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Abstract 

This study is based on the Illumina RNA-sequencing data obtained for a de novo assembly of the 

transcriptome from early developmental stages and some tissues and cells of the adult mussel 

Mytilus trossulus (Mytilidae, Mollusca) using Trinity program. A total of 200079 contigs were 

obtained, and compared to the NCBI database using BLAST to search for sequence similarity. 

The number of annotated contigs under the GO term 3 categories was estimated to reach 19.96%. 

The BUSCO analysis determined a level of 99.2% completeness for the assembled 

transcriptome. The main findings include evidence that the mussel β integrin-like protein 

sequences are high similar to the β integrin-like proteins so far sequenced for all classes of 

Mollusca, while the highest similarity is observed between mussel and oyster (Crasostrea gigas) 

β integrin-like proteins. Our transcriptome dataset contributes to the genetic databases of non-

model animals such as Bivalves and represents the first characterization of expressed sequences 

during early development of the mollusk M. trossulus from the Sea of Japan including the 

identification of candidate genes involved in cell adhesion.

Keywords: integrin-like proteins, cell adhesion, Mollusca, next-generation sequencing, stage-

specific expression 
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Introduction

When cells began to organize into multicellular organisms, the appearance of 

extracellular matrix (ECM) is an important stage in this process (Wainright et al., 1993). A 

prerequisite for the emergence of long-lived multicellular organisms was the evolution of 

intercellular adhesion mechanisms (Abedin, King, 2010). Unicellular ancestors of Metazoa had a 

variety of protein components of cell adhesion complexes and receptor-type signalling 

molecules, such as integrins and cadherins, involved in metazoan multicellularity and 

development (Suga et al., 2013). Sequencing of the genome of one of the most primitive 

multicellular organisms, the sponge Amphimedon queenslandica, has revealed a set of genes 

associated with the emergence of metazoan multicellularity, among them genes involved in cell 

adhesion (Srivastava et al., 2010). In lower metazoans, Placozoans, genome includes genes for 

many proteins of the ECM found in the basement membranes of other animals, despite the lack 

of a basement membrane in Placozoans (Srivastava et al., 2008). In this study, we present an 

initial survey of candidate genes involved in cell adhesion, such as genes encoding integrin-like 

proteins, during early development of the bivalve mollusk Mytilus trossulus, because the integrin 

gene families that are particularly interesting in the context of the evolution of multicellularity. 

Unfortunately, the evolutionary history of integrins is largely unclear (Humphries, 2000; 

Hughes, 2001). It is known that one or more alpha integrin-subunits associate with specific beta 

integrin subunits, and  and  integrin subunits are encoded by evolutionarily unrelated gene 

families (Hynes, 1992).There is evidence of the divergence of alpha integrin-subunits until the 

separation of Protostomes from Deuterostomes (Hynes, 2012). Alpha integrin-subunit in mussels 

is located near alpha integrin-subunits of sponges, cnidarians, nematodes, arthropods, 

echinoderms and ascidians (Miyazawa et al., 2001; Takada et al., 2007). A phylogenetic tree 

constructed for these alpha subunits also indicates their ancestral position (Miyazawa et al., 

2001).

The genome-sequencing data of the snail Biomphalaria glabrata and the Pacific oyster 

Crassostrea gigas confirmed the presence of genes encoding integrin-like proteins in mollusks 
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(Lockyer et al., 2007; Zhang et al., 2012). Moreover, shell formation in oysters was found to 

depend on genes associated with the ECM (Zhang et al., 2012). To date, Mytilus transсriptome 

sequencing has been reported only for adult M. edulis and M. galloprovincialis (Venier et 

al.,2003; Craft et al., 2010; Philipp et al., 2012; Tanguy et al., 2013; Toubiana et al., 2014; 

Moreira et al., 2015). One study deals with the transcription profiles of molluscan larvae (Bassim 

et al., 2014), where the active transcription of M. edulis genes encoding proteins of the ECM has 

been revealed. 

The integrin homologs have been previously identified in some marine invertebrates from 

corals to mollusks (Burke, 1999; Grasso et al., 2008; Knack et al., 2008; Jia et al., 2015) and are 

highly conserved in the Metazoa kingdom (Burke 1999; Takada et al. 2007). The integrin β1 

subunit is likely to be the common ancestor for all β integrin subunits in vertebrates (Hughes, 

2001; Ewan et al., 2005). It should be borne in mind that, similar to integrins in vertebrates, 

studying the integrin-like proteins in invertebrates shows that they play an important role in 

developmental processes (Burke, 1999; Zhang et al., 2012; Bassim et al., 2014; Maiorova, 

Odintsova, 2015). Nevertheless, there is a few information about the participation of integrin-like 

proteins in the development of mollusks (Dyachuk et al., 2015). 

Here, a set of positively selected genes related to integrin complex was identified in the 

transcription profiles of one of the representatives from the lophotrochozoan clade, the mussel 

M. trossulus. We have also conducted the quantitative expression analysis of mussel integrin 

homologs during early development. Additionally, an analysis of the mussel transcriptome 

revealed four novel full-length sequences, orthologous to mammalian transcripts, that seemed to 

be isoforms of two genes encoding β integrin-like proteins. The β-A transcript had isoforms β-A1 

and β-A2 that differed by the insertion of 24 base pairs (bps) in a protein-coding region of the 

extracellular domain; the β-B transcript also had two isoforms (β-B1 and β-B2) that differed by a 

small insertion in a non-coding region. We compared our results with the well-known sequences 

of β integrin-like proteins from other animals and found that the predicted β integrin-like 

proteins of mussel were most closely related to the integrins of mollusks (two resembling the 
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oyster β1-integrin and two more similar to the oyster β3-integrin (Zhang et al., 2012)). There are 

a few molecular studies for deep sea mussels but all of them are based only on mitochondrial or 

nuclear genes (Distel et al., 2000; Owada, 2007; Samadi et al., 2007; Liu et al., 2018), thus, we 

are forced to compare sequencing information with oyster genome. The present study provides a 

transcriptome that can serve as a reference for future studies of functional development of this 

important bivalve group in the marine ecosystems. 

Methods

Marine farmed mussels (M. trossulus, Bivalvia: Mytilidae) used as a model were 

collected from the Vostok Bay of the Sea of Japan and stored in tubs filled with aerated running 

seawater (SW) at 5–10°C before performing the experiments. The spawning of sexually mature 

specimens was induced by thermal shock, as previously described (Dyachuk, Odintsova, 2009). 

Our studies did not involve endangered or protected species.

Developing embryos were cultivated in 5-L tanks at 17°C, harvested at different 

developmental stages, including fertilized eggs, cleaving embryos, and larvae, up to the early 

veliger (Odintsova et al., 2010). We have collected the larvae after the hatching at the stage of 

swimming blastula (11 h after fertilization) at the mesh gauze (35 µm), then we have added SW 

in the tank. In due time, the trochophore larvae were collected at the new mesh gauze, and for 

following development (up to the early veliger) the trohophore larvae were transferred to a new 

tank with the fresh SW. Also, some cells and tissues (hemocytes, adductor, gills, digestive gland, 

mantle, and testis) of adult mollusks were used for constructing sequencing libraries. Total 

RNAs from the mussel embryonic or larval suspensions (about 0.05–0.1 ml of 300000 embryos 

or larvae) or cells and tissues of adult mollusks (50–100 mg) were lysed in 15–20 volumes of 

TRIzol Reagent (Thermo Fisher Scientific, USA), briefly frozen in liquid nitrogen, and stored at 

-80°C until further analysis. 

RNA isolation 
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Total RNAs were extracted using the RNeasy Mini kit (Qiagen, USA). Contaminating 

DNA was removed with DNAase I (Fermentas, USA). RNA concentration was determined using 

a NanoDrop spectrophotometer (Thermo Scientific, USA). The RNA quality was checked using 

an Agilent 2100 Bioanalyzer (Agilent Technologies, USA) according to the manufacturer’s 

protocol. 

Preparation of the mRNA fragment library and Sequencing

Sequencing libraries were prepared using the reagents provided in the Illumina® 

TruSeq® RNA Sample Preparation Kit based on 5 μg of total RNA in each sample. Libraries 

were quantified by real-time PCR using the KAPA Library Quantification Kit for the Illumina 

platform (Kapa Biosystems, USA). The DNA fragment size was verified using the Agilent 2100 

Bioanalyzer DNA High Sensitivity Assay (Agilent Technologies, USA). The average fragment 

size was within the range from 360 to 490 bps. The libraries were sequenced using the 

information obtaining from two sequencers MiSeq (Illumina, USA) and HiSeq2500 (Illumina) in 

the Marine Genomics Unit (OIST, Japan) (see Supplementary table S1 for details of libraries and 

sample sets used for the different transcriptome reads). Longer sequence reads (2x280 bp) 

obtained with MiSeq were used for transcriptome assembly and for preliminary gene expression 

estimation. Short sequence reads (2x134 bp) obtained with HiSeq had higher coverage and were 

used for expression estimation of all genes. 

The assembly of de novo transcriptome of M. trossulus 

Raw reads were processed for adapter sequences removal and trimming using the 

Trimmomatic tool (Bolger et al., 2014). Sequencing fragments quality was monitored using the 

FAST-QC program (www.bioinformatics.bbsrc.ac.uk/projects/fastqc/).  After removing 

ambiguous nucleotides and low-quality reads (quality scores <20), Illumina Miseq high-quality 

raw reads with Phred score ≥20 and length ≥ 36 bps were kept for further assembly and 

quantitative expression analysis. The assembly of de novo transcriptome was performed using 

the Trinity program (version r20140413p1) (Haas et al., 2013). A transcriptome assembly quality 

was accessed using QUAST (Gurevich et al., 2013). Transcriptome completeness was assessed 
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using the Benchmarking Universal Single-Copy Ortholog (BUSCO) assessment tool (Simão et 

al., 2015), software version 3.1.0 with default setting. The metazoa_odb9 dataset consisting of 

978 single-copy genes was used as a reference.

Sequence Annotation

For the annotation steps, we searched for potential contaminant sequences in our 

assembly. We looked for sequences with bacterial signatures using CLARK-l (Ounit et al., 2015) 

and BLASTX. Protein coding sequences of transcripts were analyzed via Transdecoder. The 

standard Trinotate annotation pipeline (https://trinotate.github.io/) was performed to annotate the 

assembled transcripts against the UniProt, NR, Pfam, and GO databases using the BLASTx 

program. 

Quantitative gene expression

To assess the level of gene expression in the data of massive parallel sequencing between 

all tested early developmental stages, we used alignment readings to the received transcripts by 

the RSEM algorithm, and then analyzed values of FPKM (fragments per kilobase of transcript 

length per million mapped reads). For the quantitative expression analysis, the high-quality reads 

from each sample were mapped.

Availability of Supporting Data

Illumina read sequences from this study were deposited in the NCBI’s SRA database 

(Sequence Read Archive) under the accession number SRP 137045. Assembled sequences have 

been submitted to the NCBI under the submission code SUB (3854015). 

Amino acid sequence analysis of β-integrin-like proteins 

A search for integrin homologs was performed using the algorithms BLASTp and 

BLASTx in the NCBI NR and UniProt/TrEMBLE databases. We compared the amino acid 

sequences of suspected mussel β- integrin-like proteins with the known sequences of β-integrins 

from some other organisms from different taxonomic groups using the ClustalW algorithm (see 

Supplementary Figure, S2). Then, sequence alignments were manually corrected by the 

provisions of 56 conserved cysteine residues using the program MEGA 7 (Kumar et al., 2016), 
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alignment was visualized using JalView (Waterhouse et al., 2009). Based on the alignment data, 

a phylogenetic analysis of the sequences was conducted using the method of maximum 

likelihood (ML) and the method of nearest neighbors (NJ) in the program MEGA 7 (Kumar et 

al., 2016). As the best model of the test data set, the WAG model was chosen. 

Results

The M. trossulus transcriptome analysis included almost 40 million assembled raw RNA-

Seq reads with the median length of 392 bp. Total reads were compiled into 200079 contigs 

ranging from 500–31400 bp, with an average length of contig of 728 bp. Sixteen sequencing 

libraries were constructed. Specific details related to the M. trossulus assembly statistics and 

annotation are included in Table 1 (also, see Supplementary table S1). The BUSCO analysis 

determined a level of 99.2% completeness for the assembled transcriptome. There are only two 

missing orthologs and six fragmented orthologs from the metazoa_odb9 datase in the M. 

trossulus transcriptome.

Using the NR database, the number of annotated sequences was estimated to reach 

29.24%. Contigs were annotated using the Trinotate annotation pipeline (version r20140708, 

www.trinotate.github.io) with an E-value threshold of 1 × 10-5. This pipeline assesses BLAST 

homologies between the assembly and SwissProt using BLASTx of the contig sequence, and 

BLASTp of TransDecoder Predicted Proteins. Among 200079 transcripts, 39934 (19.96%) were 

classified under the GO term three categories: biological process, molecular function, and 

cellular component (Fig. 1 A). Based on selected GO terms, related to integrins and extracellular 

matrix, the analysis was performed at the second level for all transcripts of three main categories, 

and the number of transcripts was shown on top of each column (Fig. 1 B).

A Venn diagram demonstrates the distribution of transcriptional active contigs during early 

development (Fig. 2). In the development process, the number of active transcripts increased in 

comparison with that at the early stages, reaching maximum values at the trochophore and veliger 

stages (about 70000). 
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To determine primary expression trends in the mussel transcriptome profile, we 

compared the gene expression patterns of each transcript of proteins involved in cell adhesion ( 

and  integrin-like proteins) between all tested developmental stages and found on a heat map 

that significant differences occurred in the expression of genes encoding integrin-like proteins 

during development (the expression level of these genes is marked by a color key) (Fig. 3). 

Expression of the β-A1 gene (c163688_g2_i1) was decreased when comparing egg to the 

following stages, indicating the reduction of maternal expression of over 6–9-fold, whereas 

expression of the β-A2 gene (c163688_g2_i2) began to increase gradually from the early 

embryonic stages (blastula stage) to early larval stages (veliger stage). In contrast, we observed 

low levels in the expression of both β-B genes (c164133_g1_i1 and c164133_g1_i2) during early 

mussel development (Fig. 3). The level of expression of α integrin-like genes was very low (in 

comparison of that of some β integrin-like genes) showing the absence of maternal α integrin-

like mRNAs, with the exception of only one α integrin-like gene, c168669_g1_i1 (Fig. 3). At 

each time point, the top (annotated) differentially expressed contigs indicated different biological 

processes were likely to be important at different time. Specifically, at the trochophore stage, 

mussle development, cytoskeleton processes and mitosis were the dominant differential 

processes (Dyachuk et al., 2015; Maiorova, Odintsova, 2015). Later, at the veliger stage, cell 

adhesion, DNA repair, immune response and RNA processing were most prominent (this study). 

Qualitative analysis of differentially expressed transcripts over the time course showed the 

highest number occurred at the veliger stage (70057 contigs), whereas the minimal number of 

transcripts occurred at the blastula stage (40583 contigs).

Database comparisons revealed that the mussel β-integrin-like proteins belong to different 

sub-groups (Table 2). Mussel β-A-integrin-like proteins were identified as possible orthologs of 

integrin β1 from of the oyster C. gigas, whereas mussel β-B-integrin-like proteins were most 

closely related to oyster β3-integrins. Among identified contigs, four full-length transcripts 

(2834, 2858, 3534 and 3649 bps) corresponding β-integrin-like proteins were found in embryos 

and larvae at the different developmental stages. All hallmarks of β-integrins are conserved in all 
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sequences of the mussel β-integrin-like proteins: the cysteine-rich stalk of the extracellular 

domain containing 56 conserved cysteine residues, transmembrane and cytoplasmic domains 

(see Supplementary figure S2). 

To assess the divergence of β-integrin-like subunits in Protostomes and Deuterostomes, a 

cladogram was constructed, showing the relationships among β integrin-like proteins of various 

animals (Fig. 4). The difference of the topologies of phylogenetic trees of amino acid sequences 

of β-integrin-like proteins of various animals constructed from the method of ML and the 

method of NJ was minimal; thus, we used the ML method. β-integrins of Protostomes clustered 

into one clade in which a plurality of sub-groups can be distinguished. The sequence of mussel 

β-A integrin-like proteins showed a high degree of similarity to the sequence of oyster β1-

integrin (XP_011419533.1) and the sequences of β integrin-like proteins in Gastropods, Lottia 

gigantea (V4AU86_LOTGI), and B. glabrata (O96444_BIOGL). β integrin-like proteins of 

other representatives of Lophotrochozoa, such as the lingulid brachiopod Lingula anatina 

(XP_013415842.1), the polychaete Capitella teleata (X2BBV3_CAPTE), and the freshwater 

leech Helobdella robusta (tr|T1EIY7|T1EIY7_HELRO) were situated in the same group. The 

sequence of β integrin-like protein β-B of the mussel M. trossulus (c164133_g1) together with 

β3-integrin sequences from the pearl oyster Pinctada fucata (G9JKY4_PINFU) and the Pacific 

oyster C. gigas (XP_011453738.1) formed a more distantly related group to the mussel β-A 

integrin-like proteins (c163688_g2). It resulted in high bootstrap support values. 

Amino acid sequence analysis of α-integrin-like proteins revealed the presence of some 

conservative domains, which are characteristic of integrins: integrin α2 superfamily domain and 

beta-propellor repeats.

The invertebrate species distribution of the top BLAST hits is given in Supplementary 

figure S3. Only species appearing in more than 0.5% of the BLAST hits are represented. 

Discussion
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Today, the study of newly discovered protein begins by searching for previously 

characterized proteins that have similar amino acid sequences. These homologous proteins can 

be identified in different organisms, despite the large phylogenetic distances. 

More than 2000 mussel genes have two isoforms, and near 1000 mussel genes have five 

isoforms (Gerdol et al., 2015). This is not surprising as mussel populations have been previously 

reported to be characterized by an extremely high level of heterozygosity (Skibinski et al., 1980; 

Koehn, Gaffney, 1984; Mosquera et al., 2003). The mussel genome is presently estimated to 

contain 25000 genes (Murgarella et al., 2016), which is close in the size to the oyster genome 

(29353 genes) (Takeuchi et al., 2012; Takeuchi et al., 2016). This fact coincides with the data of 

other authors for marine molluscan genomes (Yoshida et al., 2011). 

Typical of β integrin-like proteins consist of three different domains, which include the 

highly conserved extracellular domain. The presence of 56 conserved cysteine residues in the 

extracellular domain of all tested β integrin-like proteins (Hynes, 2012; our data) confirms the 

well-known fact that disulfide bonds in polypeptide chains of different proteins are mainly 

located on the outside of the membrane, providing the native structure of polypeptides and being 

critical for interactions between polypeptide chains (Bretscher, 1973). β-A transcripts 

corresponding predicted β integrin-like proteins appear to be the products of alternative splicing 

of the same gene β-A, whereas β-B transcripts resembling the oyster β3-integrin seem to be a 

result of the allelic diversity of the gene β-B. 

β-integrin subunits in Spongia and Corals have been supported to be formed 

independently of each other, and a division into the integrin β-subunit classes in vertebrates 

occurred late in Evolution – likely in the Deuterostome subtaxon line only, and perhaps only 

within Сhordates (Brower et al., 1997; Satoh, 2016). In contrast, other analyses resolve the 

divergence of β integrin-like subunits in invertebrates as occurs independently from the ancestral 

form in several lines of bilateral animals, and there are no orthologs of vertebrate β-integrins 

(Burke, 1999; Knack et al., 2008). Nevertheless, β integrin-like proteins of Drosophila, the 

nematode Caenorhabditis elegans, and the sea urchin Strongylocentrotus purpuratus show a 
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high degree of sequence similarity to the β-integrin subunit in vertebrates, and β integrin-like 

proteins of these invertebrates are also involved in the development processes (Brabant, Brower, 

1993; Gettner et al., 1995; Marsden, Burke, 1998). 

To understand variations in differential gene expression patterns between larvae and 

adults, transcriptional activity has been studied in just a few animals, including some marine 

invertebrates (Woods et al., 2004; Azumi et al., 2007; Williams et al., 2009; Conaco et al., 2012). 

Our results have also demonstrated various expression patterns of genes associated with cell 

adhesion and encoded integrin-like proteins throughout early development in Bivalves, both α 

and β integrin-like subunits. In this study we examined the expression levels of some transcripts 

of α integrin-like subunits (of about 14) and only four of β integrin-like subunits. Most of α 

integrin chains were expressed at a relatively low level during early mussel development, 

whereas the expression levels of some β integrin-like subunits were found to be significantly 

higher. A low expression level of α integrin-like genes shows the absence of maternal α integrin-

like mRNAs (with the exception of transcript c168669_g2_i1) and a high expression level of β 

integrin-like genes shows of the presence of maternal β integrin-like mRNAs. We assume that 

these are, mainly, β-A1 transcripts (c163688_g2_i1) (based on the results presented in Fig. 3). 

The previously obtained data on the presence of maternal integrin mRNAs was reported for 

hydroid polyps (Reber-Müller et al., 2001; Knack et al., 2008), as well as for higher animals. 

They indicate the importance of maternally programmed behavior of some cell adhesion 

molecules.

Genes participating in signal transduction and stimulus response, related to defense 

pathways, have been previously reported in the oyster genome (Zhang et al., 2012). Their active 

expression was observed both in adult mollusks and during oyster development. In pathogen 

recognition and elimination of gram-negative bacteria, an integrin from the oyster C. gigas has 

been showed to enhance the phagocytosis of oyster hemocytes. The full-length cDNA of this 

oyster integrin was 2571 bp (Jia et al., 2015), that is close in the size to two full-length integrin-

like transcripts which we detected in the genome of the mussel larvae (2834 and 2858 bp). In 
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adult mussels, only genes associated with multixenobiotic resistance, glutamate biosynthetic 

process, and the maintenance of ciliary structures  were identified (Murgarella et al., 2016). 

Moreover, it was previously reported that antioxidant enzymes and antimicrobial peptides were 

discovered in adult bivalves: M. edulis (Philipp et al., 2012; Tanguy et al., 2013) and C. gigas 

(Gonzalez et al., 2007). In larval M. edulis, genes encoding proteins of the ECM have been 

additionally revealed (Bassim et al., 2014). These authors have found an end of the development 

of larval structures and the beginning of the exponential increase of adult structures already in 

post-metamorphic pediveligers. 

The matrix completeness of Illumina data was shown to be superior to that of other data 

(Smith et al., 2011) and has increased our basic knowledge of the genomes of Bivalves. Using 

the next-generation sequencing techniques and the Trinity program, we generated a large M. 

trossulus transcriptome database. The protein domains identified may provide more relevant 

information of cell adhesive function. Our findings suggested that the predicted β integrin-like 

genes have different functions during the mussel development. 
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Figure legends:

Figure 1. Functional annotation of assembled contigs in the mussel M. trossulus based on gene 

ontology (GO) categorization. GO analysis was performed at the second level for three main 

categories (cellular component, molecular function and biological process) (A) and for selected 

GO terms, related to integrins and extracellular matrix, in all three categories (B). The number of 

transcripts is shown on top of each column.  

Figure 2. Venn diagram showing the overlap of transcriptionally active contigs (whose FPKMs 

≥1 at least in one from the libraries) comparing different early developmental stages in the 

mussel Mytilus trossulus. 

Figure 3. Heat map of quantitative gene expression of α and β integrin-like transcripts during 

mussel development (in eggs, zygotes, embryos and early larvae). The level of expression is 

marked by a color key. Data obtained using HiSeq Sequencing. 

Figure 4. Сladogram showing the relationships among β integrin-like proteins in Protostomes 

and Deuterostomes. Amino acid sequences were aligned, and a phylogenetic tree was made by 

the ML method using amino acid sequences for β integrin-like proteins of the species identified. 

The bootstrap values above 50% are marked on the tree branches. The branches tested in branch-

sites tests of selection for β integrin-like proteins are indicated.
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Supplementary material

Supplementary Table S1. Details of the assembled libraries produced by the different 

sequencing runs. Quantitative evaluation of the data obtained MiSeq/HiSeq sequencing.

Supplementary figure S2. Amino acid sequences of mussel β integrin-like proteins (β A and β 

B) aligned with representative β integrin sequences: Human β1 (HsItgβ1; P05556); Drosophila 

melanogaster β-PS (P11584/ITBX_DROME), oyster C. gigas β1-integrin (XP_011419533.1); 

oyster C. gigas β3-integrin (XP_011453738.1).   

Supplementary figure S3. Invertebrate species distribution of the top BLAST hits. Only species 

appearing in more than 0.5% of the BLAST hits are represented. 
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Description Statistics

Total number of contigs 200079

Number of "genes" excluding isoforms                                                                 155959 

Number of contigs (>1000 bp)                                                                             35270

Number of contigs (>5000 bp) 1709  

Number of contigs (>10000 bp)                                                                                   114

Number of contigs (>25000 bp)                                                                                       1

Total length of contigs (bp)                                                                                  5656866

Total length of contigs (>500 bp) 104471164

Average length of contig (bp)                                                                                       728

Median length of contig (bp)                                                                                        392

Largest contig (bp)                                                                                                    31400

GC (%) of contig                                                                                                          34.03

N50 (bp)                                                                                                                          1126

N50 (subject only to the contigs >500 bp)                                                                  1804

L50 (subject only to the contigs >500 bp)                                                                16377

% annotated contigs (NCBI/NR) 29,24

%  annotated contigs (UniProt/TrEMBL) 29,99

% annotated contigs (Gene Ontology) 19,96
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Species, 
degree of 
identity / 
similarity

M. 
trossulus,

β-A-
integrin
-like 
protein 

M. 
trossulus,

β-B-
integrin
-like 
protein 

C. 
gigas,

β 1-like 
integrin

C. 
gigas,

β 3- like 
integrin

Lottia 
gigantea,

β 1- 
integrin

Lingula 
anatina, 
β-PS-
like 

integrin

Strongylo
centrotus 
purpura-
tus,

β- 
integrin

Branchio-
stoma 
lance-
olatum, 

β 1- 
integrin

M. 
trossulus,

β-A-
integrin-
like 
protein

100 38/54 54/70 33/52 54/71 52/68 39/57 41/60

M. 
trossulus,

β-B-
integrin-
like 
protein

38/54 100 35/52 46/62 37/55 39/57 34/51 35/52
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Figure 1. Functional annotation of assembled contigs in the mussel M. trossulus based on gene ontology 
(GO) categorization. GO analysis was performed at the second level for three main categories (cellular 

component, molecular function and biological process) (A) and for selected GO terms, related to integrins 
and extracellular matrix, in all three categories (B). The number of transcripts is shown on top of each 

column. 
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Figure 2. Venn diagram showing the overlap of transcriptionally active contigs (whose FPKMs ≥1 at least in 
one from the libraries) comparing different early developmental stages in the mussel Mytilus trossulus. 
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Figure 3. Heat map of quantitative gene expression of  and  integrin-like transcripts during mussel 
development (in eggs, zygotes, embryos and early larvae). The level of expression is marked by a color key. 

Data obtained using HiSeq Sequencing. 
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Figure 4. Сladogram showing the relationships among β integrin-like proteins in Protostomes and 
Deuterostomes. Amino acid sequences were aligned, and a phylogenetic tree was made by the ML method 

using amino acid sequences for β integrin-like proteins of the species identified. The bootstrap values above 
50% are marked on the tree branches. The branches tested in branch-sites tests of selection for β integrin-

like proteins are indicated. 
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Table S1. Details of the assembled libraries produced by the different sequencing runs. Quantitative evaluation of the data obtained MiSeq/HiSeq 

sequencing 

Number of reads 

The percentage of 
reads used for the 
assembly of the 
transcriptome, %

The percentage of 
reads used for the 
analysis of 
quantitative 
expression,% 

The percentage of reads 
successfully mapped at 
the transcriptome,% 

Sample

co
nc

en
tra

tio
n 

of
 c

D
N

A
 

lib
ra

rie
s, 

nM

th
e 

av
er

ag
e 

fr
ag

m
en

t 
le

ng
th

, b
p

MiSeq HiSeq MiSeq MiSeq HiSeq MiSeq HiSeq

Eggs 270,80 447 3088489 24463500 79,5 79,3 90,5 58,6 58,5

Fertilization eggs 35,10 409 2869307 27053170 77,4 77,3 90,0 62,2 62,2

Cleaving embryos, 2 h 350,82 485 4267044 25170927 91,0 90,8 89,5 57,6 56,6

Blastula, 11 h 110,42 410 2692405 25734753 78,0 78,0 90,3 62,7 62,7

Trochophore, 17 h 94,17 417 2289399 23263384 78,0 78,0 89,8 62,2 62,1

Trochophore, 21 h 64,94 426 2929434 32987911 76,4 76,3 89,6 62,9 62,7

Trochophore, 23 h 432,93 463 4371898 18494295 89,8 89,6 88,9 61,6 61,0

Trochophore, 24 h 343,86 490 2853912 20215770 79,6 79,5 92,4 59,9 59,7

Veliger, 51 h 82,80 445 3793360 17114374 77,6 77,6 93,3 62,4 62,2

Veliger, 55 h 440,75 481 5644674 30675844 81,7 81,5 92,6 61,9 62,1

Adductor 57,01 480 1062211 25895022 84,9 84,9 92,0 73,4 72,9

Gills 60,23 487 1082172 18020820 84,1 84,1 91,8 64,7 62,3
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Testis 77,07 464 847069 42820964 85,7 85,7 93,4 56,1 55,0

Digestive gland 46,91 404 802017 19894536 85,5 85,5 93,9 66,2 64,6

Mantle 28,41 436 989591 28220848 83,0 83,0 93,1 72,9 70,8

Hemocytes 34,44 401 793843 15570065 85,9 85,8 94,5 62,6 61,1
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