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Mmwave Beam Management in
Urban Vehicular Networks

Zana Limani Fazliu, Member, IEEE, Francesco Malandrino, Senior Member, IEEE,
Carla Fabiana Chiasserini, Fellow, IEEE, Alessandro Nordio, Member, IEEE

Abstract—Millimeter-wave (mmwave) communication repre-
sents a potential solution to capacity shortage in vehicular net-
works. However, effective beam alignment between senders and
receivers requires accurate knowledge of the vehicles’ position for
fast beam steering, which is often impractical to obtain in real
time. We address this problem by leveraging the traffic signals
regulating vehicular mobility: as an example, we may coordinate
beams with red traffic lights, as they correspond to higher
vehicle densities and lower speeds. To evaluate our intuition, we
propose a tractable, yet accurate, mmwave communication model
accounting for both the distance and the heading of vehicles
being served. Using such a model, we optimize the beam design
and define a low-complexity, heuristic strategy. For increased
realism, we consider as reference scenario a large-scale, real-
world mobility trace of vehicles in Luxembourg. The results
show that our approach closely matches the optimum and always
outperforms static beam design based on road topology alone.
Remarkably, it also yields better performance than solutions
based on real-time mobility information.

I. INTRODUCTION

High-definition maps, their real-time updates, and on-board
multimedia systems are just a few of the applications that
make automated vehicles prime consumers of network traffic.
Indeed, automotive services – both safety and entertainment –
are among the reference use cases for next-generation network
technologies, such as C-V2X [1] and 802.11p/ITS-G5 [2]. In
spite of the important differences among these technologies,
they all share the goal of providing more network capacity to
vehicles and drivers.

Whenever more capacity is needed, millimeter-wave
(mmwave) communications are an appealing option [3]. On
the negative side, mmwave frequencies suffer from harsh prop-
agation conditions, with severe attenuation and high block-
age probability. Such severe shortcoming has been addressed
mainly by two approaches. On the one hand, mobile network
operators plan to backup data transfers served by mmwave
links by pairing them with lower-frequency links especially
to maintain connectivity through low-frequency control chan-
nels, so as to cope with the unpredictable changes in real-
world scenarios and the high sensitivity of mmwave to the
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presence of obstacles [4], [5]. On the other hand, the design
of directional antenna systems, where the available power is
concentrated on one or more beams, can significantly help to
mitigate the problem [6]. An important trade-off in mmwave
communications therefore arises between the directionality
gain that can be achieved using beamforming and the spatial
coverage that can be offered.

This implies that the performance of mmwave networks
critically depends on the beam design, i.e., the number, di-
rection, and amplitude of the beams. Successful beam design
requires knowledge about the location of the user(s) to serve,
which explains why the earliest and currently, the most mature,
mmwave applications target static or quasi-static scenarios. In
addition, due to the mobility of the vehicular users, commu-
nication in mmwaves is even more sensitive to high Doppler
shift and delays in channel status feedbacks [7], which further
complicates the beam training and design phases.

We address the above issues by leveraging the fact that, in
urban environments, it is possible to acquire a great deal of
information about vehicular mobility without detecting it in
real time.

Consider, for example, the commonly observed situation
that red traffic lights are associated with a higher vehicle
density and lower speeds, two factors that can improve the
achievable system throughput. This is very valuable infor-
mation, and is known a priori. By exploiting this readily
available information as well as static information such as
road topology, we can facilitate efficient beam management
without the need to make real-time decisions. Our high-level
goal is to assess the performance of this approach, i.e., using
traffic signal state information to complement and replace real-
time mobility data. To our knowledge, this is the first work
that optimizes beam design and carefully models mmwave
coverage in vehicular networks, leveraging both road topology
and traffic regulation signal information. In summary, we make
the following main contributions:
(i) we first propose low-complexity approximations of the

channel and beamforming behavior, tailored using empir-
ical results obtained through real-world traces and show
their excellent agreement with existing, more complex,
models. Importantly, the applicability of our contribution
goes beyond the scenario we study in this work;

(ii) we formulate beam configuration as an optimization
problem, aiming at maximizing the quality of coverage
of vehicular users, i.e., the users’ sum rate. The choice of
this objective, over others such as fairness or energy ef-
ficiency, reflects real-world operational scenarios where,



as mentioned, it is foreseen that mmwave links are paired
with low-frequency ones to ensure seamless connectivity.
Thus, a sensible choice is to maximize not the number
of mmwave links, but the number of high-quality ones;

(iii) in light of the problem complexity, we define three alter-
native beam design strategies, among which we propose a
low-complexity scheme, named Traffic Light (TL). Our
scheme leverages road topology information and traffic
light signals to efficiently configure the beams of the
mmwave base stations;

(iv) we show that TL closely matches the optimum, in terms
of sum rate, in a small-scale scenario. Then we eval-
uate all of the above strategies using the large-scale
trace representing the real-world topology and vehicular
mobility of Luxembourg City. Our results show that,
notwithstanding its much lower complexity, TL yields a
performance comparable to that of solutions based on
real-time mobility information.

In the following, we first discuss related work in Sec. II
and detail the proposed system and mmwave communication
models in Sec. III. Through numerical simulations and real-
world vehicular traces, Sec. IV presents an accurate and
scalable statistical model for the channel gain.

Sec. V introduces the proposed optimization problem and
the beam management strategies we envision, while Sec. VI
shows some results. Finally, Sec. VII concludes the paper.

II. RELATED WORK

Frameworks on how to model and analyze mmwave cel-
lular networks have been provided in [8], [9], while channel
characterization and modeling can be found in [10], [11].

These are statistical spatial models, based on experimental
measurements, that accurately describe the mmwave chan-
nel, at a cost of a high complexity. Generalized, simpler
models for the channel small-scale coefficients, as well as
beamforming gains, can be found, e.g., in [6], [8]. Therein,
the authors assume that small-scale channel gains are subject
to Nakagami fading (i.e., a general model, encompassing
Rayleigh distribution, that better suits mmwave propagation),
while beamforming gains are modeled as discrete random
variables with a probability mass function determined by the
beamwidths of the transmitter and receiver beams.

More related to our study is the recent work in [12],
which approximates the composite effects of the channel and
beamforming gains, obtained under the models in [10], while
also considering realistic antenna radiation patterns. Compared
to this work, we additionally obtain the approximation of
the channel and beamforming gains under the channel model
adopted by 3GPP [11] and, more importantly, we differentiate
between several levels of beam misalignment.

Beam training is another important challenge in mmwave-
based mobile networks, including vehicular ones, mainly due
to the associated control overhead and delay [3], [13]. In [14],
the authors look at exhaustive and iterative search procedures,
and further propose a two-stage hybrid training technique, in
which the base station trains in the first stage and the user
equipment performs reverse training in the second stage. In

[15], the authors propose a framework that combines matching
theory and swarm intelligence to dynamically and efficiently
perform user association and beam alignment in a vehicle-to-
vehicle (V2V) network.

Other popular approaches, more similar to the approach
taken in this work, are predicated on hoarding and leveraging
as much location information as possible, coming from the
road-side sensors and the vehicles themselves [3], [16], [17],
as well as from out-of-band direction interference [18]. In
particular, using information originating from infrastructure
nodes is the key to beam design and switching in [19], [20]. An
inverse multipath fingerprinting approach is instead proposed
in [21], with the aim to match potential beam directions with a
vehicle location. Since collecting the information, processing
it, and re-aligning the beams in near-real-time is a very
challenging task, some works, e.g., [22], envision dispensing
with beam realignment altogether, statically setting the beam
orientation using road topology information.

Novelty. In addition to optimizing beam design, this study
also assesses the viability and performance of TL, the low
complexity scheme we propose. Importantly this study com-
pares TL to the optimal configuration and other beam design
strategies. To our knowledge, this is the first work that uses a
combination of road topology and traffic signal information,
both of which can be obtained beforehand, to enable and facili-
tate beam management decision-making in vehicular networks.
It should be noted that all of the above mentioned works focus
on beam aligning for each gNB-user pair, implicitly assuming
that each narrow beam is employed to transmit to a single
user only. However, in ultra dense scenarios, it is highly likely
that even a beam as narrow as 5◦ can cover several users
simultaneously, users that can be multiplexed within the same
beam. Thus, instead of focusing on perfectly aligning beams
for each gNB-user pair, we look at how to align the beams at
the gNB so as to maximize the quality of coverage of vehicles,
i.e., the users’ sum rate. In addition, we argue that we can
achieve such solutions while minimizing the use of real-time
information, by utilizing instead, readily available, permanent,
and deterministic information such as road topology and traffic
light signals.

Finally, we would like to mention that a preliminary version
of this work has been presented in our conference paper [23].

III. MMWAVE VEHICULAR COMMUNICATION SYSTEM

In this section, we introduce the model of the vehicular
network and we provide details on the physical layer model
that we adopt. We describe the signals transmitted by the
mmwave base stations (hereinafter referred to as gNBs) and
received by the vehicle, and we specify how beams are
generated by the antennas.

The notations we use throughout the paper are summarized
in Table I; the dependency of the parameters and variables on
the specific gNB, beam, or time step are omitted whenever
not needed. Also, in the following, boldface lowercase letters
denote column vectors while boldface uppercase letters denote
matrices. The identity matrix is represented by I. The trans-
pose and the conjugate transpose of the generic matrix A are
denoted, respectively, by AT and AH.
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TABLE I
NOTATION USED IN THE SYSTEM AND COMMUNICATION MODEL

Symbol Type Meaning

G set Set of gNBs
B set Set of beams; the generic ele-

ment is denoted by b
V set Set of vehicles; the generic el-

ement is denoted by v
K set Set of time intervals; the

generic element is denoted by
k

Ptot(g) parameter Total power budget for gNB g
N(g) parameter Maximum number of beams

for gNB g
Nt (Nr) parameter Number of antenna elements

per beam, at the transmitter (re-
ceiver) side

Hc(g, v, k) parameter Channel matrix
d(g, k, v) parameter Azimuth and elevation of vehi-

cle v at time k as observed by
gNB g

ψ(g) parameter Azimuth and elevation of the
antenna array orientation at
gNB g

ψ(v)(k)) continuous variable Azimuth and elevation of the
antenna array orientation at ve-
hicle v at time k

ϕ(g)(b, k),ϕ(v)(b, k) continuous variable δ(g)(b, k)− ψ(g),
δ(v)(b, k)− ψ(v)(k)

δ(g)(b, k), δ(v)(b, k) continuous variable Azimuth and elevation of
beam b at time k at gNB g
(vehicle v)

Fig. 1. Real-world scenario: Luxembourg city center. The red circles represent
the locations of the traffic lights, on top of which the gNBs in our scenario
are placed.

A. Mmwave vehicular network: Model and data trace

Our network system includes three main entities: gNBs g ∈
G, beams b ∈ B, and vehicles v ∈ V . Also, time is divided
in discrete intervals k ∈ K. To add a dose of realism to our
problem formulation, we consider the scenario representing
the real-world topology of Luxembourg City, Luxembourg,
and the realistic mobility therein, as reported by the publicly-
available, large-scale trace described in [24]. Luxembourg city
is chosen partly due to the availability of open-source trace
data, but also because its urban layout represents a typical
European city. The trace includes the location of traffic lights
and bus stops, and the traffic lights states (red, yellow, green)
at all time steps. It represents around 14,000 vehicles over a
period of 12 hours, generated with SUMO, an open source
multi-modal traffic simulator, and based on real-world traffic

flows, e.g., commuters traveling to the city center. Depicted
in Fig. 1 is the 2 km×2 km area of the city center we take
into consideration. Throughout this road topology, we place a
total of 51 gNBs, colocated to traffic lights (their positions are
marked by red dots in Fig. 1); the traffic lights corresponding
to intersections with highest vehicle density were selected.

The gNBs and the vehicles are equipped with uniform
planar array (UPA) antennas, composed of a grid of antenna
elements spaced by λ/2. The vehicle UPA is only capable
of analog beamforming (it is equipped with a single radio
frequency (RF) chain). Digital beamforming is instead enabled
at the gNBs, with N(g) being the maximum number of beams
that can be simultaneously active at the generic gNB g. We
also denote by Ptot(g) the total power budget the gNB has
to split among its beams. As for the antenna elements, we
consider two different models:

a) the isotropic radiation antenna element denoted as “ISO”;
b) the 3GPP sectored antenna element [11], denoted by

“3GPP”, which is characterized by an 8 dBi maximum
directional gain, significantly smaller side lobes than the
ISO element, and higher front-to-back ratio. In this case,
a three-sector gNB implementation is assumed, and the
corresponding beamforming vector is used to shift the
beam within each 120◦ sector.

In this scenario, the goal is to make beamforming decisions
that maximize the aggregated data rate over the vehicular
users. We focus on downlink communications, although the
analysis can easily be extended1.

Such decisions concern:

(i) the number of active beams at each gNB,
(ii) their width and direction, and

(iii) the transmission power assigned to each beam.

The decisions are made at the gNBs every time step
k, which coincides with the channel coherence time2. For
simplicity, we assume perfect channel state information (CSI)
knowledge at the gNB. We consider that a beamshifting vector
is used at the gNB to point the beam towards the desired
direction, as described in Sec. III-B, while the width of the
beam can be selected from a limited set of beamwidths, which
can be obtained by varying the number of antenna elements
employed.

The gNB transmits a single data stream towards one or
more vehicles. As envisioned in 5G NR, data transmissions
are organized into time slots, during which the channel is
assumed to be constant. Thus, we can consider that, during
data transfers, pilot symbols (the so-called DeModulation
Reference Symbols (DMRS)) are transmitted in every time slot
to adapt the modulation scheme to the instantaneous channel
conditions. Below, we will denote by C the number of slots
per time step, and by S the number of symbols per slot.

1Since the vehicles are equipped with a single RF chain, and can transmit on
a single beam at a time, beam management in uplink is indeed straightforward.

2We recall that channel estimation is performed through periodically
transmitted pilot symbols (e.g., CSI Reference Symbols (CSI-RS) in 5G New
Radio (NR)).
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B. Mmwave communication model

Given a gNB, g, and consider that the orientation in space of
its antenna elements is characterized by the azimuth-elevation
pair of angles ψ(g) = [ψ

(g)
1 , ψ

(g)
2 ], as depicted in Fig. 2.

The orientation of the antenna elements at vehicle v is
represented by the pair of angles ψ(v) = [ψ

(v)
1 , ψ

(v)
2 ], while

the azimuth-elevation angle of the vehicle v, as observed by
the gNB g during time step k, is denoted by d = [d1, d2].

At every time step k, the gNB adjusts the antenna gains
to generate one or more beams. The number of beams to be
generated is decided by the beam design algorithm. Let us
focus on the generic beam b, with azimuth-elevation angle
δ(g). To generate the beam, the gNB employs the beamforming
vector v(ϕ(g)) of size Nt = Nt,1 ×Nt,2, with n-th element:

[v(ϕ(g))]n =
1√
Nt

ejπ(n1 cosϕ
(g)
2 sinϕ

(g)
1 +n2 sinϕ

(g)
2 ) (1)

where the integers n1 ∈ {1, . . . , Nt,1} and n2 ∈ {1, . . . , Nt,2}
are such that n = n1Nt,2 + n2. The vector of angles ϕ(g) =

δ(g)−ψ(g) represents the direction of the beam with respect to
the transmitting antenna orientation ψ(g). If δ(g) = d, then the
beam of the transmitter is perfectly aligned with the vehicle
on both the azimuth and elevation planes.

The symbols transmitted by the gNB in the c-th slot, c =
1, . . . , C, are represented by the vector xc = [xc,1, . . . , xc,S ]T

whose elements are modeled as independent, complex random
variables with zero-mean and variance E[|xc,s|2] = P (s =
1, . . . , S) where P is the power of the considered beam. In
the following, for simplicity, we omit the argument ϕ(g) of
the beamforming vector v. The signal transmitted by the gNB
in the c-th slot is represented by the Nt × S matrix vxT

c and
the corresponding signal received by the vehicle is described
by the Nr × S matrix Y, with Nr = Nr,1 ×Nr,2:

Yc = Hcvx
T
c + Ec . (2)

In (2), Hc is the Nr×Nt channel matrix between gNB g and
vehicle v during the transmission on the c-th slot, while Ec is
a term accounting for noise and interference. Note that nearby
gNBs cause interference if the radiation pattern of their beams
affects the vehicle reception.

In a typical mmwave urban scenario, the channel between
the transmitter and the receiver is composed of a number
of path clusters, each cluster corresponding to a macro-level

scattering path. The `-th path is described by its amplitude,
h`,c, and the azimuth-elevation departure and arrival pairs of
angles ϑ(g)

`,c and ϑ(v)
`,c , measured with respect to the antenna

orientation angles ψ(g) and ψ(v), respectively. Using the
model provided in [9]–[11], the channel matrix during the c-th
slot, Hc, can be modeled as

Hc =

√
1

L

L∑
`=1

h`,cav(ϑ
(v)
`,c )ag(ϑ

(g)
`,c )H (3)

where L is the number of paths, and ag(ϑ) and av(ϑ) are the
response vector for, respectively, the transmit and the receive
antenna. More specifically, the n-th element of ag(ϑ) is:

[ag(ϑ)]n = ejπ(n1 cosϑ2 sinϑ1+n2 sinϑ2) (4)

where n1 ∈ {1, . . . , Nt,1} and n2 ∈ {1, . . . , Nt,2} are such
that n = n1Nt,2 +n2. Similarly, the n-th element of av(ϑ) is
given by

[av(ϑ)]n = ejπ(n1 cosϑ2 sinϑ1+n2 sinϑ2) (5)

where n1 ∈ {1, . . . , Nr,1} and n2 ∈ {1, . . . , Nr,2} are such
that n = n1Nr,2+n2. The Nr×S matrix Ec in (2) has complex
Gaussian independent entries, and its columns ec,s have zero
mean and covariance E[ec,se

H
c,s] = IcI (s = 1, . . . , S). Since

the vehicle UPA is only capable of analog beamforming, we
consider that the weight vector w(ϕ(v)) of size Nr is applied
to the RF chain, with generic element:

[w(ϕ(v))]n = ejπ(n1 cosϕ
(v)
2 sinϕ

(v)
1 +n2 sinϕ

(v)
2 ) , (6)

in order to generate a beam with azimuth-elevation angle
δ(v) = ϕ(v) + ψ(v). The integers n1 ∈ {1, . . . , Nr,1} and
n2 ∈ {1, . . . , Nr,2} are such that n = n1Nr,2 + n2. This
scenario is illustrated in Fig. 2. If δ(v)

1 = mod(180◦+d1, 360)

and δ
(v)
2 = 180 − d2, then the receiver’s beam is perfectly

aligned with the gNB, in azimuth and elevation.
Through the weighting procedure, the receiver forms the

vector zc = wHYc = h̃cx
T
c + wHEc where

h̃c = wHHcv (7)

is the scalar channel coefficient summarizing the effects of the
signal propagation conditions and of the antenna and beam
design. For simplicity, in the above equations, we omitted
the argument ϕ(v) of w. Finally, estimates of the symbols
belonging to the c-th slot are obtained at the receiver by
processing the vector zc.

Note that, if more than one gNB transmits toward the same
user in such a way that it causes constructive interference
(CoMP-like mode), similar expressions to the ones above hold,
where Hcv represents the equivalent channel.

IV. A CONVENIENT STATISTICAL MODEL OF THE
CHANNEL GAIN

In this section, we provide a statistical characterization of
the channel gain under different antenna models and beam
alignment conditions, and we show its validity in the real-
world scenario represented by the Luxembourg trace, depicted
in Fig. 1. Note, however, that our model has general validity
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and can be used for the study of aspects beyond the scope of
this work.

We start by applying two channel models, among those
which appeared in the literature, that are most commonly used:
• the “NYU” model [9], a statistical spatial channel model

based on experimental measurements performed in the
city of New York;

• the “3GPP” model [11], a hybrid of geometry-based
stochastic and map-based channel models, which has
been adopted by 3GPP.

Both these models describe the channel between two commu-
nicating endpoints as composed of several clusters of paths,
each synthesized using a large number of subpaths, with
certain azimuth and elevation arrival and departure angle.

In the following, we implement both the above models
and, using link-level simulations, we provide a statistical
characterization of the channel gain h̃c as defined in (7).

Given the channel matrix Hc given in (3), the beam
directions (specified by the weight vectors v and w), and
the relative positions between transmitter and receiver, we
characterize the gain of the channel connecting gNB g to
vehicle v during the transmission in the c-th slot. To this end,
we rewrite (7) as:

|h̃c|2 = aG (8)

where a is the path loss between the gNB-vehicle pair as
a function of their distance, and the gain component, G,
encompasses both the small-scale fading effects of the channel
and the beamforming gain of the antenna array.

The value of G has a strong dependence on the degree
of alignment between the beams; under line of sight (LoS)
conditions, we have three cases:
• “fully a-aligned” link, where both beams are perfectly

aligned with each other along the azimuth,
• “partially a-aligned” link where the beams are aligned

along the azimuth at only one end, at either the transmitter
or the receiver side, and

• “misaligned” link where neither beam is aligned.
The accurate description of the behaviour of gain G in these

three cases is critical in modeling the useful power and inter-
ference levels at the receiver side, especially in the presence
of LoS. In particular, we differentiate between the partially

a-aligned and fully misaligned cases, since simulations show
that the gain can be significantly higher when the beam is
aligned at one end, as opposed to when it is misaligned at
both ends. The partially a-aligned gain can be applied to model
more accurately the interference experienced at the receiver,
especially in those cases where a vehicle may be inadvertently
under the coverage of an interfering gNB, or to describe the
constructive interference in the context of CoMP-like cases.

In the following subsections, we empirically characterize
the distribution of the gain G under the above described
propagation conditions and for the two different antenna
radiation patterns. For each scenario, we show that the empir-
ical distribution of G, can be tightly approximated by using
Gaussian, exponential, or log-logistic distributions.

A. Fully a-aligned beams and 3GPP channel
When LoS conditions hold and the beams of the transmitter

and of the receiver are perfectly aligned in the azimuth plane
(a-aligned), we found that, under the “3GPP” channel model,
the distribution of the gain G is well approximated by a
Gaussian distribution with mean µG and variance σ2

G.
Specifically, when ISO antenna elements are employed, the

mean µG is given by

µG(∆2) = µ0 exp

(
−∆2

2

γ2
µ

)
. (9)

Since we do not consider perfect alignment on the elevation
plane, our analysis shows that the parameter µG depends on
the angle of misalignement in the elevation plane, denoted by
∆2 (see Fig. 3-(c) for details). When instead 3GPP antenna
elements are used, G also depends on the angle ∆1 between
the direction of the beam at the gNB and the direction of the
sector center3 (see Fig. 3-(b)). In particular, the resulting gain
is reduced when the beam at the gNB is not aligned with the
direction of the sector, and it becomes 0 for a beam out of
the sector width, as per the 3GPP antenna element radiation
pattern [11]. The mean µG, for the 3GPP antenna element, is
given by:

µG(∆1,∆2) = µ0 exp

(
−∆2

2

γ2
µ

)
10
−1.2

(
∆1
θ3dB

)2

(10)

3Sector antennas with 3GPP antenna elements are implemented only at the
gNB, while at the vehicle we only consider isotropic antennas.
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TABLE II
VALUES OF THE PARAMETERS CHARACTERIZING THE DISTRIBUTION OF

G, FOR FULLY A-ALIGNED BEAMS AND 3GPP CHANNEL MODEL

ISO 3GPP
µ0 0.537(NtNr)0.998 3.26(NtNr)
σ0 0.23(NtNr)0.7 1.33(NtNr)0.65

γµ 55.02(NtNr)−0.287 49.01(NtNr)−0.274

γσ 55.86(NtNr)−0.28 55.86(NtNr)−0.28

Fig. 4. LoS and fully a-aligned case: Empirical and fitted distribution of G
under the 3GPP channel model, and when the ISO and 3GPP antennas are
employed. ∆2 = 0◦ (top) and ∆2 = 4◦ (bottom). Nt = 256, Nr = 64.

where θ3dB = 65◦ is the half-power beamwidth of a single
antenna element. With regard to the standard deviation σG, in
both the ISO and 3GPP cases, it depends on ∆2 according to
the relation:

σG(∆2) = σ0 exp

(
−∆2

2

γ2
σ

)
. (11)

Finally, we established a dependence between the parameters
µo, σ0, γµ, γg and the product NtNr, captured by the expres-
sions provided in Table II.

Fig. 4 compares the empirical4 distribution of the gain G
to the Gaussian distribution whose parameters are specified
in (9)–(11). The plots of the probability density function (PDF)
of the gain have been obtained under the 3GPP channel model,
for both ISO and 3GPP antenna model. Importantly, our pro-
posed approximation is very tight in both cases; furthermore,
it holds also for other values of the number of antennas, ∆2,
and ∆1 (for the 3GPP antenna model).

To be able to compare to the no line of sight (NLoS)
case, we derived the results shown in Fig. 5 (left). In NLoS
conditions, the values of G drop significantly and the gain
distribution can be better approximated with the log-logistic
distribution:

fG(x) =
1

mx

ez

(1 + ez)2
(12)

where z = (log(x)−m)/s.

4The fitting was performed using the MATLAB curve fitting toolbox.

Fig. 5. NLoS conditions: Empirical and fitted distribution of gain G under
the 3GPP channel model (left) and the NYU channel model (right), when ISO
antennas are employed. Nt = 256, Nr = 64.

TABLE III
VALUES OF THE PARAMETERS CHARACTERIZING THE DISTRIBUTION OF

G, WHEN THE BEAMS ARE A-ALIGNED IN NLOS

(m,s) Nt = 256 Nt = 64 Nt = 64
Nr = 64 Nr = 64 Nr = 16

3GPP-ISO (2.97, 0.99) (3.83, 0.98) (3.28, 0.97)
3GPP-3GPP (4.63, 1) (5.57, 0.99) (4.98, 0.98)
NYU ISO (−1.7, 0.97) (−1.98, 0.97) (−2.75, 0.95)
NYU 3GPP (−2.6, 1.03) (−3.68, 2.72) (−0.48, 1.1)

Due to the absence of the LoS path, no significant de-
pendency on the misalignment elevation angle ∆2 could be
inferred, nor a straightforward relationship to the product
NtNr. However, as shown in Table III, the values of the
distribution parameters m and s vary depending on the channel
model/antenna type considered, and the number of antennas
Nt and Nr. Due to space limitations, in Fig. 5, we only
show the results for the ISO antenna elements, however the
approximations hold as well when 3GPP antenna elements are
used.

B. Fully a-aligned beams and NYU channel

Now, we still consider fully a-aligned beams, but we focus
on the NYU channel model. In this case and under LoS
conditions, we find that the empirical distribution of the gain
G is tightly approximated by an exponential distribution with
average αG, i.e., fG(x) = 1

αG
exp

(
− x
αG

)
. In particular,

when ISO antenna elements are employed, the parameter αG
depends on ∆2 according to αG(∆2) = α0 exp

(
−∆2

2

γ2
α

)
.

Instead, with 3GPP antenna elements, αG depends on both
∆1 and ∆2, according to the relation:

αG(∆1,∆2) = α0 exp

(
−∆2

2

γ2
α

)
10
−1.2

(
∆1
θ3dB

)2

(13)

where θ3dB = 65◦. Interestingly, the values of the parameters
α0 and γα can be expressed as functions of the product
NtNr, as shown in Table IV. Examples of the empirical and

TABLE IV
VALUES OF THE PARAMETERS OF THE DISTRIBUTION OF G, UNDER LOS

AND NYU CHANNEL MODEL

ISO 3GPP
α0 0.63(NtNr)1.05 5.2(NtNr)1.03

γα 54.85(NtNr)−0.3 54.85(NtNr)−0.3
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Fig. 6. LoS and fully a-aligned case: Empirical and fitted distribution of G under the NYU channel model and when ISO and 3GPP antennas are employed.
∆2 = 0◦ (left), ∆2 = 4◦ (middle), and ∆1 = 30◦ (right) . Nt = 256, Nr = 64, and ∆1 = 0◦ for 3GPP antennas.

Fig. 7. Empirical and fitted distribution of gain G, for the 3GPP (left) and
the NYU (right) channel model when 3GPP antennas are employed, in the
case of full misalignment (top), partial a-alignment at the transmitter (middle)
and partial a-alignment at the receiver (bottom). Nt = 256, Nr = 64.

fitted distribution of G are provided in Fig. 6 when the gNB
is equipped with ISO and 3GPP antenna elements, and for
different values of ∆1 and ∆2. Again, there is a very close
match between the experimental distribution of the gain and
our analytical approximation, which holds also for different
values of numbers of antennas, ∆2, and ∆1.

Similarly to the 3GPP channel model, in the absence of
LoS, the a-aligned gain for the NYU channel model is better
approximated using the log-logistic distribution, given by (12),
however different values for parameters m and s are applied,
as reported in Table III. The empirical distribution and the
fitted counterpart are shown in the right plot in Fig. 5.

C. Partially a-aligned or misaligned beams

When the beams are partially a-aligned or misaligned, we
found that the empirical distribution of G can be approximated
with the log-logistic distribution reported in (12). The approx-
imation is valid for all considered channel models and antenna

TABLE V
VALUES OF THE PARAMETERS CHARACTERIZING THE DISTRIBUTION OF
G, WHEN THE BEAMS ARE PARTIALLY A-ALIGNED OR MISALIGNED

(m, s) Nt = 256 Nt = 64 Nt = 64
Nr = 64 Nr = 64 Nr = 16

3GPP-ISO 1. (−2.5, 1) 1.(−1.45, 1) 1.(−1.65, 1)
2.(3.89, 0.99) 2.(3.2, 0.99) 2.(3.15, 0.85)
3.(2.35, 0.98) 3.(3.2, 0.99) 3.(1.9, 0.98)

3GPP-3GPP 1.(−1.05, 1) 1.(−0.16, 1) 1.(0.01, 1)
2.(5.72, 0.99) 2.(5.05, 0.99) 2.(4.99, 0.86)
3.(4.16, 0.98) 3.(5.03, 0.99) 3.(3.79, 0.98)

NYU ISO 1.(−1.96, 1.01) 1.(0.59, 1.01) 1.(−0.17, 1.06)
2.(3.77, 0.99) 2.(3.3, 1) 2.(2.97, 0.98)
3.(2.17, 0.98) 3.(2.94, 0.99) 3.(1.8, 0.98)

NYU 3GPP 1.(−1.48, 0.97) 1.(1.65, 0.99) 1.(−0.97, 1.05)
2.(5.48, 0.99) 2.(4.99, 1) 2.(4.76, 0.98)
3.(3.95, 0.99) 3.(4.75, 0.99) 3.(3.51, 0.98)

elements, however the values of the parameters m and s vary
depending on the type of misalignment. Namely, we consider
three cases of misalignment: 1) full misalignment where beams
both at the transmitter and receiver are not aligned, 2) the
partial a-alignment at the transmitter side, where the beam at
the transmitter is aligned but not at the receiver, and 3) the
partial a-alignment at the receivers side, where the beam at
the receiver is aligned but not at the transmitter.

Unlike in the fully a-aligned case, in the partially a-aligned
case, no evident dependency could be established between the
misalignment angle in the azimuth plane and the values of
the distribution parameters m and s. This is due to the fact
that the misalignment angle only determines the contribution
to the gain coming from the side-lobes of the misaligned end,
while the dominant contribution to the resulting effective gain
comes from the main lobe of the aligned end, which is not
affected by this angle. Hence, the dependency of the gain on
the misalignment angle tends to vanish and no characterization
of it is possible. Similarly, although it is evident that the
parameters of the distribution m and s are affected by the
number of antennas Nt and Nr, no straightforward relationship
can be established. The numerically evaluated values for the
parameters m and s are provided in Table V, for all possible
combinations of channel model and antenna elements (across
rows) and for several values of Nt and Nr (across columns). In
each cell of the table, the three lines correspond, respectively,
to misalignment at both transmitter and receiver, alignment at
the transmitter only, and alignment at the receiver only.

A close match can be observed between the empirical
samples and the fitted distributions, in Fig. 7 for misaligned
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links (top), partially a-aligned links at the transmitter (middle)
and partially a-aligned links at the receiver (bottom). The plots
shown were obtained for both channel models and the 3GPP
antenna element, with Nt = 256, Nr = 64. Similar plots were
obtained for the ISO antenna elements, but were omitted for
brevity. Random values of misalignment angles ∆1 and ∆2

were generated to obtain the empirical probability distribution
functions. Furthermore, by looking at the support of the
distribution in Figs. 4– 7, it can be observed how significant the
impact of partial alignment can be: the probability distribution
is indeed spread over significantly higher values of G for the
partially a-aligned link with respect to the misaligned case,
although about 20 dB smaller than the fully a-aligned case.

D. System-level validation of the channel approximations

We now validate the above approximations at the system
level. To do so, we consider the realistic mmwave vehicular
network described in Sec. III-A. However, due to the com-
plexity of fully simulating the 3GPP and the NYU channel
models, we only consider a 0.4km×0.4km area in the center
of Luxembourg city, i.e., 8 gNBs and around 120-140 vehicles
served at each 1 s-time step.

Each gNB, equipped with Nt = 256 antennas, enables a
single beam with a static direction chosen at random. Each
vehicle is instead equipped with Nr = 64 antennas and
is associated to the closest gNB. To quantify the network
perfomance, we calculate the signal-to-interference-and-noise
ratio (SINR) for each vehicle v as:

SINRv =
P (g?)|h̃c(g?, v)|2

N0 +
∑
g∈G∧g 6=g? P (g)|h̃c(g, v)|2

(14)

where g? is the gNB to which the vehicle is associated, and
N0 is the white noise power. The achievable data rate is then:

R(b, k, v) = Bw log (1 + SINRv) (15)

where Bw is the channel bandwidth. The values of data rate
we obtained through Monte Carlo simulations of the channel
coefficients are compared to the values obtained using the
approximated channel gains. More specifically, the approxi-
mate gains G(b, v) in (8) are generated for each gNB-beam-
vehicle triple, by drawing random values from the distributions
obtained in the previous subsections, depending on the level of
alignment between their respective beams and LoS conditions.
Fig. 8 shows the cumulative distribution function (CDF) curves
of the data rate values obtained under the 3GPP (top) and the
NYU (bottom) channel model, both for the sectored 3GPP
and ISO antenna elements. In both cases, the curves derived
under full 3GPP channel simulation fit well with our proposed
approximations, which leverage the distributions derived in
Secs. IV-A and IV-C. Similar results were obtained for the
SINR, but were omitted for brevity. These plots show that the
data rate achieved under the approximated channel models,
closely matches that recorded under the actual 3GPP and NYU
models, with negligible deviations for the low-SINR vehicles.
Importantly, these results allow us to substantially simplify the
mmwave channel model, while maintaining an adequate level
of realism in our scenario.

Fig. 8. CDF of the achievable rate obtained via system-level simulations of
the Luxembourg scenario, for the 3GPP (top) and the NYU (bottom) channel
model, and for ISO (left) and 3GPP (right) antennas. The approximation values
were obtained applying the models in Secs. IV-A and IV-C.

V. GNB SELECTION AND BEAM DESIGN

We now leverage the channel gain model described above
and focus on the main aspects of traffic delivery in mmwave
vehicular networks and on the approach we propose to over-
come the existing hurdles. In particular, Sec. V-A introduces
the beam design problem and our optimization formulation,
formally stating its objective and constraints. Then Sec. V-B
presents the heuristic approaches we investigate, among which
our proposed scheme, TL.

A. Optimization formulation

Given the system model presented above, here we aim to
answer the following questions: i) how many beams should
be active at each gNB, and of what beamwidth; ii) which
directions should they point at on the azimuth plane5; and,
finally, iii) which user6 should be scheduled on which beam.
The goal is to find answers to these questions that maximize
the total users’ data rate.

In the following section, we present an optimization for-
mulation of the beam management problem, to be solved at
every time step k. For each gNB g, we are given the maximum
number N(g) of beams that can be created, their maximum
half-power width A(g) (which is equal to the sector amplitude
in the case of 3GPP antennas), as well as the total power
budget Ptot(g) that has to be split across the gNB beams. We
also know the angles, d(g, k, v), representing the azimuth and
the elevation of vehicle v as seen from the gNB g at time k
(see Sec. III-B and Fig. 2).

To make our decisions, we have to set many variables.
Binary variable γ(b, g, k) expresses whether beam b is used
(i.e., emitted) by gNB g at time k; such a dynamic relationship
between gNBs and beams allows us to represent the fact

5Setting the elevation angle is not a goal of the optimization, as it depends
on the vehicle-gNB distance and the antenna tilting angle at the gNB.

6It is fair to assume that the beam at the vehicle points to the gNB from
which the strongest signal is currently received.
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TABLE VI
NOTATION USED IN THE FORMULATION OF THE OPTIMIZATION PROBLEM

Symbol Type Meaning
A(g) parameter Max half-power width of beams of gNB g
α(b, k) continuous var. Half-power width of beam b at k
σ(b, k, v) continuous var. Fraction of time step k that beam b uses to

serve vehicle v
µ(b1, b2, k) binary var. Whether beam b1 supports in a COMP-like

fashion beam b2 at k
β(b1, b2, k) binary var. Whether beam b1 supports in an ABS-like

fashion beam b2 at k
γ(b, g, k) binary var. Whether beam b is used by gNB g at k
U(b, k) auxiliary var. gNB using beam b at k
V (b, k, v) auxiliary var. Whether beam b covers vehicle v at k
R(b, k, v) output Data rate between beam b and vehicle v at k
P (b, k) continuous var. Power of beam b at k

that the same gNB may have a different number of beams
at different times. Continuous variables α(b, k), δ(g)

1 (b, k),
and P (b, k), respectively express the half-power width, di-
rections, and power of beam b at time k. Furthermore, for
each pair of beams (b1, b2) with b2 6= b1, we can use b1
to generate constructive interference (CoMP-like) with b2, or
to avoid destructive interference by keeping it silent (ABS-
like), which is modeled through binary variables µ(b1, b2, k)
and β(b1, b2, k), respectively. E.g., µ(b1, b2, k) = 1 means
that, at time k, beam b1 is used to improve the data rate of b2
instead of transmitting data on its own. Finally, continuous
variables σ(b, k, v) ∈ [0, 1] express the fraction of time that
beam b allocates to serve vehicle v at time k.

To begin with, we impose that each beam only belongs to
one gNB at every time interval, and that gNBs do not exceed
the maximum number of beams. I.e., for any k ∈ K,∑
g∈G

γ(b, g, k) ≤ 1, ∀b ∈ B;
∑
b∈B

γ(b, g, k) ≤ N(g), ∀g ∈ B .

(16)
In particular, the first inequality descends from the fact that,
in our model, beams in B are not statically tied to a specific
gNB; thus, the same element of B cannot be associated with
multiple gNBs at the same time.

Furthermore, we must ensure that the half-power width of
the beams does not exceed the limit, and that beams of the
same gNB do not overlap:

α(b, k) ≤ A(U(b, k)), ∀b ∈ B, k ∈ K, (17)

|δ(g)
1 (b1, k)− δ(g)

1 (b2, k)| ≥ α(b1, k) + α(b2, k)

2
,

∀b1, b2 ∈ B : U(b1, k) = U(b2, k), k ∈ K. (18)

In both (17) and (18), U(b, k) = g ∈ G : γ(b, k, g) = 1
represents the gNB to which beam b belongs.

Concerning transmission power, we mandate that the per-
gNB power budgets are met, and that no power is allocated
to unused beams, i.e.,∑

b∈G : U(b,k)=g

P (b, k) ≤ Ptot(g), ∀g ∈ G, k ∈ K, (19)

P (b, k) ≤
∑
g∈G

γ(b, g, k)Ptot(g), ∀b ∈ B, k ∈ K. (20)

Finally, any beam b can be used at any time k in a COMP-
or ABS-like fashion in combination with at another beam:∑

b′∈B

[µ(b, b′, k) + β(b, b′, k) + µ(b′, b, k) + β(b′, b, k)] ≤ 1 .

(21)

Concerning the scheduling variables, we proceed as follows.
The sum of variables σ(b, k, v) cannot exceed one:∑

v∈V
σ(b, k, v) ≤ 1, ∀b ∈ B, k ∈ K. (22)

Additionally, we schedule no time to serve vehicles that are
out of the beam’s coverage:

σ(b, k, v) ≤ V (b, k, v), ∀b ∈ B, k ∈ K, v ∈ V. (23)

In (23), V (b, k, v) = 1{|δ(g)
1 (b,k)−d(g,k,v)|≤α(b,k)/2} (with g =

U(b, k)) represents whether beam b covers vehicle v at time k.
Our objective can then be stated as maximizing the total

data rate received by vehicles:

max
α,β,γ,δ

(g)
1 ,µ,π,σ

∑
b∈B

∑
k∈K

∑
v∈V

σ(b, k, v)R(b, k, v) (24)

where R(b, k, v) represents the data rate that vehicle v would
obtain from beam b at time k, if that beam would serve no
other vehicle. Given the availability of the channel coefficients
at the gNB, during time step k, i.e., Hk, and of the SINRv

in (14) experienced by the receiver, the gNB can transmit
at the maximum data rate supported by the channel. Then,
considering the very high waveform spectral occupancy in
5G, the achievable data rate through beam b at time step k
is given by (15). In the case of a CoMP-like transmission,
the useful signal (interference) is determined by the number
of gNB contributing constructively (destructively), which are
captured by the V (b, k, v) variables. Note that, in this case, the
total useful signal is given by the sum of signals coming from
different gNBs, which coordinate among themselves and apply
a precoding matrix in order to perform in-phase transmissions.
It is also important to underline that R(b, k, v) is the estimated
achievable rate, while the actual data rate is determined by the
instantaneous channel conditions and the modulation-coding
scheme that is selected.

B. Beam design heuristics

Directly solving the optimization problem stated in Sec. V-A
has a very high computational complexity. Indeed, in both the
unicast and brodcast cases, R in the objective is a non-linear
function of the decision variables, and some of the constraints,
e.g., (18) and (23), involve an indicator function and/or the
modulo operator, thus making the problem fall in the mixed-
integer linear programming (MILP) category. Such problems
are well-known to be NP-hard (the reader is referred to the
reduction from the vertex cover problem in [25]).

To avoid dealing with such an overwhelming complexity,
we adopt a heuristic approach.

Clustering-based strategies. We first cast the beam man-
agement problem as a one-dimensional clustering7 problem.

7Note that clustering here does not refer to the path clusters in Sec. III-B.
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Indeed, each beam b of gNB g can be seen as a cluster of
directions, with center δ(g)

1 (b, k) and maximum width A(g).
Each of such directions may cover one or more users at a
given data rate, depending on the channel conditions and the
antenna gain. Thus, each direction can be associated with a
certain “weight” reflecting the sum rate offered to the covered
users. Clustering will lead to maximizing the total weight
corresponding to a set of directions (beams). We then solve
the clustering problem by considering two different strategies,
named Static and Dynamic, as detailed next.

In the Static scheme, the directions and widths of the beams
at the gNBs do not change over time, i.e., δ(g)

1 (b, k) = δ
(g)
1 (b)

and α(b, k) = α(b). To determine those directions, we formu-
late a hierarchical clustering problem as follows:

1) for each vehicle v and time step k, we create one
observation (i.e., one data point) corresponding to v’s
position;

2) we consider the whole set of observations and com-
pute the pairwise angular distances (i.e., |δ(g)

1 (b, k) −
d(g, k, v)| between any two observations;

3) we feed the resulting distance matrix to the Voor Hees
algorithm [26], setting the maximum intra-cluster dis-
tance to A(g);

4) we consider the n largest clusters, i.e., the clusters
including the highest number of observations;

5) for each such cluster, we set the direction δ
(g)
1 (b)

as the mean between the minimum and maximum
angle of the vehicles it includes, i.e., δ

(g)
1 (b) ←

1
2 [minv∈V d

(g)
1 (v, k) + maxv∈V d

(g)
1 (v, k)].

Note that, in step 1, we may create multiple observations with
the same coordinates, e.g., if two vehicles are observed in the
same position at different times. This is intentional and allows
us to properly account for the fact that vehicles are more likely
to be found in some locations of the topology than in others.

The Static strategy is the simplest way to leverage aggregate
traffic statistics; also, it can be performed offline and requires
no reconfiguration of the beams. On the negative side, it cannot
account for the time evolution of vehicular mobility, e.g.,
different traffic patterns at different hours of the day.

The Dynamic strategy works in the same way as the Static
one, with the important difference that decisions are re-made
at every time step, i.e., the clustering procedure described
above is repeated at every k, accounting only for the posi-
tions of the vehicles at that step. Implementing the Dynamic
strategy requires real-time knowledge of vehicular mobility
and continuous and almost-instantaneous beam reconfigura-
tion. Such aspects reduce its practical relevance to real-world
implementation; nonetheless, it represents a useful benchmark
to compare against.

The traffic Lights (TL) strategy. Vehicular mobility is
constrained not only by the road topology, but also by the
state of traffic signals, e.g., traffic lights. Based on such an
observation, the TL strategy leverages the available informa-
tion on traffic lights states, and points the beams available at
each gNB towards the road segments where the traffic light is
red. Also, all beams will have half-power width equal to A.

The TL strategy is more flexible than the Static one, in that

TABLE VII
TOY SCENARIO WITH TWO GNBS: QUANTITY OF DOWNLOADED DATA, IN

TBYTE, UNDER THE TL AND THE OPTIMUM STRATEGY

Scenario TL Optimum
N = 2, A = 5 14.04 14.18
N = 2, A = 15 15.20 15.26
N = 4, A = 5 12.93 13.60
N = 4, A = 15 14.53 14.70

beam directions account for the vehicles’ mobility. Also, it
is much more practical than the Dynamic strategy, as beam
reconfigurations are less frequent, and it does not require any
real-time mobility information. Indeed, it is important to stress
that, unlike the clustering-based Static and Dynamic schemes,
the TL strategy requires no knowledge whatsoever on vehicular
mobility, and can therefore be applied in situations where such
information is unavailable or unreliable.

VI. NUMERICAL RESULTS

In our performance study, we consider the Luxembourg road
topology and mobility trace introduced in Sec. III-A. We then
set the carrier frequency at fc = 76 GHz, as typically used
in vehicular networks [27], and the available bandwidth at
Bw = 400 MHz [28]. We assume that all gNBs are equipped
with a 16× 16 UPA with up to 4 RF chains, and the user is
equipped with a 8×8 UPA. From the Luxembourg trace [24],
we utilize:
• the real-world topology, including building shapes;
• the real-world location and phases of traffic lights;
• the realistic traffic and mobility of each vehicles.

Furthermore, we adapt the LoS probability used in our model
to the real-world topology we consider, by tailoring the
parameters of the blockage model in [9].

The channel gains and performance indicators are derived
through numerical simulations, based on the above-mentioned
real-world data. In particular, we use the 3GPP approximated
channel model accounting for the Doppler effect, shadowing,
and multipath fading, and we set the large-scale parameters
used for modeling as in [11]. For all strategies, we consider
a common value of maximum half-power beamwidth for all
gNBs, namely, A = 5◦, 10◦ unless otherwise specified, while
the maximum number of simultaneous beams, N(g), is the
same for all the gNBs and varies from 2 to 4.

We focus on downlink traffic and derive the effective data
rate by using the 4-bit channel quality indicator (CQI) table
in [29], which maps the reported CQI to a particular mod-
ulation coding scheme (MCS) and spectral efficiency value.
For the purposes of this study, the SINR to CQI mapping
was performed using the spectral-efficiency based approach
reported in [30]. The values of data rate depend on the
number of gNBs contributing to the useful received signal
(constructive interference), i.e., on µ(b1, b2, k), as well as on
the destructive interference that may come from other gNBs,
i.e., 1− β(b1, b2, k).

The first aspect we are interested in is the performance of the
proposed TL strategy against the optimum. Due to the problem
complexity, the latter is found via brute-force, and, to make
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Fig. 9. Total amount of downloaded data for different strategies and beam
configurations, (i.e., maximum number of beams, beam half-power width).

the brute-force approach terminate in a reasonable amount of
time, we limit the comparison to two gNBs, namely, the two
that in the topology in Fig. 1 are closest to each other.

Tab. VII presents the total amount of data that the vehicular
users download under the TL and optimum strategies, and
accounting for the actual channel conditions the users experi-
ence. We observe that TL is remarkably close to the optimum;
furthermore, the difference is more significant in four-beam
scenarios than in two-beam ones. This is due to the fact that,
in some four-beam configuration, under TL the same vehicle
may be served by multiple beams, which does not happen
under the optimal strategy.

We also investigate the performance of TL in the full
Luxemburg City scenario and compare it against the other
strategies discussed in Sec. V-B. These results, shown in
Fig. 9, have been obtained by considering again the actual
channel conditions over time. As one might expect, more
and/or wider beams consistently result in better performance.
The comparison between different strategies is instead quite
surprising. For all but one set-up, TL outperforms all other
schemes, including Dynamic which uses real-time information
(the reasons for this behavior are detailed next). As for Static,
it performs fairly well in comparison to the alternatives,
proving to be not only an interesting baseline but also a viable
option when more sophisticated approaches are infeasible, e.g.,
when gNBs cannot be co-located with traffic lights.

To understand where the difference in performance we
observed in Fig. 9 comes from, we look at SINR and data rate
achieved by the different strategies, summarized in Fig. 10 and
Fig. 11, respectively. We can observe that Dynamic is able to
achieve a better SINR than its alternatives; the average SINR
value (marked by the dot in the curve) is around 2 dB higher
for Dynamic than the other two strategies. This is thanks to
the fact that beams can be steered exactly towards vehicles
instead of towards road segments. Unsurprisingly, Static has
the lowest SINR, owing to the fact that the direction of beams
cannot change over time. There is another interesting effect
we can observe when comparing Fig. 10 and Fig. 11. The
Static strategy results in a slightly lower SINR for the vehicles
experiencing worse conditions (the ones representing the worst
30% in the CDF curve), as we can see from the left part of the
curves in Fig. 10. Such a difference corresponds, in Fig. 11,
to a lower rate for those vehicles. The Dynamic strategy,
on the other hand, provides the vehicles enjoying favourable
propagation conditions with a substantially better SINR than

Fig. 10. SINR experienced by served vehicles under different strategies, when
there are: two beams (left) and four beams (right) with A = 5◦. The average
values are marked by a dot on each curve.

Fig. 11. Actual rate experienced by served vehicles under different strategies,
when there are: two beams (left) and four beams (right) with A = 5◦. The
average values are marked by a dot on each curve.

its alternatives, as we can observe form the right part of the
curves in Fig. 10. However, the difference in rate in Fig. 11 is
much more limited; the average rate values, marked by the dots
on the curves, almost coincide for the three different strategies.
The reason is that SINR values are often so high that vehicles
achieve the maximum possible rate, as shown by the jumps
in Fig. 11: further increasing the SINR, as Dynamic does,
brings little additional benefit. Comparing the left and right
plots in Fig. 10 and Fig. 11, we can conclude that increasing
the number of beams from 2 to 4, the system performance
does not improve significantly.

The differences in SINR and actual rate shown in Fig. 10
and Fig. 11 do not fully explain, however, the performance
difference displayed by Fig. 9. In Figs. 12 and 13, we therefore
study for how long each vehicle is served under each strategy
and the amount of downloaded data per vehicle. Recall that,
in both figures, only served vehicles are considered. The
difference between TL and its counterparts is now very clear
and very significant. Under all set-ups, TL serves vehicles for
a substantially longer time than the other strategies (Fig. 12)
and, accordingly, it provides them with much more data. By
comparing Fig. 12 to Fig. 13, we see that, although vehicles are
served for virtually the same time by the Static and Dynamic
strategies (Fig. 12), the latter results in a higher quantity of
transferred data. In particular, there is an average increase of
approximately 60 Mbyte per vehicle; this is a consequence of
the difference in data rate we observed in Fig. 11.

The fact that vehicles are served for a much longer time
under the TL strategy is consistent with the basic idea that TL
should serve static vehicles waiting at a red light.

In summary, the TL strategy focuses on the vehicles that
can profit the most from mmwave gNBs deployed at traffic
lights, and provides them with as much data as possible for
as long as possible. This may sound unfair; however, it is
worth recalling that mmwave is not supposed to be the be-
all and end-all of vehicular networks (or indeed, any kind
of network). Mmwave is one of several technologies to be

11



Fig. 12. Time for which each vehicle is served under different strategies, for
two beams (left) and four beams (right) with A = 5◦. The average values
are marked by a dot on each curve.

Fig. 13. Data downloaded by each served vehicle under different strategies,
when there are: two beams (left) and four beams (right) with A = 5◦. The
average values are marked by a dot on each curve.

combined together in order to provide pervasive, high-capacity
network coverage to mobile users, and using it to serve static
users waiting at traffic lights is, in our scenario, the best way
to make the most out of it.

VII. CONCLUSIONS

Mmwave is a promising technology to enhance the capacity
of vehicular networks. However, the performance of mmwave
networks depends on the number, the alignment, and the
width of beams between gNBs and vehicles, and these require
knowledge of the vehicles’ mobility. Instead of relying on
real-time mobility information, we proposed to rely on traffic
signals, e.g., traffic lights, which influence the mobility itself.
In particular, we first developed low-complexity approximate
models for the mmwave channel gain and showed their ac-
curacy in realistic scenarios, against more complex, existing
models. Then we presented an optimization formulation for
an effective beam design, and we proposed a low-complexity,
heuristic solution, which proved to perform very close to the
optimum.

Our performance evaluation, based on our innovative
mmwave communication models and real-world topology and
mobility information, has provided relevant insights. Leverag-
ing traffic light-state information for beam design results in a
network performance that exceeds that of baseline approaches
(namely, static beam alignment) and is comparable to that of
approaches using real-time mobility information.
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