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Abstract

For a comprehensive and detailed microscopic understanding of the hydration prop-

erties of primary aqueous phosphorus species of valence states V (viz. H3PO4, H2PO –
4 ,

HPO 2–
4 and PO 3–

4 ), a series of extensive ab initio molecular dynamics (AIMD) sim-

ulations are conducted at ambient temperatures. In each of these cases, the spatially

resolved, three-dimensional (3D) hydration shells are computed, allowing for a direct

microscopic visual understanding of the hydration shells around the species. Since

these species are excellent agents for the formation of hydrogen bonds (H-bonds) in

water, that determine a wide range of their structural, dynamic and spectroscopic fea-

tures, a detailed analysis of the qualitative and quantitative aspects of the H-bonds,

including their lifetime calculations, is performed. Vibration density of states (VDOS)

are calculated for each of the species in solute phases, resolved for each H-bonding

site, and compared against the gas phase normal modes of H3PO4 for the purpose of

understanding the signatures of its peaks in VDOS plots, and in particular, the effects

of solvation and H-bonding mechanisms. The results are well in line with available

experimental data and other recent computer-aided studies in literature.

Introduction

The bio-available and water-soluble inorganic phosphorus species, most notably phosphates

(PO 3–
4 ), play a major role in a variety of biological activities in all known life forms on

Earth, including both plants and animals. Being known to be a key part of the structural

scaffold of DNA/RNA, adenosine triphosphate (ATP) and phospholipids, it is also required

for a variety of cellular activities, including the transport of cellular energy, a process known

as phosphorylation. In the plant world, the availability of phosphorus is a key factor in

controlling photosynthesis (use the energy from sunlight to produce glucose from carbon

dioxide and water). In addition to its biological importance, phosphorus is used in a variety

of commercial applications, including in medicines and pharmaceuticals, the production of
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polymers (e.g. PVC) and a myriad of phosphate-rich fertilisers and foods.1–3

In an aqueous medium, phosphorus may exist in two major valence states, either P−V or

P−III, the former being more abundant in natural waters and aquifers. The parent form of

P−V is phosphoric acid (H3PO4), the fastest known intrinsic proton conductor among any

known substances on the Earth,4 is a weak acid under normal conditions of pH, the values

of pKa being given by5,6,

H3PO4
pKa1−−−−→
2.15

H2PO −
4

pKa2−−−−→
7.20

HPO 2−
4

pKa3−−−−→
12.32

PO 3−
4 . (1)

Thus, under normal conditions of pH, dihydrogen phosphate anion, H2PO –
4 and HPO 2–

4

are expected to be stable.

In the scientific literature a lot of studies on aqueous solutions of phosphate and other

phosphorus ions have been published in the last few decades.7–13 Eiberweiser et al.,9 for

example, carried out a study of aqueous solutions of sodium phosphate in which the influ-

ence of PO 3–
4 groups was examined for the vibration modes. The hydration structure of

phosphate-based salts was investigated by Pye et al.8 using neutron scattering experiments.

From a theoretical point of view, a Car-Parrinello molecular dynamics (CPMD) simulations

of phosphate ions in water was performed to study different structural parameters and the

coordination by Tang et al.10 A similar study was performed by Pribil et al. 11 using the

ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) method.14 A

combined DFT and Raman- and infrared-spectroscopic investigation of dilute aqueous phos-

phoric acid solutions was conducted by Rudolph15 . Several other computational studies

have also focused on the vibration aspects of the PO 3–
4 ions and its derivatives in water.8,16

A classical force-field for H3PO4 was developed by Spieser et. al17 which they had used

for predicting diffusion coefficient and structure in liquid state. Recently, Sharma et. al.18

conducted a detailed AIMD study on the hydration and vibration aspects of PO 3–
4 in water.

Hydrogen bonds (H-bonds) are critical in the assessment of many physiochemical proper-
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ties of waterborne species, such as those of phosphorous species such as phosphates.19–22 The

characterisation of the dynamical aspects of such bonds in lab experiments poses an enormous

technological challenge given the femtosecond time scales responsible for their dynamics.23

Admittedly, H-bonds can be probed in a rather indirect manner by the use of several different

spectroscopic techniques, for example. infrared (IR) and NMR spectroscopy, double differ-

ence infrared spectroscopy (DDIR), Fourier transform infrared spectroscopy (FTIR), wide

angle X-ray scattering (LAXS) and EXAFS spectroscopy (Extended X-ray Absorption Fine

Structure), etc.24 Molecular dynamics (MD),25–27 especially ab initio molecular dynamics

(AIMD),28–31 has been used more and more in the last decades after the rapid development

of computing power and intelligent algorithms to study such systems completely in silico.32–36

A comprehensive overview of the current status of research activities in the AIMD studies

on solvation in water has recently appeared.37

While we find several AIMD studies on phosphate (PO 3–
4 ) in the literature, there are no

studies on its non-deprotonated oxidation states, namely H3PO4, H2PO –
4 and HPO 2–

4 , while

experimentally reported pKa values indicate that the latter two species are the most stable

under normal pH conditions. In this work, a series of AIMD simulations are performed on

all aqueous phosphorus species of valence V (i.e. H3PO4, H2PO –
4 , HPO 2–

4 and PO 3–
4 ) and

comprehensively analyzed for spatial hydration behavior for each of the cases. In contrast

to most of the previous research, the focus will be on the characteristics of the H-bonds and

the spectroscopic aspects of the solute species.

Methods

The calculations are based on the density functional theory (DFT) in the Kohn-Sham for-

malism,30,31 with which the forces on the atoms are calculated from the instantaneous elec-

tronic configurations at every MD step. We have used Car-Parrinello molecular dynamics

(CPMD),28 as implemented in the software package CPMD,38 version 4.1, to perform the
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simulation runs on the following systems: (a) H3PO4, (b) H2PO –
4 , (c) HPO 2–

4 , (d) PO 3–
4 ,

all solvated with 60 water molecules in a cubic box of length 12.42 Å, that corresponds to

an overall density of about 1.02 g/cc, that corresponds to the experimentally reported den-

sity at 25◦.39 The charged systems are neutralized with equal positive background charges.

The generalized gradient approximation (GGA) in BLYP40,41 form is used, from which an

accurate qualitative description of the liquid water and H-bonds is expected, as has already

been verified in many similar studies.29,32,34–36,42,43 The separable norm preserving pseudo-

potentials were employed, and only the Γ-point was used for the Brillouin zone as typically

done in AIMD calculations. As far as the basis set is concerned, the naive form of plane

waves as implemented in the CPMD software package was used. All production runs in this

paper were performed with an average cutoff energy of 85 Ry, which proved to be sufficient

for an accurate energy description. The nuclei were treated in a classical way, using the

velocity violation algorithm44 to integrate the equations of motion for the atoms/ions. The

temperature of the ions was controlled with the Nosé-Hoover thermostat45–47 at T = 315 K.

A small time step of 0.1 fs was used to integrate the equations of motion for the nuclei. As

typical for the CPMD algorithm, a fictitious mass parameter (µ) of 600 a.u. was used for

the correct energy convergence in accordance with the previous studies in literature.29

Figure 1: The criteria for formation of a H-bond between two H2O molecules as donor
(D) and acceptor (A) are shown. The same definition of H-bond is employed for different
solute-solvent pairs as well.
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We have used the following definition for H-bonds, based on the simultaneous fulfilment

of the three distance and angle criteria (also shown in Fig. 1), given below:

i donor-acceptor O · · ·O distance is less than 3.5 Å,

ii hydrogen-acceptor H · · ·O distance is less than 2.45 Å,

iii hydrogen-donor-acceptor angle is less than 30◦.

This definition is frequently used in the literature for waters. In this work, the same definition

of the H-bond is used for both solute and solvent, for simplicity and useful comparison. The

lifetime of the different types of H-bonds in the systems is calculated from the continuous

H-bond correlation function given by,

SHB(t) =
〈h(0).H(t)〉
〈h〉 (2)

where, H(t) takes value 1, if a tagged pair of donor-acceptor pair remains H-bonded contin-

ually up to time t and 0 otherwise. h(0) gives the H-bonds at t = 0. The angular brackets

in above definitions, 〈· · · 〉, denotes the statistical average over all pairs and time origins (〈h〉

is the normalization constant, calculated as the average over all pairs and frames).

For the calculations in liquid phases, the model systems were prepared from the final

configurations of As−V, presented in our earlier work.48 In each case, the initial 20-30 ps of

simulation runs were dedicated for equilibration, following which over 30 ps of simulation runs

were collected for various statistical analysis. For useful comparison of the structures, the

isolated molecules and ions were optimized for geometry using CPMD. An well equilibrated

CPMD trajectory of 30 ps was also prepared under similar settings for 64 water molecules

in a cubic box of length 12.42 Å corresponding to an experimental density of 1 g/cc at

315 K for usable comparisons. Additionally, gas-phase normal modes were computed for

H3PO4 in order to identify the qualitative signatures of the peaks in vibrational density of

states (VDOS) plots for the species in liquid phase calculations. The same sophistication in

6



exchange-correlation approximations was adopted as above for all the gas-phase calculations,

using a cubic supercell of side 12.42 Å.

For convenience of description, and distinguish the water oxygens (O) from the solute

ones, we have here used the label OP for oxygens of P species not bonded to hydrogen and

OP,H for those bonded to hydrogen.

Results and Discussion
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Figure 2: Atomic radial distribution functions (RDFs), g(r), of oxygens (a) and hydrogens (b)
of water molecules with respect to the oxygens (OP including OP,H) of solute molecules/ions
are shown for the studied systems. The corresponding RDFs for pure waters (in black lines)
are also shown for useful comparison. In (b), the first peaks denote the intra-molecular
hydrogen atoms for waters and the species. The corresponding running coordination numbers
(RCNs) are shown for each of the cases with dotted lines of respective colors.

Molecular Structure

We first discuss the intra-molecular structures of different P−V species, viz., H3PO4, H2PO –
4 ,

HPO 2–
4 and PO 3–

4 . The bond-lengths of different kinds of P−O bonds are listed in table 1,

along with those obtained from gas-phase calculations. The corresponding values reported

from experiments are also included, which are computed as the average of several exper-
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imental values in literature (see the supporting info to the article by Persson et. al49).

H3PO4 has a pseudo-tetrahedral structure similar to H3AsO4.
48 In solution phases, the P−O

bond-lengths are elongated with the degree of deprotonation, starting from H3PO4 to PO 3–
4 .

Similar trend is also perceived for gas-phase calculations as well. The difference in bond-

lengths in solution phase calculations as compared to gas-phases can be attributed to the

effect of solvation and H-bonding and delocalization of charges in solution environments.

Overall, the bond-lengths obtained from these calculations are well in trend as reported in

experiments, included in the 5th column of table 1.

Table 1: Intra-molecular P−O bond-lengths (in Å) of different P−V species in
solutions (calculated as average across all the frames in trajectories) as compared
to the gas phase values and experiments.

System bond type solution gas phase experimental49

H3PO4 P−OP 1.58 1.54 1.49
P−OP,H 1.66 1.69 1.54

H2PO –
4 P−OP 1.59 1.57 1.51

P−OP,H 1.69 1.76 1.56

HPO 2–
4 P−OP 1.62 1.62 1.52

P−OP,H 1.72 1.68 1.59

PO 3–
4 P−OP 1.64 1.63 1.54

All the simulated P−V species, namely H3PO4, H2PO –
4 , HPO 2–

4 and PO 3–
4 , were found

to be stable within the time duration of the simulation runs. H3PO4, however, shows some

tendencies of proton transfer, which remained unsuccessful during the simulation runs of∼ 50

ps. These results are predicted to be consistent with the reported dissociation constants of

the P−V (see Eq. 1), also assisted by the limitations of time and length scales of AIMD

simulations.
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Figure 3: The spatial density distributions (SDFs) of water molecules within the first hydra-
tion shells of the solutes, viz., (a) H3PO4, (b) H2PO –

4 , (c) HPO 2–
4 and (d) PO 3–

4 , obtained
from CPMD simulations at 315 K. The iso-surfaces around the solutes denotes the center of
mass of water molecules (solvents) satisfying the H-bond criteria (i) and (ii) given above in
section . Uniform iso-density value of 0.08 Å−3 is chosen for all the cases.
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Figure 4: Coordination number (CN) distribution (in percentage) of water molecules in the
first hydration shells of the solutes: (a) H3PO4, (b) H2PO –

4 , (c) HPO 2–
4 and (d) PO 3–

4 ,
respectively from left to right.

Hydration Structure

Radial distribution functions (RDFs) of the O and H atoms of H2O molecules relative to

the solute molecules/ions serve as a basic tool for understanding the structural distribution

of their hydration shells, the nature and extent of interaction with solvents. In Fig. 2(a),

the RDFs of O atoms of water molecules are shown around the oxygen atoms (OP including

OP,H) of different P−V dissolved species. The same is shown for H atoms of waters in

Fig. 2(b). The corresponding RDFs for pure waters are also shown in these plots for useful
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Figure 5: Number of H-bonds of different types (i. donated by OP,H (green bars), ii. accepted
by OP,H (orange), and, iii. accepted by OP (blue), calculated based on H-bonding criteria
given in methods (section ).

comparison. Additionally, the running coordination numbers (RCNs) are shown for each of

the cases with dotted lines of respective colors. In the cases of oxygen-hydrogen RDFs in

Fig. 2(b), the intramolecular hydrogen atoms are included in the calculations that make

up the first peak at ∼ 1 Å in these plots. On the other hand, for OP−O RDFs in Fig. 2(a),

the intramolecular O atoms are not included in the calculations. Therefore, the first peaks

in Fig. 2(a) and the second peaks in Fig. 2(b) represent the first hydration shells around

the solutes. Nevertheless, we have considered rOO = 3.5 Å as the cut-off for oxygen-oxygen

H-bonds, which is slightly higher than the distance to the first minima of the RDF plots in

Fig. 2(a), to maintain consistency and agreement with previous studies.21,32,42,50,51

From Fig. 2(a), we see a gradual increase in peak heights from H3PO4 to PO 3–
4 in

OP−O RDFs, suggesting an enhanced ordering of oxygens atoms of water molecules in their

hydration shells. Similar trend is also seen from the OP−H RDFs in Fig. 2(b). The heights
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of the peaks in OP−O RDFs are lower than that of the O−O RDFs of pure waters, especially

for H3PO4 and H2PO –
4 . This is in contrast with the OP−H RDFs in Fig. 2(b), for which

HPO 2–
4 and PO 3–

4 peaks are higher the O−H RDFs of pure waters. However, the minima

of the RDFs for these systems are deeper than those of pure waters. From these observations

we can predict that although there are fluctuations of water molecules within the hydration

shells, they are quite stable within the shell, which would favour the formation of stable

H-bonds. For HPO 2–
4 and PO 3–

4 , the higher OP−H peaks are indicative of the strong H-

bonds accepted by those species, which will be further confirmed from the discussions in

subsequent sections.

From the RCN plots in Fig. 2(a) and (b) a direct quantitative insight into the hydration

shells around each oxygen site of the dissolved species can be obtained. Each oxygen atom of

water has a coordinate number of 4.8 oxygen and 3.9 hydrogen atoms within the H-bonding

criteria due to the well-known unique H-bonding features of liquid water. The corresponding

numbers for the solute oxygen atoms in the cases of H3PO4, H2PO –
4 , HPO 2–

4 and PO 3–
4 are

2.83, 2.98, 3.05 and 3.11 for oxygens, and 1.89, 2.32, 2.58 and 2.77 for hydrogens (including

intramolecular hydrogen as well) respectively in series.

It should be noted here that the P−V species simulated in this study are expected

to have a significant influence on water molecules beyond their first hydration shells, as the

pronounced peaks in RDFs in Fig. 2(a) and (b) suggest in comparison to those of pure waters.

However, we have limited ourselves to include all analyses related to these, as we believe that

such studies would require the simulation of larger shells for proper characterization.

While the RDFs (1D) allow easy interpretation of the distribution of solvent molecules

around the solute molecules/ions, a more direct and intuitive way to understand the scene

is provided by the 3D plots of the spatial distribution function (SDF). In Fig 3 the SDFs

for different P−V species (viz., (a) H3PO4, (b) H2PO –
4 , (c) HPO 2–

4 and (d) PO 3–
4 ) are

shown. The distributions of the water molecules are more and more ordered from H3PO4

to PO 3–
4 , in accordance with the 1D-RDF plots in Fig. 2. A quantitative description of the
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hydration shells is given in the CN distribution plots in Fig. 4. The CN distribution becomes

sharp and compact in deprotonated species compared to non-deprotonated ones. The extent

of the distribution can be thought of as the fluctuation in the hydration shells, which can

also be a measure of the species’ affinity for water, and would be directly realized in the

qualitative nature of the H-bonds it forms. Furthermore, the gradual increase in CNs from

non-deprotonated to deprotonated species also indicates the possibility of the formation of a

higher number of H-bonds for these species. All this will be discussed in great detail in the

following.

Hydrogen bonding

Based on the geometric criteria for formation of H-bonds (see methods), the quantitative

and qualitative descriptions of H-bonds would be presented here. The H-bonds formed by

different solute species can be of three types–(a) those accepted by the bare oxygen sites

(OP), and those (b) donated and (c) accepted by hydrogen-bearing oxygen sites (OP,H). The

number of H-bonds formed by a given P−V species vary with the number of oxygen/hydrogen

sites on the species as well as with the effective charge on it. A pictorial presentation for the

numbers of H-bonds of the above three kinds is presented in the form of bar plots in Fig. 5,

wherein the H-bonds of type (a) are depicted as bars of color blue, while those of type (b)

and (c) are as bars of color green and orange respectively. The exact numbers of H-bonds

and the corresponding numbers of oxygen/hydrogen sites involved with those H-bonds can

also be found in table 2 included in column 3 and 4 respectively. The average number of

H-bonds (over all the frames of the dynamical trajectories) formed by different P−V species

increases from 7 for H3PO4 to 11 for PO 3–
4 , signifying the fact that the OP sites accepts

more H-bonds than the OP,H sites. A better way to interpret these results is through the

number of H-bonds per site of oxygen/hydrogen. The numbers of H-bonds accepted by

H3PO4, H2PO –
4 , HPO 3–

4 and PO 3–
4 per OP and OP,H sites more or less increase with the

degree of deprotonation, whereas all the H of OP,H sites almost always donate a H-bond over
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Figure 6: H-bond correlation functions, SHB(t) for the P−V species, viz., H3PO4 (blue lines),
H2PO –

4 (brown lines), HPO 2–
4 (green lines) and PO 3–

4 (red lines), in aqueous environment
at 315 K. The H-bonds accepted by OP sites are shown as solid lines; the ones accepted and
donated by OP,H sites are shown as broken and dotted lines respectively. The corresponding
plots for pure waters are shown as black solid lines.

all the frames of AIMD trajectories at 315 K. The latter forms H-bonds with a surrounding

water molecule that accounts for very high lifetime, as shall be discussed below.

In order to interpret the qualitative natures of H-bonds in terms of their lifetimes, we

have computed the H-bond correlation functions, SHB(t) as described in methods. Such

functions are known as continuous H-bond correlation functions, are sensitive to intermittent

breaking of H-bonds, and therefore gives a direct measure of the lifetime of such bonds.

Such plots are more or less exponential in nature barring a region for t < 200− 500 femto-

seconds (attributed to librational motions and transient H-bonds), and can be fitted with a
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Table 2: Different Types of H-bonds (also abbreviated as HBs in the table)
formed by the phosphorous species in water, the numbers (as in Fig. 5), no of
O/H sites and the fitting parameters of Eq. 3, a, ts and tl are shown along with
their standard deviation errors.

System Type of HBs #HBs #O/H sites a± error ts ± error (ps) tl ± error (ps)

H3PO4 Donated by OP,H 2.98 3 0.53± 0.23 2.36± 0.68 6.50± 1.50

Accepted by OP,H 1.51 3 0.65± 0.23 0.02± 0.02 0.17± 0.12

Accepted by OP 2.54 1 0.26± 0.27 0.10± 0.13 0.48± 0.13

H2PO –
4 Donated by OP,H 1.98 2 0.52± 0.03 0.02± 0.01 2.17± 0.20

Accepted by OP,H 1.94 2 0.42± 0.10 0.01± 0.01 0.31± 0.07

Accepted by OP 4.89 2 0.49± 0.14 0.10± 0.05 0.72± 0.17

HPO 2–
4 Donated by OP,H 0.98 1 0.28± 0.19 1.09± 0.17 2.17± 1.07

Accepted by OP,H 0.90 1 0.56± 0.09 0.01± 0.01 0.38± 0.10

Accepted by OP 8.18 3 0.49± 0.06 0.21± 0.07 2.23± 0.26

PO 3–
4 Accepted by OP 10.7 4 0.35± 0.03 0.09± 0.05 2.62± 0.18

Pure H2O H2O−H2O 3.62 1/2 0.50± 0.08 0.04± 0.02 0.69± 0.13

single/double exponential function, as done in many previous works in literature. However,

single-exponential fitting is very sensitive to the region of fit, especially for solute-to-solvent

H-bonds which are less exponential in nature.52 Double exponential fitting of the following

form,

SHB(t) = a exp

(
− t

ts

)
+ (1− a) exp

(
− t
tl

)
, (3)

fits these functions better, and also becomes independent of the region of fit. While ts (s

standing for short) in the above equation gives a measure of the timescale of the short-time

fluctuations of the H-bonds stemming from the formation of transient peripheral H-bonds

(i.e., H-bonds formed by margins of the H-bonding criteria), and the librational motion of

the solutes, tl (l standing for long) provides the actual lifetime of the H-bonds involved. a

is constant bound by the maximum bound by the limit [0,1]. It should be noted that the

values of tl obtained from double exponential are expected to deviate from single exponential

curve fitting values. However, such differences does not alter the qualitative understanding of

the H-bond dynamics, as the fitted values are merely used as ‘indicators’ of the qualitative
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nature of the plots. It is be noted herein that such a scheme has also been applied in

similar contexts, for examples in the works of Prof. Thomas Hofer.53–55Many other methods

do exist, however, to obtain lifetimes from the H-bond correlation plots, for which the reader

is referred to the article by Agmon and Bakker.33

Fig. 6 shows the SHB(t)s for various P−V species under study. In these plots, SHB(t)s

for the H-bonds accepted by OP sites are shown as solid lines, while the ones accepted

and donated by OP,H sites are shown as broken and dotted lines respectively. For useful

comparison, corresponding plots for pure H2O are also included. In table 2, the fitted

parameters, viz., a, ts and tl, are reported with the corresponding maximum and minimum

error bars. The column providing the lifetimes of the H-bonds is highlighted in gray for

clarity. It is noticeable that the H-bonds donated by different P−V species, namely H3PO4,

H2PO –
4 and HPO 2–

4 , live much longer compared to the other H-bonds in the system and

also to bulk waters. While theses species donates strong H-bonds, such strong H-bonds make

these sites to accept weaker H-bonds in terms of longevity of the bonds which are much lower

than those of solvent waters. On the other hand, the lifetimes of the H-bonds accepted by

the OP sites increases gradually from H3PO4 to PO 3–
4 . Whereas lifetimes of such H-bonds

for H3PO4 are slightly lower than that of pure waters, for H2PO –
4 , it is nearly equal. For

HPO 2–
4 and PO 3–

4 the corresponding values are nearly 3− 4 times higher than that of pure

waters.

In order to understand the qualitative natures of the H-bonds further, the combined

distribution functions (CDF) of the H-bonding distance and angle criteria, discussed in

methods, are plotted in Fig. 7 and 8, where the first criteria has put as an implicit parameter.

In Fig. 7, the CDFs for the H-bonds donated (in (a), (b) and (c)) as well the accepted (in

(d), (e) and (f)) by the OP,H sites are shown for H3PO4, H2PO –
4 and HPO 2–

4 . The same for

the H-bonds accepted from OP sites are shown in Fig. 8 for the above systems and for PO 3–
4 .

The adjacent color bars in these plots represent the variation of occupation satisfying both

the distance and angle criteria for each of the cases from 0 to 2500 (a common maxima).
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Figure 7: Combined distribution functions (CDFs) for hydrogen-donor RDFs and hydrogen-
donor-acceptor angles within the H-bonding criteria, to qualify the strength of the H-bond
donated (shown in (a), (b) and (c)) and accepted (shown in (d), (e) and (f)) by the OP,H

sites of the H3PO4, H2PO –
4 and HPO 2–

4 species in water at 315 K. The color bar shows the
variation of the occupation per site from zero to a common maximum value (2500).

Figure 8: Same as Fig. 7 for the H-bonds accepted by OP sites of H3PO4, H2PO –
4 , HPO 2–

4

and PO 3–
4 species in water at 315 K. The color bar shows the variation of the occupation

per site from zero to a common maximum value (2500).

Simply put, an H-bond with the occupation maxima that fall closer to the axes on the

origin (0,0) would mean a stronger H-bond than the H-bond that falls further away. Thus,

the H-bonds donated by the OP,H sites are expected to be stronger than the ones accepted

from those sites, which is also revealed from the SHB(t) plots in Fig. 6 above. For H3PO4 in

Fig. 7(a), the distributions occurs much closer to the origin than the corresponding CDFs for

H2PO –
4 and HPO 2–

4 in (b) and (c), implying formation of somewhat weaker H-bonds. For
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the accepted H-bonds from these sites, the CDFs are much more scattered and are expected

to slightly increase in strength from H3PO4 (d) to HPO 2–
4 (f), following the SHB(t) plots in

Fig. 6. On the other hand, from Fig. 8, it is noticeable that the H-bonds accepted by the OP

sites of the species are expectantly stronger in nature than compared to the ones accepted by

OP,H sites and clearly would account for an enhancement in strength from H3PO4 to PO 3–
4

in series, in conformity with the corresponding SHB(t) plots in Fig. 6.

The short-time decay constants, ts, given in table 2 for the H-bonds in Fig. 6, mostly

follow the qualitative behavior of their corresponding long-time decay constants, ts, with

some important differences, especially for the H-bonds donated by the species. It can be

observed from the table 2 that while the ts values for these H-bonds are quite high for

H3PO4 and HPO 2–
4 following their respective high tl values, while the same for H2PO –

4

is considerably lower within the errors of double exponential fit. Since the origin for the

decays in SHB(t) plots within ∼ 0.5 ps are accounted to the combined effect of the librational

motions of the species and formation of peripheral H-bonds satisfying the H-bond criteria

by margins, predicting the quantitative prediction of such behaviour might be tricky. In

the CDF plots in Fig. 7 and 8, these H-bonds would signify the occupations lying near

2.45 Å and 30◦. Thus from these figures, the H-bonds accepted by the species from OP,H

sites (in Fig. 7(d)-(f)) are expected to decay faster than the ones donated by these sites

(in Fig. 7(a)-(c)). Among the donated H-bonds, the ones of H2PO –
4 and HPO –

4 systems

can be assumed to involve in formation more peripheral H-bonds than H3PO4 and hence

expected to decay faster. Although for the H2PO –
4 and HPO –

4 systems, the differences

occurring in the ts values, given in table 2 and in Fig. 6, can not be distinguish, it is found

that librational motion of the species play a role there, as shown in Fig. 9. these plots,

the vector auto-correlation of the intra-molecular P − OP (including OP,H) bonds for are

shown for the solute species- (a) H3PO4, (b) H2PO –
4 , (c) HPO 2–

4 and PO 3–
4 . The region

on the x-axis in the range 0 − 0.5 ps (highlighted in cyan) can roughly be considered as

the contribution from librational motion (related to ts) of the species, whereas the region
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outside 0.5 ps (highlighted in pink) can be attributed to the overall rotation (related to tl)

of the species in the solution environment. Thus, although the librational motion of the

H3PO4 species are higher, lower possibility of formation of peripheral H-bonds results in an

overall higher value of ts than compared to H2PO –
4 and HPO 2–

4 , where the possibilities of

formation of peripheral H-bonds are expectantly higher. Hence, the lower librational motion

in case of HPO 2–
4 gives an overall higher value of ts in comparison to HPO –

4 . Finally, for the

H-bonds accepted by the OP,H and OP sites in Fig. 7(d)-(f) and Fig. 8(a)-(d) respectively,

we similarly expect the ts values to change following the combined behaviour of the CDF

and vector autocorrelation plots shown above.
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Figure 9: Vector auto-correlation function calculated for intra-molcular P − OP (including
OP,H) bonds for the solute species (a) H3PO4, (b) H2PO –

4 , (c) HPO 2–
4 and PO 3–

4 . The
region on the x-axis in the range 0− 0.5 ps (highlighted in cyan) can roughly be considered
as the contribution from librational motion (related to ts) of the species, whereas the region
outside 0.5 ps (highlighted in pink) can be attributed to the overall rotation (related to tl)
of the species in the solution environment.
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Figure 10: Power spectra of bulk water (the highest panel), H3PO4, H2PO –
4 , HPO 2–

4 and
PO 3–

4 ( the lowest panel) are shown respectively, from top to bottom. These spectra are
decomposed into the contributions from individual atoms – (i) the ones for oxygen H of waters
are shown in black solid lines, (ii) O of waters are in black dotted lines, (iii) intramolecular
hydrogens for the P−V species in blue, (iv) OP,H atoms are in green, and (v) the ones for OP

atoms of the species are in orange colored solid lines. The normal oscillation modes in the
gas phases are shown in for bulk waters and the parent P−V species, H3PO4, as downward
pointing triangles. The description of the modes is given in the table 3.
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Vibrational Density of States

Vibrational density of states (VDOS), also known as power spectra, computed from the

Fourier transform of velocity auto-correlation function (VACF), give a direct measure of the

vibrational modes of a species in solution environment, and useful for a direct comparison to

experimental infra-red and Raman spectroscopy measurements.25 In gas-phases (i.e., with

no waters), there exists 3N − 6 physical harmonic modes of vibrations, barring the 6 rigid

body motions. In solution phases, all the 3N modes can be effectively obtained that become

anharmonic in nature. While gas-phase vibrational modes can be effectively computed for

normal modes, the same can not be done for solution phases with the state of the art DFT

algorithms, as the dimension of the Hessian matrix to be calculated becomes prohibitively

large with the number of degrees of freedom for the system. VDOS calculations becomes the

mere choice in such contexts.

Table 3: Gas phase normal mode frequencies of (a) H2O and (b) H3PO4–along
with qualitative descriptions of vibrational modes as recognized from visualiza-
tion of the eigen-modes with the software package MOLDEN.56

Species frequency (cm–1) Description of the vibrational modes
H2O 1586 H−O−H angle bending mode

3677, 3778 symmetric and anti-symmetric stretching of O−H bonds.

H3PO4 97, 178, 211 various low energy modes
315, 330, 371, 382, 396 Ox−P−Ox, x = OP & OP,H, bending & other mixed modes
713, 798, 816 P−OP,H stretching modes
1017, 1032 P−OP,H−H bending modes
1038 mixed kind involving P−OP stretching & P−OP,H−H bending
1198 P−OP stretching mode
3667, 3672, 3678 various OP−H stretching modes.

In Fig. 10, the power spectra for pure bulk waters (topmost panel), and, various P−V

species, namely H3PO4, H2PO –
4 , HPO –

4 and PO 3–
4 are shown from top to bottom, respec-

tively. These spectra are decomposed into the contributions from individual atoms – (i) the

ones for oxygen H of waters are shown in black solid lines, (ii) O of waters are in black

dotted lines, (iii) intramolecular hydrogens for the P−V species in blue, (iv) OP,H atoms are
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in green, and (v) the ones for OP atoms of the species are in orange colored solid lines. The

gas-phase normal modes are computed for H2O and H3PO4 molecules and included on the

top two panels as downward triangles to facilitate useful comparisons and understand the

qualitative natures of the peaks on the VDOS plots. The red-shifts of these peaks in compar-

ison to the respective gas-phase vibrational modes signify the cumulative effect of aqueous

solvation, H-bonding and changes incurred in structural and electronic distributions under

solvation. The qualitative description of the vibrational modes can be found in table 3 as

interpreted via visualization of the eigen-modes with the software MOLDEN.56 These modes

and the VDOS correspond well with earlier studies in the literature.8,15,16

From the topmost panel of Fig. 10, it is seen that the O−H bond stretching modes of

H2O are considerably red-shifted in comparison to the gas phase values (see table 3), with

the symmetric and anti-symmetric modes merged over a spread ranging from ∼ 2500− 3500

cm-1. Similar trend is observed in the cases of OP,H−H bond stretching mode for H3PO4,

H2PO –
4 and HPO 2–

4 as well. However, the amount of red-shifts are found to decrease from

H3PO4 to HPO 2–
4 . This behaviour is the result of the strong nature of the H-bonds accepted

by these species from OP,H sites.

The mode around 1500 cm-1 for H2O is attributed to H−O−H angle bending mode, and

relatively less red-shifted in comparison to the bond-stretching modes in gas-phase calcula-

tions. The P−OP,H−H bending are considerably slower in comparison to those of H2O and

can be found in the frequency range of 1000−1500 cm-1 for all the cases, with slight gradual

red-shifts from H3PO4 to HPO 2–
4 as a result of deprotonation. From Raman spectroscopy

analysis, Rudolph15 has shown that the P−OP,H−H bending modes occur at 1255 cm-1 (for

H3PO4) and 1240 cm-1 (for H2PO –
4 ) in dilute aqueous solutions at 23◦ C. It can therefore

be reasonably presumed that the results obtained in the present study could be correctly

interpreted and reproduced, with the likely discrepancies between the corresponding val-

ues stemming, inter alia, from theoretical constraints of DFT and CPMD, the experimental

conditions and variations in density.

21



As far as the VDOS of OP and OP,H are concerned, the red-shifts are mostly determined

by the oxidation state of the species, which determines the P−OP bonding types. While

the plots denoted by green colored solid lines are due to the single bonded OP,H atoms, the

ones with orange lines are due to double bonded OP or single bonded O –
P atoms/ions. The

peaks in the frequency range of about 500 − 1000 cm-1 are expected to be due to various

bond stretching modes modes corresponding to the gas-phase modes in the range 600−1200

cm-1. The amount of relative red-shifts of different stretching modes in this range vary, as

expected, with the oxidation state or degree of deprotonation from H3PO4 to PO 3–
4 . From

experiments by Rudolph,15 the Raman spectroscopic modes for various stretching of P−OP

and P−OP,H bonds are found to occur in at 890, 1008 and 1178 cm-1 (for H3PO4) and 870

and 1018 cm-1 (for H2PO –
4 ). The low energy modes in the range about 0 − 500 cm-1 in-

cluding the Ox−P−Ox (Ox =OP or OP,H) modes are least affected with the deprotonation

state, qualitative signatures, values and relative trends in agreement with the experimental

results by Rudolph.15 It should be noted herein that the behaviours in vibrational properties

discussed above are likely to be impacted through the charge transfers between solute and

solvent molecules/ions, which are known to effectively play a role in the perturbation in the

electrostatic environment as well as the polarization state of the species, as previously re-

ported for various test cases.57,58 In addition to these vibrational properties, charge transfers

are expected to influence various structural properties (for example, charge transfer to the

second hydration shell of the species in Fig. 2, hydration and possibly other dynamic prop-

erties, as previously reported in a number of recent studies.59–62 The quantitative natures

of these plots are also expected to change owing to the fictitious electron mass of the CPMD

technique, as shown in our recent work.48

Eventually, we will provide some practical annotations on the effectiveness of Kohn-Sham

energy functionals in its conventional representation in describing water structures, and re-

cent efforts to improve overall structural and dynamical qualities by integrating the otherwise

non-existent dispersion corrections into DFT. Gradient corrected BLYP functions are exten-
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sively exploited in liquid water simulations thanks to their low computational effort-load

as compared to the hybrid functionals. Nevertheless, it is proven that BLYP outputs an

over-structured water which results in a generally lagged water dynamics when compared

to experiments. Furthermore, an increase in the number of H-bonds and the lifetime is ob-

served than in reality.63 The exclusion of non-local density corrections is recognised as one

of the main factors for this inaccuracy among others found in bulk water simulations,64,65

which results in a poor description of the weak dispersion interactions. Several dispersion

correction schemes proposed for water have considerable potential, in particular the empir-

ical correction schemes proposed by Grimme66,67 are recently adopted for a wide range of

applications,68–70 for which the water becomes less over-structured, with RDFs and angular

distribution functions closer to the experiments.71,72 In the light of such recent and foregoing

developments, we may conclude that the current study conducted with the BLYP function-

ality excluding dispersion correction does somewhat overestimate the statistics and lifetime

of H bonds, whereas their qualitative assessment is likely to remain largely intact due to the

empirical nature of the Grimme dispersion corrections.

Conclusion

To conclude, a comprehensive MD simulation following first principles was performed for

the main waterborne phosphorous species (viz., H3PO4, H2PO –
4 , HPO 2–

4 , and PO 3–
4 ) un-

der aqueous conditions, and various structural, dynamic and spectroscopic aspects were

reported, focusing in particular on H-bonding properties. Three-dimensional spatial hydra-

tion structures of the species were computed for all cases, providing a direct microscopic

picture of the hydration nature of the species. From the analysis of the H-bond dynamics,

the lifetimes of the H-bonds of different species were calculated, providing a characteristic

picture of the different solutes studied. Gas phase normal modes of the H3PO4 were also

calculated, which were used to interpret the VDOS spectra and to understand the effect of
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solvation and H-bonding in solution phases.

It was found that the number of H-bonds formed by different dissolved species with bulk

water molecules depends decisively on the number of oxygen/hydrogen sites and also on the

formal charge of the species. The spatial density of water molecules in the first hydration

shells of the species thickens gradually with the oxidation state, from H3PO4 to PO 3–
4 , due

to the reduction of fluctuations of water coordination in the shell, accompanied by uniform

increase in maximum probable water coordination number from 9 (for H3PO4) to 12 (for

PO 3–
4 ). From the analysis of H-bonds formed by the species in water, it was found that

the total number of H-bonds formed by the species increases from 7 to 11 in going from

H3PO4 to PO 3–
4 . However, the qualitative natures of the different types of H-bonds formed

by the species behave quite differently from each other. It was found that in all the cases

the intramolecular hydrogens engage in formation of a strong H-bond with a water molecule

in its vicinity that accounts for a strong H-bond as donor, while barring the site to form

strong H-bonds as acceptor. The H-bonds accepted by the bare OP sites play the more

decisive factor in the qualitative as well as quantitative natures of the species in water, and

are found to increase significantly with the degree of deprotonation, from H3PO4 to PO 3–
4 .

While it was found that the H-bonds accepted by these sites are more or less similar to the

water-water H-bonds, those for the cases of HPO 2–
4 and PO 3–

4 are 3− 4 times longer-lived

in nature. In addition to the H-bonding properties, we have also analysed the species for

spectroscopy, in terms of the VDOS plots computed from the AIMD trajectories at room

temperatures, in comparison to gas-phase normal modes for H3PO4. While the O−H bond

stretching modes are mostly effected by H-bonding (determined by the amount of red-shifts

in comparison to gas-phase normal modes), the ones for P−OP (including P−OP,H) are less

effected, are mostly susceptible to the bonding type of OP.

It is believed that this study would be helpful in better understanding the global cycle

of phosphorous in the ecosystem as well as, in their identification and characterization in

aqueous and various confined environments, might also be useful in the solution chemistry
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and biology, and in drug design.
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(69) Wang, J.; Román-Pérez, G.; Soler, J. M.; Artacho, E.; Fernández-Serra, M.-V. Density,

structure, and dynamics of water: The effect of van der Waals interactions. J. Chem.

Phys. 2011, 134, 024516.

(70) Ma, Z.; Tuckerman, M. E. On the connection between proton transport, structural

diffusion, and reorientation of the hydrated hydroxide ion as a function of temperature.

Chem. Phys. Lett. 2011, 511, 177–182.

(71) Lin, I.-C.; Seitsonen, A. P.; Tavernelli, I.; Rothlisberger, U. Structure and dynamics

of liquid water from ab initio molecular dynamics–comparison of BLYP, PBE, and

revPBE density functionals with and without van der Waals corrections. J. Chem.

Theory Comput. 2012, 8, 3902–3910.

(72) Arey, J. S.; Aeberhard, P. C.; Lin, I.-C.; Rothlisberger, U. Hydrogen bonding described

using dispersion-corrected density functional theory. J. Phys. Chem. B 2009, 113,

4726–4732.

(73) Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. J. Mol.

Graphics 1996, 14, 33–38.

(74) Brehm, M.; Kirchner, B. TRAVIS – a free analyzer and visualizer for Monte Carlo and

molecular dynamics trajectories. J. Chem. Inf. Model. 2011, 51, 2007–2023.

32



Graphical TOC Entry

33


