
Harrisburg University of Science and Technology Harrisburg University of Science and Technology

Digital Commons at Harrisburg University Digital Commons at Harrisburg University

Other Student Works Computer and Information Sciences,
Undergraduate (CISC)

Spring 2-17-2020

Analysis of Cloud Bursting on Openstack Infrastructure to AWS Analysis of Cloud Bursting on Openstack Infrastructure to AWS

Bao Pham
bhpham@my.harrisburgu.edu

Ronald C. Jones
Harrisburg University of Science and Technology

Majid Shaalan
Harrisburg University of Science and Technology

Follow this and additional works at: https://digitalcommons.harrisburgu.edu/cisc_student-coursework

 Part of the Computer and Systems Architecture Commons, Computer Sciences Commons, and the

Digital Communications and Networking Commons

Recommended Citation Recommended Citation
Pham, B., Jones, R. C., & Shaalan, M. (2020). Analysis of Cloud Bursting on Openstack Infrastructure to
AWS. Analysis of Cloud Bursting on Openstack Infrastructure to AWS, 1-5. Retrieved from
https://digitalcommons.harrisburgu.edu/cisc_student-coursework/1

This Article is brought to you for free and open access by the Computer and Information Sciences, Undergraduate
(CISC) at Digital Commons at Harrisburg University. It has been accepted for inclusion in Other Student Works by
an authorized administrator of Digital Commons at Harrisburg University. For more information, please contact
library@harrisburgu.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Digital Commons @ Harrisburg University of Science and Technology

https://core.ac.uk/display/327176977?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.harrisburgu.edu/
https://digitalcommons.harrisburgu.edu/cisc_student-coursework
https://digitalcommons.harrisburgu.edu/cisc
https://digitalcommons.harrisburgu.edu/cisc
https://digitalcommons.harrisburgu.edu/cisc_student-coursework?utm_source=digitalcommons.harrisburgu.edu%2Fcisc_student-coursework%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.harrisburgu.edu%2Fcisc_student-coursework%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.harrisburgu.edu%2Fcisc_student-coursework%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.harrisburgu.edu%2Fcisc_student-coursework%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.harrisburgu.edu/cisc_student-coursework/1?utm_source=digitalcommons.harrisburgu.edu%2Fcisc_student-coursework%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library@harrisburgu.edu

 1

Analysis of Cloud
Bursting on
Openstack

Infrastructure to AWS
Bao Pham

Openstack & Student
Computer Information Sciences

Harrisburg University of Science and Technology
Harrisburg, Pennsylvania, USA
BHPham@my.harrisburgu.edu

Ronald C. Jones

Faculty
Computer Information Sciences

Harrisburg University of Science and Technology
Harrisburg, Pennsylvania, USA

rcjones@harrisburgu.edu

Dr. Majid Shaalan
Professor & Program Lead

Computer Information Sciences
Harrisburg University of Science and Technology

Harrisburg, Pennsylvania, USA
mshaalan@harrisburgu.edu

Abstract—Cloud computing is the development
of distributed and parallel computing that seeks to
provide a new model of business computing by
automating services and efficiently storing
proprietary data. Cloud bursting is one of the cloud
computing techniques that adopts the hybrid cloud
model which seeks to expand the resources of a
private cloud through the integration with a public
cloud infrastructure. In this paper, the viability of
cloud bursting is experimented and an attempt to
integrate AWS EC2 onto an Openstack cloud
environment using the Openstack OMNI driver is
conducted.

Keywords— (OpenStack, VM, infrastructure, private
cloud, public cloud, cloud burst, VM, container)

I. INTRODUCTION
 Cloud computing is the development of distributed
and parallel computing that seeks to provide a new
model of business computing by automating services
and efficiently storing proprietary data [1]. In simpler
terms, cloud computing is a scalable on-demand
configurable resources computation model. It provides

many types of infrastructure in an ad hoc system where
everything provided to the end-users exists as a utility
service over the Internet. The term cloud is an analogy
to describes the web as a place where applications are
pre-installed and exist as a service [1]. A service can
be data, virtual machine (VM), storage, or software
that is ready to be shared on the web [1].

 Cloud bursting is a cloud computing technique that
seeks the expansion of a private cloud (internal data
centers) infrastructure through the integration with a
public cloud infrastructure [3][4]. The public cloud
resources are provisioned when the local resources
have reached a certain threshold to meet their demand.
The extra workloads are transferred to a public cloud
where the enterprise is renting. There are issues that
hinder cloud bursting from being adopted widely as a
solution for high availability and scalability [4]. One
issue is the delay time in the synchronization of an
application and its data being offload to the public
cloud when the threshold has been reached in the
private cloud. The duration of copying the disk image
of VM or its volume can be long. In addition, issues
arise when moving VM to the public infrastructure
that utilizes a different hypervisor than that of the
private cloud [5].

II. BACKGROUND
 Cloud computing enables businesses with the
ability to provide instantaneous services to the end-
users with a fraction of the cost [3]. With such benefits,
many enterprises host their products as cloud services
by renting on a public cloud platform such as Amazon
Web Service (AWS) and Microsoft Azure. Depending
on the configuration of their application, enterprises
can either deploy their application as a container or
host it on a VM. A container is a lightweight machine
that operates on top of a physical server and its host
operating system (OS) kernel whereas a VM exists an
emulation of a computer system and requires its own
OS [6]. For hosting applications that require the entire
resource of the OS and the functionality of many other
applications, VMs are a better choice. Meanwhile,
containers are a great choice for deploying the same
application many times due its ability of self-
replication [6]. However, in recent years, containers
have become a better choice of application
deployment as it is quicker to be redeployed than a VM
[6].

 In recent years, it has become evident that
outsourcing the entire IT infrastructure to third parties
won’t be applicable in many cases [3]. Enterprise
applications are often faced strict requirements in
terms of performance, delay, and uptime. In addition,
legal issues can arise since public clouds are
distributed anywhere on the planet making it difficult

 2

to rely solely on a virtual public interface. Despite that,
the great computation resources provided by a public
cloud platform is appealing to the enterprises.
Furthermore, renting on a public cloud infrastructure
exclude enterprises from capital expenditure on
hosting their own infrastructure which allows them to
focus solely on the maintenance of their application
[3]. However, if an enterprise encountered issues on
the public platform, it won’t be the first to received
help as there are many other enterprises on the
platform. Hence, hosting one’s own infrastructure and
having the ability to harness additional resources from
a public infrastructure during workload peak is
beneficial. This allows the enterprise to avoid legal
issues and have on-time maintenance while utilizing
the resources from a third party as a last measure [3].

III. RELATED WORK
There have been recent efforts in analyzing the

effectiveness of cloud bursting and the hybrid cloud
model.

Bharti [1] et al. provided a list of cloud computing
platforms with hybrid cloud integration capability. In
addition, they discussed ongoing issues with cloud
computing such as privacy, legality, reliability and
security.

In their newly proposed bursting method that
exploits nested virtualization and advanced
networking, technologies, Acs [2] et al. discussed the
requirement for different API-s for services that IaaS
clouds provide. Their experiment shown that seamless
cloud bursting increases deployment time by 5-10%
when migrating a collection of VMs.

Buyya [3] et al. presented the integration of the
AWS environment and Aneka Cloud. Their analysis
on how the hybrid model handles the sporadic demand
on IT infrastructure in an enterprise. Their
comprehensive evaluation concluded that by leasing
the public cloud environment concluded that leasing a
public cloud environment could bring more
economical benefits if compared to buying and
maintaining a single new server. They found out that
smaller tasks size lead to more wastage when trying to
maintain the queue time comparable to average task
duration, when the workload trace is scaled down by
different factors and explore the behavior of the
policies as the average task size changes. However,
this can only be achievable through proper
provisioning policy and scheduling algorithm.

Fishman [5] et al. developed a virtualization
platform for IaaS clouds to deploy existing VMs
without any modifications to the mobility between
private and public clouds, and easy duplication
throughout the entire deployment.

Celest [6] explored the performance of
containerization on IoT devices on IoT cloud. The
overhead produced from hypervisor meditation is
eliminated as containerization virtualizes on top of the
OS-level instead of requiring a hypervisor. This
enables application to run near-native performance. As
result, they saw great response time between multiple
Raspberry Pi to a targeted server.

IV. SETUP
The Openstack platform is a set of software tools

for building and managing cloud computing
environments. These tools are united under one
MySQL Database for communication and storing
metadata. In simpler terms, Openstack serves as an
API that relay these tools to create the cloud
environment.

 An Openstack environment was configured on one
Supermicro blade that contains 140 GB SSD, 48 GB
of RAM, and an Intel ® Xeon ® E5640 2.67 GHz CPU
with four cores. The Openstack OMNI driver is built
for Openstack Liberty, which is deprecated, Ubuntu
14.04.06 LTS was installed on the server to configure
the deprecated version of Openstack. The Openstack
environment contains only the necessary components
required by the driver which included Nova, Glance,
and Neutron. Nova is the component that provides the
provisioning and the management of VMs. Neutron is
the component that delivers networking-as-a-service
in the compute environment (VMs networks). Glance
is the imaging service that allows the discovering,
registering, and retrieving of VM images. The OMNI
driver utilizes these three components to integrate the
Openstack environment with the public cloud
environment. The modified Nova component is
responsible for snapshotting the VM onto the public
cloud when the Openstack environment has reached its
threshold. The threshold is set at when either CPU,
RAM, or HD capacity has reached 25% and it is also
dependent on the requirement of the unexpected load.

The EC2 component of the driver was moved into
the folder of each Openstack component. Each
component configuration file was modified to calling
the OMNI EC2 driver. In addition, the AWS secret key
and access key were passed onto each config files to
allow the driver to establish the connection with AWS.
A neutron network with a subnet of 16 was created as
it is the largest mask that is allowed by AWS. The ip-
address allocation pool for VMs was set from
11.11.1.4 – 11.11.1.254 due to AWS has reserved ips
from x.x.x.0 to x.x.x.3. CentOS 7 was used as the main
image for the VMs since it is supported on AWS.

 3

V. APPROACH
 Three methods are used to measure the time to

snapshot the VMs onto the AWS infrastructure. The
first method measures the migration time of one VM
with at different storage sizes during the peak of the
cloud. The first method seeks to measure the
correlation between the size of VM and its migration
time. The second method measures the migration time
of moving multiple VMs at 20 GB during the peak of
the cloud. The second method focuses on the
synchronization of the VM network and its effects on
the migration of multiple VMs. Lastly, the third
method experimented on the migration of four VM at
various size simultaneously. Each VM is running a
simple neural network calculating over one million
data entries to simulate a working VM.

 Two primarily attributes, time to move (TTM) and
Arrived Time (ART), are recorded to measure the time
of the migration. TTM describes the amount of time it
takes for the VM to be prepared for the migration. This
time incorporates the time of copying the content of
the VM, pausing it, and saving its state. The ART
measures the time it takes for the VM to be deployed
on the public infrastructure and the time it takes to
become active again. It is the total time of TTM and
the deployment time.

VI. FINDING

VM SIZE (GB) TTM ART
1 10 26 s 47 s
2 20 32 s 49 s
3 30 36 s 51 s
4 40 47 s 59 s
5 50 51 s 68 s

Table 1. First Method

Graph 1. Migration of One VM at Various Size

Table (1) shown that in the first method, as the size
of the VM increases the longer it takes to move the
VM. In addition to the overall size, the contents within
the VM can heavily affect the TTM as applications
running inside of the VM required for the VM to
temporarily pause the applications and store their
metadata. The VM and its contents resume their
operations after they’re moved to the external site
(AWS). The metadata must be properly stored and
transferred along with the VM to the new site. This
process is crucial for the VM to resume its operations
at the new designated site from where it was paused.
Our experiments showed that as the number of
applications running inside increases, the more
preparation is needed to package the metadata and the
VM variables, the more overhead latency time adds
up, and TTM and ART rise significantly.

of
VM

SIZE
(GB)

TTM ART Avg.
TTM

Avg.
ART

 2 20 45 s 89 s 22.5 s 44.5 s

 3 20 89 s 182 s 29.67 s 60.67 s

 4 20 124 s 256 s 31 s 64 s

 5 20 189 s 345 s 37.8 s 69 s

 6 20 234 s 437 s 39 s 72.83 s

Table 2. Second Method

Graph 2. Multiple VMs Migration at Fixed Size

The second method seeks to analyze the effects of
network synchronization during the migration phase.
The average TTM and average ART are calculated to
depict the TTM and ART of one VM during the
migration of multiple VMs. As the number of VMs
increases during the migration, the data shown that the
ART of one VM is greater contrast to the migration of
just one VM. This increase in time complexity is due
to the need for applications within the VMs to

 4

reconfigure and synchronize the networking
parameters on both the internal and external cloud
environments to facilitate an efficient migration.

of
VM

SIZE
(GB)

TTM ART Avg.
TTM

Avg.
ART

 4 10 99 s 178 s 24.75 s 44.5 s

 4 20 117 190 s 29.25 s 47.5 s

 4 30 132 s 199 s 33 s 49.75 s

 4 40 165 s 212 s 41.25 s 53 s

 4 50 180 s 227 s 45 s 56.75 s

Table 3. Third Method

Graph 3. Migration of 4 VMs at Various Size

 The third method affirms the effects of migrating
multiple VMs at different sizes contrast to the
migration of different number of VMs at one fixed
size. Graph (3) shown that the ART and TTM are
significantly lower when moving four VMs at
different sizes. Meanwhile, graph (2) shown that the
ART is affected greatly as the number of VMs
increases during the snapshot. In addition, the TTM
rate of change in graph (2) is significantly greater than
graph (3).

These findings depict the synchronization issue of
both networking environments and its local running
applications. In addition, the migration of multiple
complex VMs adds another level of complexity
resulting in a longer delay in the resuming the VMs’
operations. We believe that, in general these latency
issues will remain problematic to any hybrid cloud
environment, unless there is a direct, high-
performance, low-latency interconnection
infrastructure between the two cloud models involved
in the migration process. Both graph (2) and graph (3)
depict these findings.

VII. RESULT
 We report results of the experiment conducted on a
hybrid environment built from the integration of
Openstack and Amazon EC2 environments.

 In particular, graph (1) plots the TTM and ART of
migration of one VM at various sizes to show impact
of varying the size of a VM. Graph (2) contrasts the
data in graph (1) by illustrating that there is greater
impact on the TTM and ART when migrating large
number of VMs. The average ART shown in graph (2)
affirms that the ART of migrating one VM during the
migration of a cluster of VMs increases heavily.

In addition, the last method confirmed that the
variation in the size of individual VM does not heavily
impact during the moving of multiple VMs. The
synchronization of the VMs is affected greatly when
migrating multiple VMs. The delay is introduced
when the Openstack environment tries to establish its
connection to the Amazon API. Once the request is
made, the Openstack prepare its targeted VMs for
migration. When the VMs are ready to be moved, the
private environment make another request to the EC2
API while forwarding the VMs files. The OMNI
module is responsible for reconfiguring the
networking of the VM in its files. Once the files are
forwarded, the module requests the EC2 to create the
VMs. When the VMs are created, the bursting module
requests EC2 to forward their information back to the
private environment, which allow it to create entries in
the nova console allowing the user to know the VMs
are operational.

Furthermore, we should note that the performance
of the bursting module is not reliable. The instance of
Openstack is outdated along with the OMNI module
while EC2 is heavily updated. We updated the code in
the module and replaced outdated code libraries with
newer Openstack libraries. In addition, we updated the
Neuron and Nova components of Openstack to use the
last updated version in Liberty. The experiments were
conducted many times to collect substantial data
because the snapshotting of VMs was often prone to
failure. This is due to the bursting module losing its
established connection to the EC2 API when EC2
failed to build the VMs because of bad network
configuration of its files.

VIII. CONCLUSION
We have presented the findings on the

synchronization issue of cloud bursting. When
migrating many VMs, the time to synchronize is
heavily impacted in contrast to the migration of a small
number of VMs at various sizes. Despite that, cloud
bursting is a great application for smaller
infrastructure to scale out by integrating with public

 5

infrastructures. However, it should be used as the last
resort when dealing with high peaks. The cloud
bursting model can be enhanced through optimal
scheduling algorithms which could result in better
synchronization time and lower delay between each
separate migration. Thus, during high peaks, different
migrations will not overlap each other and not result in
a drop in the connection with EC2 API.

IX. FUTURE WORK
These findings are still not substantial to fully

depict the issue. The collected data are only on VMs
running small scale applications to mimic a working
infrastructure. Furthermore, the private environment
and its bursting module are outdated, where the chance
of migration failure is very high. A newer bursting
module is required for the newer release of Openstack
environment which can properly establish
communication with EC2 API and minimize the
migration failure.

REFERENCES
[1] Bharti, Drsantosh & Goudar, R. (2012). Cloud Computing–
Research Issues, Challenges, Architecture, Platforms and
Applications: A Survey. International Journal of Future Computer
and Communication. 10.7763/IJFCC. 2012.V1.95.

[2] Acs, S., Kozlovszky, M., & Kacsuk, P. (2014). A Novel Cloud
Bursting Technique. 9th IEEE International Symposium on
Applied Computational Intelligence and Informatics. doi:
10.1109/SACI.2014.6840050

[3] Buyya, R., Garg, S. K., Mattess, M., & Vecchiola, C. (2011).
Cloud Bursting: Managing Peak Loads by Leasing Public Cloud
Services. Retrieved from
http://www.buyya.com/~raj/papers/CloudBurst-BC-2011.pdf

[4] Cloud definitions. NIST Special Publication 800-146.
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication8
00-146.pdf

[5] Fishman, A., Rapoport, M., Budilovsky, E., & Eidus, I. (2013).
HVX: Virtualizing the Cloud. Retrieved from
https://www.usenix.org/system/files/conference/hotcloud13/hotclo
ud13-fishman.pdf

[6] Celest, A., Mulfari, D., Fazio, M., Villari, M., & Puliafito, A.
(2016). Exploring Container Virtualization in IoT Clouds. 2016
IEEE International Conference on Smart Computing
(SMARTCOMP). doi: 10.1109/SMARTCOMP.2016.7501691

	Analysis of Cloud Bursting on Openstack Infrastructure to AWS
	Recommended Citation

	Microsoft Word - CloudBursting.docx

