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Abstract The present paper faces the train load planning problem (TLPP)
in container terminals. The problem consists of assigning containers to rail
wagons while maximizing the total priority of the containers loaded and min-
imizing the number of rehandles executed in the terminal yard. Two different
heuristic approaches, based on an innovative way to compute weight limita-
tions and on two 0/1 integer programming models, are proposed and compared
on the basis of specific key performance indicators (KPIs). The heuristic ap-
proaches are compared by using random generated instances based on real-
world data. An extensive computational analysis has been performed.
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1 Introduction

Following the financial crisis of 2008, containerization transportation demand
has started growing again; the current forecasting for future years indicates
a continuous increase of containerized cargo transportation at a global level.
This has a strong impact on both seaports and inland ports, which have to
handle an increasing amount of goods while respecting parameters of efficiency
and speed. In such a context, rail transportation should be strengthened, rep-
resenting the most suitable transport mode to forward large volumes of freight
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inland. If properly organized, rail transportation is able to handle higher quan-
tities of cargo more quickly than road transport (Alumur et al. , 2012) and to
relieve road networks of heavy vehicles, bringing environmental benefits both
in terms of pollution and congestion.

An important issue concerning the effectiveness of rail transport in con-
tainer terminals is related to the Train Load Planning Problem (TLPP). The
TLPP consists of assigning containers to train wagons while pursuing specific
goals, such as minimizing the time needed for loading the train, optimizing the
use of resources or, simply, minimizing the total loading costs. Particularly in
small to medium sized terminals, but also in some larger ones, this planning
activity is executed by rail planners based on their experience and on rail ta-
bles considering the features of containers, wagons and rail lines. This often
results in non optimal train plans in terms of time and cost minimization,
consequently affecting the competitiveness of both rail transport and termi-
nals. The present paper considers the optimal loading of trains in container
terminals, proposing two solution approaches to quickly solve the TLPP, thus
helping rail planners performing at their best.

1.1 Literature review

In recent literature, a lot of research on container terminals concerns models
for operations management, see for instance (Steenken et al. (2004), Stahlbock
and Voss (2008), Vis and De Koster (2003)); on the other hand, numerous
papers have been dedicated to different problems related to rail transportation
(see, among others, Anghinolfi et al. (2011), Wanga and Yun (2013), Woxenius
and Bergqvist (2011), Vaidyanathan et al. (2008), Bektas et al. (2009) and
Luan et al. (2017)).

Ahuja et al. (2005) provide a survey about railroad planning and scheduling
problems, including the railroad blocking problem, train scheduling and train
dispatching problems, locomotive scheduling and crew scheduling problems
and yard location problem. The main factors affecting the efficiency of rail
transport in container terminals are discussed by Corry and Kozan (2008),
who propose a simulation model combined with some heuristic rules. In Parola
and Sciomachen (2009) the authors present a study of multimodal container
flows passing through an Italian maritime terminal, focusing the attention on
the performance of road and rail connections. The problem concerning the
inter-terminal transportation flows is analyzed by Tierney et al. (2014).

Only in recent years the planning of train loading operations has obtained
attention from both researchers and terminal operators. Some works related to
this topic concern landside intermodal terminals while few recent papers focus
on seaports. In Bostel and Dejax (1998) some models and heuristic methods
for container allocation problems on trains in rail-rail terminals are presented,
while Corry and Kozan (2006) propose an assignment model for the dynamic
load planning of containers in road-rail terminals; more specifically, Corry and
Kozan (2006) provide several techniques for the train loading problem in order
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to assign containers to train slots while minimizing the container handling time
and optimizing the weight distribution on trains; however, only one type of
container is considered and weight restrictions for wagons are not included
in the model. In a following work (Corry and Kozan (2008)), more types of
containers are considered and the aim is to also minimize the train length.

In Lai et al. (2008) a loading assignment model for freight trains is provided
with the final goal of generating more fuel-efficient trains.

A good contribution for planning train loading operations in intermodal
terminals is provided in Bruns and Knust (2012): three different integer lin-
ear programming formulations are proposed for assigning containers to wagon
slots with the goal of maximizing train utilization and minimizing both trans-
portation costs for loading containers and set up costs for changing wagon
configurations. Moreover, different types of containers are considered as well
as various weight restrictions related to wagon configurations. A more recent
paper (Bruns et al. (2014)) tackles uncertainty related to both train wagons
and load units by using robust optimization; in addition, two different planning
phases are distinguished: the “pre-loading” and “while-loading” planning. An-
other very recent contribution to the train load planning problem is given by
Mantovani et al. (2017) that formulated and solved an ILP model for the single
and double-stack planning problem with the aim of minimizing the resulting
loading cost.

Ambrosino et al. (2011) provide the first work related to the TLPP in
seaports and present two mathematical formulations and a heuristic approach
for the TLPP with the goal of minimizing rehandling operations in the yard
and maximizing train utilization, assuming that the train is loaded in a se-
quential way (i.e., the rail crane cannot perform back and forth movements
when loading the train). Note that rehandles - also called reshuffles - are un-
productive movements executed in the yard, necessary in order to take out all
those containers that block the picking up of the required containers (as better
explained in the next section). In the seaport context rehandles have a higher
impact - in terms of time and cost - in respect to inland intermodal terminals,
in which the available space is usually greater (Rodriguez et al. , 2012).

Ambrosino et al. (2013) present a comparison among different train load-
ing policies (i.e., sequential loading, non sequential loading and intermedi-
ate combinations) by varying the stacking strategies applied in the terminal
yard; Ambrosino and Siri (2015) provide a comparison of different solution
approaches for the train load planning problem in a seaport container termi-
nal based on a mathematical programming model. Anghinolfi and Paolucci
(2014) propose a general purpose Lagrangian heuristic for solving the TLPP
in seaport terminals for a sequence of trains having different destinations. In
Anghinolfi and Paolucci (2014) the authors extend the model proposed in
Ambrosino et al. (2011) for including more trains and for minimizing also the
distance traveled by containers when they are transferred from the yard to
trains.

The present paper focuses on the sequential loading planning problem in a
seaport container terminal and proposes two heuristic approaches devoted to
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reduce the problem complexity, quickly solve the TLPP and be easily applied
in operational contexts. With respect to Bruns and Knust (2012) and Am-
brosino and Siri (2015), the proposed heuristic approaches use only a weight
condition with proper weight limitations for satisfying stability and structural
constraints. This work also proposes different interpretations of wagon load
configurations based on a new way to represent wagon slots with respect to
the previous literature devoted to the TLPP. The TLPP here investigated has
the aim of minimizing the number of unproductive movements in the yard (re-
handles) and the sum of the priority of containers that can not be loaded on
the train. Even if the problem presents two objectives, it has not been solved
as a bi-objectives optimization problem but minimizing the weighted sum of
the two previous mentioned objectives. In the recent literature, Ambrosino et
al. (2016) formulated a particular TLPP when the train is loaded with two
cranes as a multi-objective optimization problem (MOOP).

The effectiveness of the proposed approaches has been compared with real
data and real train plans provided by some Italian container terminals.

The remainder of the paper is organized as follows. Section 2 describes in
more detail the problem under investigation. In Section 3, the heuristic ap-
proaches are presented. Section 4 provides an extensive computational analy-
sis; finally, some concluding remarks are reported in Section 5.

2 Problem description.

Figure 1 shows a typical process of train loading in a container terminal:
containers that arrive in the terminal and have to continue their trip by rail,
are stacked in the yard in specific blocks; from here, they are picked up by the
terminal equipment - such as Rubber Tyred Gantry (RTG) cranes or reach
stackers - and transported close to the rail park located inside the terminal to
be loaded on rail wagons - usually by a Rail Mounted Gantry (RMG) crane.

Fig. 1 A generic rail process in a container terminal.

The TLPP under investigation can be stated as follows: given a train com-
posed of a set of empty wagons characterized by different weights, lengths and
load configurations, and given a set of containers characterized by different
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weights, lengths, priorities and stacking positions in the yard, the TLPP con-
sists of assigning containers to wagons in order to satisfy weight and length
constraints, while both minimizing rehandles in the stacking area and maximiz-
ing the priorities of the containers loaded on the train. The “priority” reflects
the importance associated with each container and is related to one or more
of the following parameters: customer significance, value of goods transported
in the container and urgency of sending the load unit. On the other hand,
rehandles are unproductive movements that must be minimized because they
strongly affect time and cost associated with loading operations. The number
of rehandles to execute in order to pick up a container is affected by the type
of terminal equipment used. To make this point clearer, if the black striped
container in the block under the RTG in Figure 1 has to be picked up before
the container above it, thus one rehandle has to be executed. The situation is
different if using a reach stacker (as shown in Figure 2), and assuming that -
as occurs in reality - the whole block is operated from one side: four and seven
rehandles are needed when approaching the yard block from the right side and
the left side, respectively.

Fig. 2 Rehandles in case of yard handled with reach stackers.

In the TLPP here analyzed, it is assumed that the rail planner can choose
between a set of possible containers usually respecting specific characteristics
(such as the ship of origin or the final destination), instead of having a list
of containers to load. Note that the considered case is more general and also
includes the situation with a fixed list of containers.

It is also noted that the destinations of containers are not here explicitly
analyzed, since a train having a given destination (i.e., a rail station, a company
or an inland terminal) is here considered. In any case, the approaches presented
in this paper can easily be extended to include also the container destination.

Considering the timing of trains, in the majority of container terminals the
planning is applied to one train at a time. Given a particular yard configura-
tion, the optimal load for a specific train is determined. After this planning,
the train can be physically loaded, as stated in Bruns et al. (2014). Not consid-
ered in this work are all the possible changes regarding the yard configuration
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(due to new container arrivals, housekeeping operations or rehandles) that
may occur during the planning phase, during the loading process and between
planning and loading operations, since the object of this paper is an “off-line”
planning and not an “on line” one (i.e., physical loading). For the next train
planning, a new yard configuration caused by all changes above mentioned is
then taken into account.

Some other assumptions have been made for the TLPP here considered. As
already highlighted, the sequential loading of the train is considered, meaning
that the rail crane devoted to load containers on the train starts loading from
the first wagon onwards. Note that this loading mode is assumed when it is
preferable, both from an economic and temporal standpoint, to execute con-
tainer rehandles instead of moving the rail crane backward and forward along
its track (see Ambrosino et al. (2013) for more details). Some considerations
about the effectiveness of the sequential loading method for solving the train
loading problems have been proved in Ambrosino and Siri (2015).

We also assume that the terminal yard area, where the containers waiting
to be loaded on trains are stored, is located very close to the terminal rail park;
therefore distances from the yard to the rail park can be neglected. Besides,
only 20 and 40 foot containers are considered because they represent the most
used typologies among containerized load units.

More formally, given C containers in the stocking area, characterized by:

– a weight ωi (expressed in tons), i = 1, . . . , C;
– a length λi (either 20’ or 40’) i = 1, . . . , C;
– a priority πi (high, medium or low) i = 1, . . . , C;
– their relative position in the storage yard, γi,j , i, j ∈ {1, . . . , C}, i 6= j

indicating the position of a container i with respect to container j belonging
to the same stack. More precisely, γi,j = 1 indicates that container i is
located over j; otherwise γi,j = 0;

given a train composed by W wagons characterized by:

– a weight capacity ωw , w = 1, . . . ,W ;
– a set of possible slots Sw , w = 1, . . . ,W , having different length µs, s ∈ Sw

(either 20’ or 40’) and different positions on the train ρs, s ∈ Sw (expressed
in TEUs);

the problem consists in defining the assignment of containers to the wagons’
slots in such a way to maximise the priorities of containers loaded and minimize
the number of rehandles in the yard, while satysfaing the train capacity and
stability and structural constraints.

Note that TEU stands for Twenty Foot Equivalent Unit and a TEU cor-
responds to a Twenty-Foot (20’) container.

Concerning the train capacity, it is necessary to check both weight capacity
(Ω) and the TEU capacity (M).
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2.1 Stability and structural constraints

When dealing with real loading problems, weight constraints on each wagon
and on the train must be considered in a very strict manner to satisfy both the
structural capacity and the stability of each type of wagon. So, the transversal
(cross) weight distribution on each wagon must be checked. Figure 3 shows
the cross equilibrium for a generic wagon.

Some other limitations are imposed by the train speed and by the features
of the rail infrastructure network (such as bridges, tunnels, slopes, etc.).

Rail terminal planners utilize specific weight tables in order to determine
feasible plans for loading containers onto wagons; these tables are elaborated
to help them determining the allowable combinations of containers-wagons and
respect both stability constraints and structural capacity conditions related to
the wagons and rail network.

Fig. 3 Cross equilibrium for a generic wagon.

Figure 4 provides an example of a weight table describing the real load
pattern for two types of wagons utilized in the Italian rail infrastructure and
carrying 2 and 3 TEUs respectively.

Wagon w1 of Figure 4 is characterized by two load configurations and three
slots (i.e. s1, s2 and s3); two possible load configurations correspond to two
20’ containers (k1) and one 40’ container (k2). Wagon w2 is fully described
by 7 slots (i.e. from s4 to s10) and by three possible load configurations: three
20’ containers (k3), two 20’ containers (k4), and one 40’ container with one
20’ container (k5).

A set of weight configurations is associated to each load configuration;
for instance b1, b2 and b3 are the weight configurations associated with load
configuration k1. For each weight configuration the maximum weight for each
slot is indicated. As described above, these weight limits are established in
order to respect the wagons’ stability and structural constraints. For instance,
if two 20’ containers have to be loaded on the 2-TEUs wagon (as w1 in Figure
4), the first load configuration k1 of w1 is selected together with a weight
configuration (among the three permitted, b1, b2 and b3) depending on the
weight of the containers to be loaded. If a container weighing 14 tons has to
be loaded, weight configuration b2 can be chosen and the container can be put
into slot s1, while in the remaining slot s2 it is possible to load a 20’ container
weighing less than 33 tons.
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Fig. 4 Representation of a wagon by using load and weight configurations.

In Bruns and Knust (2012), for each load configuration, the authors start
their analysis from the set of possible weight configurations as described in
Figure 4. In order to reduce the set of possible configurations, they propose
to use the load configurations and then to check the stability and structural
constraints by using the following weight conditions C1, C2, C3:

C1. the payload per bogie must be restricted according to the characteristics
of the wagon (i.e. tare, length, weight capacity, distance between the bogies
attachments) and of the rail line connecting the port with its inland;

C2. the payload on a bogie must not be larger than three times the payload
on the other bogie;

C3. the payload for each slot on the wagon has to be limited.

When using conditions C1, C2, C3, the number of possible configurations
to choose between drastically decreases, passing from 4 (b1,...b4) to 2 (k1,k2)
in case of wagon w1 and from 10 (b5,...b14) to 3 (k3,k4,k5) in case of wagon
w2.

The interested reader can find in Appendix 1 an explanation of how condi-
tions C1, C2, C3 are derived by lever principles, while in the following a formal
description of these conditions is reported.

Let us introduce the following useful additional notation:

– Bw the set of load configurations for wagon w = 1, . . . ,W ;
– Sk the set of slots belonging to configuration k of wagon w, k ∈ Bw,
w = 1, . . . ,W ;

– aw ≥ 0 the payload of bogie a of wagon w, w = 1, . . . ,W ;
– bw ≥ 0 the payload of bogie b of wagon w, w = 1, . . . ,W ;
– dw the distance between the bogies attachments of wagon w, w = 1, . . . ,W ;
– γw the maximum payload for each bogie of wagon w, w = 1, . . . ,W ;
– tw the weight of wagon w (tare), w = 1, . . . ,W ;
– es the lever of slot s, s ∈ Sk, of configuration k of wagon w, k ∈ Bw,
w = 1, . . . ,W ;

– δk,s ≥ 0 the weight loaded in slot s of Sk, k ∈ Bw, w = 1, . . . ,W ;

– δ̂k,s ≥ 0 maximum weight that can be loaded in slot s of Sk, k ∈ Bw,
w = 1, . . . ,W ;
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The payload can be computed thanks to the following equations:

aw =
∑
s∈Sk

dw − es
dw

δk,s +
tw
2

(1)

bw =
∑
s∈Sk

es
dw
δk,s +

tw
2

(2)

Conditions C1, C2, C3 follows: equations (3) and (4) are condition C1, (5)
and (6) are condition C2, and finally C3 is verified by equation (7)

aw ≤ γw (3)

bw ≤ γw (4)

aw − 3bw ≤ 0 (5)

bw − 3aw ≤ 0 (6)

δk,s ≤ δ̂k,s (7)

The novel idea proposed in this paper is to define the weight limitations
used in C3 (i.e., δ̂k,s ) in such a way to respect also conditions C1 and C2 and,
then, to use only condition C3 for checking stability and structural constraints
(see Section 3).

2.2 Representations of wagon configurations by even and odd slots
enumeration system (EOS)

With the aim of reducing the size of the model for solving the TLPP, another
way of representing the set of slots belonging to each wagon is proposed in
this paper. Looking at Figure 4 it is evident that slots s6, s8, s10 represent
the same physical slot, but it is necessary to enumerate it three times since
this slot belongs to three different load configurations. The idea proposed in
this paper is not to use loading configurations and to enumerate each slot only
once as explained below.

In Figure 5 the new slots representation is reported. For each wagon, all
the possible slots are identified and enumerated adopting the bays enumeration
system used for ships, that is, 20 foot slots are identified by odd numbers, while
40 foot ones are associated with even ones. Thanks to this slot enumeration
system, the number of slots necessary for describing the 3 TEUs wagons (i.e.,
w2) reduces, passing from seven slots - as depicted in Figure 4 - to four slots
(i.e., s5, s6, s7 and s9 of Figure 5). For a 2-TEUs wagons (i.e., w1) the number
of slots remains the same but their enumeration changes (i.e., s2 is now a 40’
slot whereas in Figure 4 it is a 20’ slot due to a progressive slots’ enumeration).

Note that this enumeration system, derived by the container ships, can be
adapted when containers of different size have to be loaded on trains (i.e., 45’
containers).
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Fig. 5 Representation of a wagon by using the new slot enumeration.

3 The heuristic approaches

In this section, two heuristic approaches for solving the TLPP described above
are introduced. Each of them is based on two steps as depicted in Figure 6.

Fig. 6 The two steps of the heuristic approaches.

As already explained in Section 2.1, Bruns and Knust (2012) check stability
and structural constraints thruoght the load configurations of wagons and
weight conditions C1-C3. The novel idea proposed in this paper is to use only
condition C3 for checking stability and structural constraints; this is possible
if the weight limitations used in C3 is defined in such a way to respect also
conditions C1 and C2.

The weight limitation for each slot of each wagon configuration is computed
in Step 1. In Step 2, when solving the TLPP the weight limitations and the
stability and structural constraints are verified thanks to the maximun weight
that can be loaded on each slot of the train (condition C3), being the maximun
weight of each slot derived by Step 1.

In the second step, the TLPP is solved thanks to a 0/1 integer linear
programming (0/1 ILP) formulation using conditions C3 with the maximum
weights calculated in Step 1.

The LC−approach, uses the load configurations for describing wagon slots
while the second approach, the EOS − approach, uses the EOS enumeration
system described in Section 2.2.

This approach can be considered as a decomposition approach that can not
guarantee the optimality. In fact, when applying Step 1 of the procedure, some
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weight configurations may be lost and, consequently, they are not available
when solving the Step 2 of the TLPP. Anyway, as shown in Section 4, it
perfoms very well.

3.1 Step 1: a procedure for determining slot weight limitations

The first step of each heuristic approach consists of a procedure for computing
the weight limitation for each slot of each wagon to be used in the second step.
In the current section the procedure to adopt when the load configurations
are used is described; anyway it is easy to modify and use it when wagons are
described by the even/odd enumeration system.

The computed weight limitations are able to:

– grant stability;
– satisfy all the structural constraints for both the wagons and the rail lines;
– satisfy structural constraints related to containers.

The procedure can be described in the following steps:

- Step 1A: a LP model (Wsd) is solved for determining the maximum weights
for wagon slots in a such a way to satisfy conditions C1 and C2 and respect
some operative bounds (i.e., in real cases, the maximum weight of 20’ and
40’ containers do not exceed 28 and 37 tons, respectively).

- Step 1B (weight check and redefinition): the weight limitations obtained at
the end of Step1A are compared with the weights of the stored containers.
If necessary, the model Wsd is solved again with new bounds.

Note that Step1B has been introduced in order to have a control on the
capability of loading the heaviest containers stored in the yard. The output of
these two steps are the slots’ weights that permit to solve the TLPP with a
lean formulation.

Before further explaining Step 1A and Step 1B (i.e., the Wsd model and
the weight control), the following additional notation must be introduced:

– Υ20 and Υ40 the maximum weight of respectively 20’ and 40’ containers
stored in the yard;

– Ψ20 and Ψ40 the average weights of respectively 20’ and 40’ containers
stored in the yard.

The additional decision variables are the following:

– δHk,s ≥ 0 indicates the maximum weight for slot s ∈ Sw, of wagon w,
w = 1, . . . ,W , in load configuration k ∈ Bw of wagon w.
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3.1.1 Step 1A

For each wagon w, for each configuration k, k ∈ Bw, the set of weights asso-
ciated with the slots of configuration k, δHk,s, s ∈ Sk are computed by solving
the following LP model.

Wsd - Weight slot definition

max
∑
s∈Sk

δHk,s (8)

such that
(3) -(6)

aw −
∑
s∈Sk

dw − es
dw

δHk,s =
tw
2

(9)

bw −
∑
s∈Sk

es
dw
δHk,s =

tw
2

(10)

δHk,s ≤ 28 s ∈ Sk : µs = 20′ (11)

δHk,s ≤ 37 s ∈ Sk : µs = 40′ (12)

δHk,s ≥ Ψ20 s ∈ Sk : µs = 20′ (13)

δHk,s ≥ Ψ40 s ∈ Sk : µs = 40′ (14)

aw ≥ 0 (15)

bw ≥ 0 (16)

δHk,s ≥ 0 s ∈ Sk (17)

The objective function (8) maximizes the sum of the weights of the slots
of the considered configuration k.

Constraints (9) and (10) compute the payloads of the bogies of wagon w.
Each payload per bogie of wagon w must not be greater than a given maximum
value that reflects the structural constraints for both the wagon and the rail
network (condition C1), as required in (3) and (4) The payload on a bogie of
wagon w must not be larger than three times the payload on the other bogie
(condition C2), as required in (5) and (6).

As far as bounds are concerned, δHk,s must not be greater than the maximum
weight of a 20’ or 40’ container, i.e., 28 tons or 37 tons, respectively for 20’
and 40’ slots, as required in (11) and (12). Thanks to (13) and (14), δHk,s is not
lower than the average weights of 20’ or 40’ containers stored in the yard (i.e.,
Ψ20 and Ψ40), respectively for 20’ and 40’ slots.

Finally, constraints (15)-(17) define the decision variables.
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3.1.2 Step 1B

In order to be able to load any container that is stored in the yard, a weight
control on δHk,s is executed; in particular these weights, obtained by solving
(8)-(17) for each configuration k, k ∈ Bw of each wagon w, are compared with
the weight of the heaviest containers stored.

After having computed the weight limitations for each slot s ∈ Sk of each
configuration k, k ∈ Bw of each wagon w, w = 1, . . . ,W (i.e.,

∑W
w=1 |Bw| Wsd

models have been solved) the following steps are executed:

1. sort the 20’ containers located in the yard in descending order in accordance
with their weights;

2. sort the slots characterized by µs = 20′ in descending order respect to their
weights;

3. compute z20 the number of 20’ containers having a weight greater than
the maximum weight of the 20’ train slots (i.e., check if there are some 20’
containers that cannot be loaded on the train);

4. for R20 wagons, solve the model Wsd by adding constraint (18), in such
a way to determine for R20 wagons at least a slot ŝ (such that µŝ = 20′)
with a weight limitation greater than the maximum weight Υ20.

δHk,ŝ ≥ Υ20 (18)

R20 is fixed as follows: if z20 ≤ W , then R20=z20 , else (i.e.z20 ≥ W )
R20=W .

The same steps are repeated for 40’ containers; in particular, for R40 wag-
ons, model Wsd is solved by adding constraint (19), in such a way to determine
for R40 wagons at least a slot ŝ′ (such that µŝ′ = 40′) with a weight limitation
greater than the maximum weight Υ40.

δH
k,ŝ′
≥ Υ40 (19)

MWsd denotes the modified version of model (8)-(17) obtained by adding
constraints (18) and (19).

To better clarify the procedure proposed above, the reader should refer to
the flow chart diagram presented in Figure 7.

A similar procedure is required when the enumeration system (EOS) is
used to describe wagon slots; when EOS is adopted, at the end of Step 1 the
maximum weight for slot s (i.e., δHs ) is obtained.

For both approaches, at the end of Step 1, the computed weight limitations
granting stability and respecting structural constraints can be used in the 0/1
ILP formulations for solving the TLPP (as shown in the following).

3.2 Step 2: 0/1 ILP formulations for TLPP

In the second step of the heuristic approaches proposed for the TLPP, a 0/1
ILP formulation is solved. In the following, the two formulations used are
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provided; they differ only in the representation and enumeration of wagon
slots.

3.2.1 Formulation based on load configuration (P1) used in LC-approach

The following formulation P1 is derived from the model proposed in Ambrosino
and Siri (2015) for the sequential loading of a train. P1 is based on load con-
figurations for describing wagon slots, but with respect to Ambrosino and Siri
(2015) it is not based on weight configurations, since stability and structural
constrains are verified by weight constraints for the slots, in which the weight
limitations are those derived by the procedure described in Section 3.1. This
difference reflects only in new constraints (24).

Note that this is a novelty with respect to the previous literature which was
based on more complex wagon configurations (Ambrosino and Siri (2015)) or
on conditions C1− C3 (Bruns and Knust (2012)).

Anyway, the whole formulation of P1 is here reported for a better under-
standing of both LC − approach and EOS − approach.

Before describing the mathematical formulation for solving the TLPP un-
der investigation, let us introduce an additional notation for the problem de-
cision variables:

– xi,s ∈ {0, 1}, i = 1, . . . , C, s = 1, . . . , S: λi = µs, equal to 1 if container
i is assigned to slot s and 0 otherwise (note that only xi,s variables for
slot-container pairs with the same length are generated);

– fw,k ∈ {0, 1}, w = 1, . . . ,W , k ∈ Bw, equal to 1 if load configuration k is
chosen for wagon w and 0 otherwise.

– yi,j ∈ {0, 1}, i, j ∈ {1, . . . , C} : γi,j = 1, equal to 1 if container i is
rehandled to load container j.

and α the unitary rehandling cost (i.e., the cost of one rehandling opera-
tion).

The resulting formulation P1 follows.

Model P1

min α ·
∑

i,j∈{1,...,C}:
γi,j=1

yi,j +

C∑
i=1

πi ·

(
1−

S∑
s=1

xi,s

)
(20)

such that
S∑
s=1

xi,s ≤ 1 i = 1, . . . , C (21)

C∑
i=1

xi,s ≤ 1 s = 1, . . . , S (22)

∑
k∈Bw

fw,k = 1 w = 1, . . . ,W (23)
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C∑
i=1

ωi · xi,s ≤
∑
k∈Bw

δHk,s · fw,k w = 1, . . . ,W s ∈ Sw (24)

C∑
i=1

∑
s∈Sw

ωi · xi,s ≤ Ωw w = 1, . . . ,W (25)

C∑
i=1

S∑
s=1

ωi · xi,s ≤ Ω (26)

S∑
s=1

ρs · xi,s −
S∑
s=1

ρs · xj,s ≤Myi,j +M

(
S∑
s=1

xi,s −
S∑
s=1

xj,s

)
∀i, j ∈ {1, . . . , C} : γi,j = 1 (27)

xi,s ∈ {0, 1} i = 1, . . . , C s = 1, . . . , S (28)

yi,j ∈ {0, 1} i, j ∈ {1, . . . , C} : γi,j = 1 (29)

fw,k ∈ {0, 1} w = 1, . . . ,W k ∈ Bw (30)

The cost function (20) takes into account rehandling costs in the yard and
penalty costs for containers not loaded, giving precedence to the loading of
higher priority containers. Constraints (21) make sure that each container is
assigned at most to one slot, whereas constraints (22) assure that no more
than one container is loaded in each slot. A load configuration is chosen for
each wagon thanks to constraints (23); constraints (24) assure that the weight
of a container loaded on a wagon slot does not exceed the maximum weight
for the slot associated to the specific load configuration chosen. δHk,s is derived
from the procedure described in the previous section. Note that the respect
of weight limitations imposed in order to guarantee the stability of wagons is
implicitly assured by constraints (24), thanks to δHk,s.

Constraints (25) are related to the maximum weight of each wagon, while
not overcoming the maximum allowable weight for the whole train is assured
by constraint (26). Rehandling movements are defined by constraints (27): for
each couple of containers (i, j) such that γi,j = 1, if container j (located under
container i in the same stack) is loaded before container i, it means that train
position ρs of container i is higher than the one of container j and so the term
(
∑S
s=1 ρs · xi,s −

∑S
s=1 ρs · xj,s) assumes a positive value; so, in this case, the

variable yi,j has to assume a value equal to 1, that means that a rehandle is

counted. It must be noted that the term M(
∑S
s=1 xi,s−

∑S
s=1 xj,s) is necessary

in order to assure the validity of constraints (27) when only container i is
loaded while container j remains in the yard, and viceversa when container i
is not loaded at all.

Finally, constraints (28)-(30) define the decision variables of the problem.



16 Daniela Ambrosino, Claudia Caballini

3.2.2 Formulation based on the new slot enumeration (P2) used in the
EOS-approach

Formulation P2 is here presented in an attempt to reduce the number of
variables and constraints generated in formulation P1. For this purpose the
slot enumeration depicted in Figure 5 is used; for each wagon the set Sw of
slots is partitioned into two subsets, the subset of oddslots (OSw) and that of
evenslots (ESw).

The resulting formulation P2 follows.

Model P2

Min (20)

such that (21)

C∑
i=1

xi,s +

C∑
i=1

xi,s+1 ≤ 1 w = 1, . . . ,W s ∈ ESw (31)

C∑
i=1

xi,s +

C∑
i=1

xi,s−1 ≤ 1 w = 1, . . . ,W s ∈ ESw (32)

C∑
i=1

ωi · xi,s ≤ δHs s = 1, . . . , S (33)

(25)-(29)

Model P2 differs from model P1; in the fact that variables fw,k are no
longer necessary and consequently constraints (23), which in P1 enable choos-
ing and assigning a load configuration, are no longer needed.

Constraints (22) of model P1, indicating that no more than one container
can be assigned to one slot, are replaced by constraints (31) and (32) needed to
define the use of even and odd slots. These constraints are necessary in order
to make sure that, when an even slot is loaded (i.e. a 40’ container is loaded),
the corresponding odd slots are left vacant. For instance, making reference to
Figure 5, if a container is loaded in slot s2, then both slots s1 and s3 must be
left free.

Constraints (24) are replaced by the easier constraints (33). More specifi-
cally, constraints (33) express the fact that the weight of a container cannot
exceed the maximum weight for the corresponding slot on which it is loaded.

As before, δHs has been determined through Step 1 of the proposed proce-
dure.
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4 Computational results

In order to validate the proposed approaches for the TLPP and to compare
them, we have generated 8 sets of random instances based on real data provided
by an Italian container terminal operator. These sets differ from each other
in the number of wagons (W ), ranging from 15 to 40, and in the number of
containers stored in the yard (C), ranging from 60 to 200.

Each train is composed by wagons having a capacity of either 2 or 3 TEUs.
The number of 2 and 3 TEUs wagons composing the train, and influencing
the TEUs capacity of the train (M), is randomly generated.

The number of 20’ and 40’ containers composing the stacks in the yard
and influencing the TEUs stored in the yard (T ), is randomly generated on
the basis of real data.

Summerizing, each instance is characterized by a train having a given num-
ber of wagons (W ), a TEUs capacity (M) and is related to a certain number
of containers (C) and TEUs in the yard (T ), as shown in Table 1.

The priority assigned to each container is generated in a probabilistic way
among three priority classes, “low” (having a priority value equal to 10 or 20,
respectively for 20’ and 40’ containers), “medium” (having a priority value
equal to 15 or 30), and “high” (having a priority value equal to 20 and 40).
Thus, each instance is characterized by a total yard priority (P ), which is the
sum of the priorities assigned to all the containers in the yard. Note that the
absolute values of the container priorities have been determined by executing
some tests for calibrating them in accordance with the importance of rehandles
and their weight: it is considered more relevant to fully load the train instead
of minimizing container rehandles in the yard. This fact emerged from some
interwies with the train planners of the Italian container terminals that we
have contacted. The purpose of the interwiews was to have an order among
the objectives that guide the planners during their choices. As a consequence,
the rehandling weight α has been set equal to 1.

Container weights are uniformly distributed between a minimum and a
maximum value, defined in a different way for 20’ and 40’ containers.

Within each set, five instances have been generated. Table 2 details the
five instances related to one of the sets reported in Table 1, i.e., set A.
In Table 2, for each instance of set A, the number of 20’ and 40’ contain-
ers (] cntr 20’ and ] cntr 40’) in the yard, the number of TEUs in the
yard (T ), the total yard priority (P ) and average (Ψ) and maximum (Υ )
weights of 20’/40’ containers are reported, together with the TEU capacity
of the train (M). These instances are available for the scientific community
at the following link: https://www.researchgate.net/project/Train-Loading-
Planning-Optimization.

The procedures and formulations of the heuristic approaches have been
implemented in Visual Studio 2012 C] and solved by using Cplex 12.5 on a pc
Intel(R) Core i5 CPU M520 2,40GHz Ram 6GB.

Since the first step is very similar for the two approaches, the comparison
here presented is about the performance of formulations P1 and P2.
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Table 1 Instance features

Set W C T M
A (15-60) 15 60 89 37
B (15-80) 15 80 123 37
C (20-60) 20 60 94 51
D (20-80) 20 80 122 50
E (30-150) 30 150 218 75
F (30-200) 30 200 290 77
G (40-150) 40 150 228 100
H (40-200) 40 200 294 99

Table 2 Set A features

Inst. ] cntr ] cntr T P Ψ20 Ψ40 Υ20 Υ40 M
20’ 40’

A1 36 24 84 2235 14.04 21.42 23.95 29.46 35
A2 40 20 80 2540 14.44 21.52 21.49 29.56 39
A3 40 20 80 2585 14.89 19.67 23.70 29.75 35
A4 20 40 100 2530 15.58 20.39 23.83 28.69 38
A5 20 40 100 2695 13.43 23.57 23.57 29.66 37

average 31.2 28.8 89 2517 14.48 21.31 23.31 29.42 37

More specifically, models P1 and P2 have been compared on the basis of
the number of generated variables (] var.) and constraints (] const.), CPU
time (expressed in seconds), value of the objective function (obj.), optimality
gap (Gap), number of rehandles executed (R) and number of containers loaded
on the train (L). Moreover, the following Key Performance Indicators (KPIs),
determined on the basis of the interviews made with the Italian rail planners,
have been proposed for comparing the obtained solutions:

– Π, i.e., the ratio - expressed as a percentage - between the sum of the
priorities related to the containers loaded on the train and the total yard
priority (P ). This index reflects the value of the containers loaded in terms
of their priority;

– τ , i.e., the ratio - expressed as a percentage - between the number of TEUs
loaded on the train (U) and the train TEU capacity (M). It provides an
indication of how much the train has been loaded. Note that the number
of TEUs is calculated by summing the number of 20’ containers with the
double of the number of 40’ containers.

Π and τ are expressed by equations (34) and (35), respectively.

Π =

∑C
i=1

∑S
s=1 πixi,s
P

100 (34)

τ =
U

M
100 (35)

Tables 3 and 4 present the results obtained by solving models P1 and P2
respectively, with a time limit of 10 minutes. The tables’ numbers represent
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the average of the 5 instances generated per each instance set. All instances
have been solved up to optimality in few seconds.

When comparing models P1 and P2, it can be noted that the number of
variables and constraints of model P2 are lower than model P1; this is due
to the elimination of load configurations and to the use of odd and even slots
(see Section 2.2).

Moreover, the CPU time is lower in the case of P2 (on average about 50
% less than model P1, even if in absolute terms the difference is less than 3
seconds). This difference is more significant for larger instances, as the case of
sets G and H (see Tables 3, 4).

Both the proposed formulations can be effectively used for solving the
TLPP, thanks to their shorter CPU times. The train is always fully loaded
(i.e., τ = 100%), while the number of rehandles (R) grows with the number of
containers in the yard (C).

Table 3 Average results for Model P1

Instance ] ] CPU obj. Gap R L Π τ
type var. const. time

A (15-60) 2349 333 1.54 855 0 15 25 69.4% 100%
B (15-80) 2869 373 0.88 1729 0 17 24 54.0% 100%
C (20-60) 2963 396 1.39 604 0 16 33 79.7% 100%
D (20-80) 3965 439 1.31 1306 0 20 33 66.1% 100%
E (30-150) 12182 736 5.61 2647 0 42 50 60.6% 100%
F (30-200) 16858 874 5.96 4379 0 36 51 49.3% 100%
G (40-150) 14764 851 9.68 2131 0 33 66 70.4% 100%
H (40-200) 20876 975 14.78 3502 0 50 68 61.0% 100%
average 9652 622 5.14 2144 0 29 44 63.8% 100%

Table 4 Average results for Model P2

Instance ] ] CPU obj. Gap R L Π τ
type var. const. time

A (15-60) 1674 286 0.94 855 0 15 25 69.4% 100%
B (15-80) 2142 334 0.70 1729 0 17 24 54.0% 100%
C (20-60) 2119 332 0.79 604 0 16 33 79.7% 100%
D (20-80) 2872 381 0.90 1306 0 20 33 66.1% 100%
E (30-150) 8465 644 2.46 2647 0 42 50 60.6% 100%
F (30-200) 11446 774 4.79 4379 0 36 51 49.3% 100%
G (40-150) 10561 733 5.14 2131 0 33 66 70.4% 100%
H (40-200) 14691 859 5.15 3502 0 50 68 61.0% 100%
average 6746 543 2.61 2144 0 29 44 63.8% 100%



20 Daniela Ambrosino, Claudia Caballini

4.1 A comparison with a model that uses conditions C1, C2, C3

To better evaluate the effectiveness of the approaches proposed, we have com-
pared the solutions obtained by using both the LC − approach and EOS −
approach with those obtained by solving model (17)-(27) provided in Am-
brosino and Siri (2015) that consider load configuration and the conditions
C1 − C3 necessary to verify stability and structural constrains (that will be
later denoted as model P3).

Table 5 provides a clarification of the three different models compared.
Formulation P3 has been solved with the same time limit of 10 minutes.

Table 5 Differences between models

Model conditions Type of wagons
name C1-C3 slot enumeration

P1 C3* load configurations /progressive
P2 C3* EOS system
P3 C1,C2,C3 load configurations /progressive

C3∗ indicates that the weight used in condition C3 is that derived from
Step 1 (see Section 3.1).

When comparing model P3 with models P1 and P2 in terms of number of
variables and constraints (Figures 8 and 9), it is clear that P3 has the greatest
number of constraints and the same number of variables of P1. Thus P2 is
always the smallest in size.

Figures 10 and 11 represent the CPU time and the objective function value
of P1, P2 and P3. Model P3 is not able to solve up to optimality all the
considered instances when the time limit of 10 minutes is fixed. Model P3
solves up to optimality only the instances of set B.

Just to give an idea of the behaviour of the three models, Tables 6 and 7
report the detailed results for two sets of instances: set A and F. Models P1
and P2 are able to solve all the instances up to optimality in a few seconds,
while by running model P3, only 2 of 5 instances of set A and no instance
belonging to set F have been solved up to optimality within the imposed time
limit. Anaway, the optimality gap (reported in column gap) is always very
low; this gap is that furnished by the solver CPLEX. Note that the optimal
solution of P3 for instance A5 is different, in terms of loaded priority and
number of rehandles, from that obtained by P1 and P2, while the objective
function value is the same.

Note that, for investigating the quality of the solutions obtained by LC −
approach and EOS−approach, we compared them with the optimal solutions
obtained by P3 (i.e., P3 running without a time limit). In all solved instances,
the solutions obtained are the optimal ones.

These results highlight the effectiveness of Step 1 of the proposed solution
approaches; the elimination of conditions C1−C3 allows to reduce CPU times.
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Table 6 Set A results

Model Instance CPU time gap R Π τ
P1 A1 1.98 0 20 72.0% 100%
P1 A2 1.56 0 9 69.3% 100%
P1 A3 1.41 0 17 69.2% 100%
P1 A4 2.18 0 13 73.9% 100%
P1 A5 0.56 0 17 62.7% 100%

average P1 A 1.54 0 15 69.4% 100%
P2 A1 2.93 0 20 72.0% 100%
P2 A2 0.42 0 9 69.3% 100%
P2 A3 0.44 0 17 69.2% 100%
P2 A4 0.51 0 13 73.9% 100%
P2 A5 0.41 0 17 62.7% 100%

average P2 A 0.94 0 15 69.4% 100%
P3 A1 600.26 0.02 23 68.0% 91.9%
P3 A2 600.30 0.02 19 63.2% 89.5%
P3 A3 4.21 0.00 17 69.2% 100%
P3 A4 600.44 0.01 21 73.2% 100%
P3 A5 1.26 0.00 20 66.3% 100%

average P3 A 361.09 0.01 20 68.0% 96.3%

Table 7 Set F results

Model Instance CPU time gap R Π τ
P1 F1 7.81 0 45 48.9% 100%
P1 F2 4.96 0 30 49.3% 100%
P1 F3 6.34 0 34 50.4% 100%
P1 F4 6.10 0 27 47.4% 100%
P1 F5 4.56 0 45 50.4% 100%

average P1 F 5.96 0 36 49.3% 100%
P2 F1 7.28 0 45 48.9% 100%
P2 F2 3.54 0 30 49.3% 100%
P2 F3 3.99 0 34 50.4% 100%
P2 F4 5.33 0 27 47.4% 100%
P2 F5 6.11 0 45 50.4% 100%

average P2 F 5.25 0 36 49.3% 100%
P3 F1 600.60 0.01 60 48.3% 98.7%
P3 F2 600.73 0.03 35 46.7% 95.9%
P3 F3 600.12 0.03 43 46.8% 93.6%
P3 F4 600.91 0.04 29 44.1% 93.8%
P3 F5 600.79 0.02 54 46.9% 94.6%

average P3 F 600.76 0.03 44 46.6% 95.3%

4.2 Comparison with real train plans

Finally, in order to further validate the effectiveness of the proposed approches,
we have collected some typical real train plans from one of the Italian container
terminals that we have interviewed. Table 8 provides the data related to these
plans: the number of wagon W composing the train, the number of 20’ and 40’
containers loaded, the TEUs capacity of the train (M), the number of TEUs
loaded on the train (U) and the related TEUs load percentage (τ).

It can be noted that, for all the real train plans provided, the train is not
fully loaded (in fact, τ is far below 100 %).
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We have solved instances t1-t5 by using models P1 and P2: the obtained
results showed that the train is fully loaded (i.e., τ = 100%) in all cases t1-t5.

Finally it has to be pointed out that the average time required by a rail
planner to plan a train loading is between half an hour and one hour, depending
on different factors such as its experience and on the numerousity and typology
of rail cars and containers to be loaded. This time is definetely not comparable
with the few seconds required to solve our models.

Table 8 Real train plans of a Northern Italian container terminals

Train W ] ] M U τ
plan 20’cntr 40’cntr

t1 17 18 18 63 54 85.71%
t2 17 21 17 63 55 87.30%
t3 18 0 21 56 42 75.00%
t4 11 2 16 49 34 69.39%
t5 20 49 3 60 55 91.67%

5 Conclusion

In this paper two different solution approaches for solving the TLPP have
been presented. Differently from the previous literature, the proposed solution
approaches use only a weight condition with proper weight limitations for sat-
isfying stability and structural constraints. Moreover, this work also proposes
different interpretations of wagon load configurations based on a new way to
represent wagon slots.

An extensive computational analysis has been performed. The proposed
solution approaches have been validated by using both random generated in-
stances based on real-world data and real train plans.

Considering that in container terminals it is necessary to take quick and
correct decisions, one of the main goal of the present research was to compare
solution approaches in order to identify the most suitable one to be used in
a specific container terminal context. Based on the results obtained, we can
conclude that both the proposed approaches can be included in a decision sup-
port system to help container terminal operators in optimizing train loading
operations.

Moreover, being the proposed approaches based on models that minimize
the weighted sum of the number of re-handles and the sum of the priority of
containers that can not be loaded on the train, the authors will investigate the
multi-objective optimization approach in order to offer more than one solution
to terminal operators.
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Appendix 1. The lever principles

Stability conditions are derived from lever principles, which state that two
unequal forces, when acting in opposite directions, arrive at an equilibrium

when the product of the magnitude of a generic force
−→
F1 and its lever arm

e1 (the distance of its point of application from the fulcrum), is equal to the

product of the magnitude of a second force
−→
F2 with its corresponding lever

arm e2 (
−→
F1 · e1 =

−→
F2 · e2). Note that a bogie - also called railroad truck or

wheel truck - represents a structure underneath a train to which axles (and,
hence, wheels) are attached through bearings.

To better clarify lever principles, refer to Figure 12; levers of containers
c1 and c2 (e1 and e2, respectively) are determined as the distance between
their center of gravity - which should be in the middle of the container -
and the attachment of one of the two bogies (note that containers’ levers are
calculated in reference to the same bogie). Moreover, the distance (d) between
bogies is known; finally, it is assumed that the tare mass of the wagon is equally
distributed on the two wagon bogies.
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Fig. 7 Flow chart diagram of the procedure Wsd.
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Fig. 8 Comparison between P1, P2 and P3- Number of variables

Fig. 9 Comparison between P1, P2 and P3 - Number of constraints



28 Daniela Ambrosino, Claudia Caballini

Fig. 10 Comparison between P1, P2 and P3 - CPU time (seconds)

Fig. 11 Comparison between P1, P2 and P3 - Objective function
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Fig. 12 Lever principle for weight distribution on wagon bogies.


