
chosen. For example, as detailed in Fig. 7d, a reduction of 3.3 dB of the (, is obtained for 0_=
1.38, 1=1.10, YA = 10 and -B = 69 Ω.

In literature other approaches to cloak electrically large metallic cylinders based on a single
homogeneous metasurface layer have been developed exploiting different techniques. For example
the authors in [27] use a low thickness dielectric, such that the cancellation of different harmonics
orders requires similar surface impedance values. With this approach a reduction of the (, of
4.8 dB is achieved for 0_ = 0.5 and of 3.3 dB for 0_ = 0.67. Here for 0_ = 0.68 a reduction of
5.4 dB can be achieved, as shown in Fig. 7d. Also in [28] the authors developed a cloak for a
cylinder with 0_ = 1.425 obtaining a reduction of from 1.5 dB to 3 dB of the (, .
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4. Numerical simulations

In order to validate the proposed concepts, a specific case is considered and simulated with CST
Microwave Studio. The designed structure characteristics are: 0 = 20 mm, 1 = 1.150 = 23 mm,
YA = 10. In order to simulate this structure, the surface impedance is realized with metallic strips
parallels to the cylinder axis and printed on the dielectric layer. The thickness of the strips is F =
1.07 mm and unit cell width is � = 4.01 mm as shown in Fig. 8a.

The structure is illuminated by a TM polarised planewave, and to simulate an infinite cylinder,
electric boundaries conditions are imposed on the top and bottom of the structure.
The (, computed from the simulated scattered fields of the bare and cloaked cylinder are

reported in Fig 8b, showing a reduction of 4 dB at 5 = 13.75 GHz, correspondent to a normalised
radius 0_ = 0.917.

To further validate the model, the full wave simulation results are compared with the theoretical
ones by using a semi-analytical approach. Therefore, the dispersion behaviour of the metasurface
impedance is numerically evaluated with CST Microwave Studio, by considering a single
metasurface unit cell with dimensions �x� and periodic boundary conditions. With the obtained
surface impedance values, the scattering coefficients and the scattered field are computed at each
frequency point by using Eq. (7) and Eq. (1), respectively. Finally, the (, (which is defined in
Fig. 8b as semi-analytical) is evaluated with Eq. (10).
Regarding the bare results, since no metasurface is present, the scattering coefficients, the

scattering field and finally the (, are analytically computed. It must be also underlined that
to compute the (, a value of d = 150 mm is considered in Eq. (10) for both numerical and
semi-analytical data. As it can be seen from Fig. 8b the (semi-)analytical and numerical results
are in excellent agreement.

Moreover, the simulated scattered electric fields for both the PEC and cloaked cylinder at 5 =
13.75 GHz are shown in Fig. 9, proving that the scattering is effectively reduced.

Fig. 8. (a) CADmodel of the simulated structure. The cloaking is realised using vertical
metallic strips. (b) Simulated (, of the bare and cloaked cylinders and comparison
with (semi-)analytical results.

The harmonic analysis of the scattering of the proposed bare and cloaked cylinder is performed
at the cloaking frequency 5 = 13.75 GHz as reported in Fig. 10. First of all, it should be
underlined that, since the considered cylinder is not electrically small, the harmonic content
cannot be approximated by the single harmonic with modal index = = 0. Moreover, in this case, a
clear predominant harmonic is not present. Instead, the higher scattering coefficients correspond
to modal indexes = = 4 and = = 1.

Furthermore, the scattering coefficients are compared for different surface reactances, namely
->?C = 68 Ω (correspondent to the minimum of the (,), -B = 48 Ω (which annuls the harmonic



Fig. 9. Simulated scattered electric fields for the bare (a) and the cloaked (b) cylinder at
5 = 13.75 GHz.

with modal index = = 0) and -B = 70 Ω (which annuls the harmonic with modal index = = 4). It
can be noticed that when ->?C = 68 Ω is considered, even if some harmonics are increased with
respect to the bare case, the average of the scattering coefficients is reduced.
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Fig. 10. Absolute value of the scattering coefficients 2= for the proposed bare and
cloaked cylinders when different surface impedances are considered.

5. Conclusions

In this paper, an analysis of the scattered field from dielectric coated metallic cylinders and
metasurface cloaked cylinders is performed. For both cases, an analytical formulation of the
scattering coefficients is derived, discussing how the harmonic composition of the scattering can
be controlled by the permittivity and thickness of the dielectric layer. Regarding the cloaked
structure, the surface impedance which cancels one harmonic of the scattered field is computed
in a closed and compact form. In particular, the use of a homogeneous surface impedance for the
cloaking of non-electrically small structure is discussed. In this framework, it is proven that a
reduction of the scattered field can be obtained with the use of a positive surface reactance. This
could be of particular interest for the analysis and design of more complex structures which use a
non homogeneous coat. Finally, the theoretical results are validated by numerical simulations.
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Appendix

A. Computation of scattering coefficients for a dielectric coated PEC cylinder

The electric and magnetic fields in the different media can be written as:




�%�� (d, i) = 0
����! (d, i) = Î∑∞==−∞ 9−= (0=�= (:3d) + 1=.= (:3d)) exp( 9=i)
���� (d, i) = Î∑∞==−∞ 9−= (

�= (:0d) + 2=� (2)= (:0d)
)

exp( 9=i)
(13)

{
����! (d, i) = :3

9l`3
î
∑∞
==−∞ 9

−= (
0=�

′
= (:3d) + 1=.

′
= (:3d)

)
exp( 9=i)

���� (d, i) = :0
9l`0

î
∑∞
==−∞ 9

−=
(
�
′
= (:0d) + 2=�

′ (2)
= (:0d)

)
exp( 9=i)

(14)

where %��, ���! and ��� refer to the perfect conducting cylinder, its dielectric coating,
and to the background medium, respectively. �=, .= and � (2)= are the Bessel, Neumann and
Hankel functions, 0=, 1=, 2= are unknown coefficients, = is the harmonic order, :0 and :3
are the background and dielectric wavenumbers, `0 and `3 are the background and dielectric
permeability, d and i are the radial and azimuthal cylindrical coordinates.

By imposing the continuity boundary conditions at the media interface, the following system
of equations is obtained:

0=�= (:30) + 1=.= (:30) = 0
0=�= (:31) + 1=.= (:31) = �= (:01) + 2=� (2)= (:01)
:3
9l`3

(
0=�

′
= (:31) + 1=.

′
= (:31)

)
=

:0
9l`0

(
�
′
= (:01) + 2=�

′ (2)
= (:01)

) (15)

For simplicity, the permeability in the dielectric layer is considered equal to the one in the
background medium so that `3 = `0 = `.
The system can be written in matrix form:

�= (:30) .= (:30) 0

�= (:31) .= (:31) −� (2)= (:01)
:3
9l`

�
′
= (:31)

:3
9l`

.
′
= (:31) −

:0
9l`

�
′ (2)
= (:01)



0=

1=

2=


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0

�= (:01)
:0
9l`

�
′
= (:01)


(16)

Therefore, the scattering coefficients 2= can be obtained as:

2= =
det(�)
det(�) (17)

where:

� =


�= (:30) .= (:30) 0

�= (:31) .= (:31) −� (2)= (:01)
:3
9l`

�
′
= (:31)

:3
9l`

.
′
= (:31) −

:0
9l`

�
′ (2)
= (:01)


(18)

� =


�= (:30) .= (:30) 0
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:3
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.
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:0
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
(19)

Solving the determinants:

det(�) = �= (:30)
(
:0
9l`

.= (:31)�
′
= (:01) −

:3

9l`
�= (:01).

′
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Setting: :0/( 9l`) = − 9.0 = : and :3/( 9l`) = :
√
YA ,

det(�) = :�= (:30).= (:31)�
′
= (:01) − :

√
YA �= (:30)�= (:01).

′
= (:31)

−:.= (:30)�= (:31)�
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= (:01) + :

√
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det(�) = :�′= (:01) (�= (:30).= (:31) − .= (:30)�= (:31))

−:√YA �= (:01)
(
�= (:30).

′
= (:31) − .= (:30)�

′
= (:31)

) (22)

Defining the cross products of Bessel functions, @= and ?= as in Eq. (3) and Eq. (4), it is
obtained:

det(�) = :�′= (:01)?= − :
√
YA �= (:01)@= (23)

Similarly,
det(�) = −:�

′ (2)
= (:01)?= + :

√
YA�

(2)
= (:01)@= (24)

Therefore, the scattering coefficients 2= are:

2= = −
�
′
= (:01)?= −

√
YA �= (:01)@=

�
′ (2)
= (:01)?= −

√
YA�

(2)
= (:01)@=

(25)

B. Computation of scattering coefficients for a cloaked PEC cylinder

Similarly to previous case, it is possible expand the field in a sum of harmonics and to consider
the boundary conditions at the media interface. In this case, the last equation of Eq. (15) is
modified to take into account the surface impedance /B, that relates the discontinuity of the
magnetic field at the dielectric-background interface with the tangential electric field, such that:
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Following the same procedure of previous case (and considering `3 = `0 = `):
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Therefore:
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Introducing the variables : , ?=, @= as previously defined, one gets:

det(�′) = −?=�= (:01) + :/B?=�
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√
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The determinant of �′ can be derived from det(�′) by substituting �= (:01) with −� (2)= (:01):
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Substituting : = − 9.0 and dividing by /B = 1/.B:
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which can be written as:
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