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Abstract

We study the ground state properties and non-equilibrium dynamics of two spinor bosonic impurities
immersed in a one-dimensional bosonic gas upon applying an interspecies interaction quench. For
the ground state of two non-interacting impurities we reveal signatures of attractive induced
interactions in both cases of attractive or repulsive interspecies interactions, while a weak impurity—
impurity repulsion forces the impurities to stay apart. Turning to the quench dynamics we inspect the
time-evolution of the contrast unveiling the existence, dynamical deformation and the orthogonality
catastrophe of Bose polarons. We find that for an increasing postquench repulsion the impurities
reside in a superposition of two distinct two-body configurations while at strong repulsions their
corresponding two-body correlation patterns show a spatially delocalized behavior evincing the
involvement of higher excited states. For attractive interspecies couplings, the impurities exhibit a
tendency to localize at the origin and remarkably for strong attractions they experience a mutual
attraction on the two-body level that is imprinted as a density hump on the bosonic bath.

1. Introduction

Mobile impurities immersed in a quantum many-body (MB) environment become dressed by the excitations of
the latter. This gives rise to the concept of quasiparticles, e.g. the polarons [ 1, 2], which were originally
introduced by Landau [3-5]. This dressing mechanism can strongly modify the elementary properties of the
impurity atoms and lead to concepts such as effective mass and energy [6, 7], induced interactions [8, 9] and
attractively bound bipolaron states [, 2, 10, 11]. Polaron states have been recently realized in ultracold atom
experiments [ 12—14], which exhibit an unprecedented degree of controllability and, in particular, allow to adjust
the interaction between the impurities and the medium with the aid of Feshbach resonances [15, 16]. The
spectrum of the quasiparticle excitations can be characterized in terms of radiofrequency and Ramsey
spectroscopy [12, 17—19] and the trajectories of the impurities can be monitored via in situ measurements

[20, 21]. Experimentally Bose [20—24] and Fermi [12, 13, 17] polarons have been observed and these
experiments confirmed the importance of higher-order correlations for the description of the polaronic
properties. The experiments in turn have spurred additional several theoretical investigations which have aimed
at describing different polaronic aspects [25, 26] by operating e.g. within the Frohlich model [27-31], effective
Hamiltonian approximations [8, 32—34], variational approaches [7, 9, 22, 35-37], renormalization group
methods [25, 38, 39] and the path integral formalism [40, 41].

The focus of the majority of the above-mentioned theoretical studies have been the stationary properties of
the emergent quasiparticle states for single impurities in homogeneous systems. However, the non-equilibrium
dynamics of impurities is far less explored and is expected to be dominated by correlation effects which build up
in the course of the evolution [34-36, 39, 42—45]. Existing examples include the observation of self-trapping
phenomena [46, 47], formation of dark-bright solitons [6, 42], impurity transport in optical lattices [48—51],
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orthogonality catastrophe events [35, 52], injection of a moving impurity into a gas of Tonks—Girardeau bosons
[53—60] and the relaxation dynamics of impurities [45, 61, 62]. Besides these investigations, which have enabled
abasic description of the quasiparticle states in different interaction regimes, a number of important questions
remain open and a full theoretical understanding of the dynamics specifically of Bose polarons is still far from
complete.

A system of particular interest consists of two impurity atoms immersed in a Bose—Einstein condensate
(BEC), where the underlying interactions between the impurities come into play. In such a system impurity—
impurity correlations [ 10, 63, 64] can be induced by the BEC, even in the case where no direct interaction
between the impurities is present. However, the competition between direct and induced interactions can also
be expected to lead to interesting effects. It is therefore natural to investigate the dynamical response of the
impurities with varying interspecies interactions (attractive or repulsive) and to identify in which regimes
robustly propagating Bose polaron states exist [25, 39, 43]. In addition it is interesting to study the existence of
bound states between the impurities [1, 10], the effect of strong correlation between the impurities on the
orthogonality catastrophe [35, 52], phase separation between the two atomic species [65-67] and energy
exchange processes [68, 69]. Comparing the effects in systems with single and multiple impurities is an
interesting task, as well as their theoretical interpretation in terms of the spin polarization (alias the contrast)
which has not yet been analyzed in the case of two impurities and involves more energy channels compared to
the case of a single impurity. For these reasons, we study in this work an interspecies interaction quench for two
bosonic impurities overlapping with a harmonically trapped BEC. To address the correlated quantum dynamics
of the bosonic multicomponent system we use the multi-layer multi-configuration time-dependent Hartree
method for atomic mixtures (ML-MCTDHX) [70-72], which is a non-perturbative variational method that
enables us to comprehensively capture interparticle correlations.

In this work we start by studying the ground state of two non-interacting impurities in a bosonic gas and
show that for an increasing attraction or repulsion they feature attractive induced interactions, a result that
persists also for small bath sizes and heavy impurities [8]. However, two weakly repulsively interacting
impurities can experience a net repulsion for repulsive interspecies interactions.

When quenching the multicomponent system, we monitor the time-evolution of the contrast and its
spectrum [19, 25] for varying postquench interactions. We show that the polaron excitation spectrum depends
strongly on the postquench interspecies interaction strength and the number of impurities while it is almost
insensitive to the direct impurity—impurity interaction for the weak couplings considered herein. Additionally, a
breathing motion of the impurities can be excited [73, 74] for weak postquench interspecies repulsions, while for
stronger ones a splitting of their single-particle density occurs. In this latter case a strong attenuation of the
impurities motion results in the accumulation of their density at the edges of the bosonic gas and they mainly
reside in a superposition of two distinct two-body configurations: the impurities either bunch on the same or on
separate sides of the BEC, while the bath exhibits an overall breathing motion. For attractive interspecies
couplings, the impurities exhibit a breathing motion characterized by a beating pattern. The latter stems from
the values of the impuritie’s center-of-mass and relative coordinate breathing modes, whose frequency
difference originates from the presence of attractive induced interactions. Additionally, the impurities possess a
tendency to localize at the trap center, a behavior that becomes more pronounced for stronger attractions [75].
Strikingly, for strong attractive interspecies interactions we show that during the dynamics the impurities
experience a mutual attraction on the two-body level and the density of the bosonic bath develops a small
amplitude hump at the trap center. We find that a similar dynamical response also takes place for two weakly
repulsively interacting impurities but the involved time-scales are different. To interpret the observed dynamics
of the impurities we invoke an effective potential picture that applies for weak couplings [35, 36, 73, 75].

Our work is structured as follows. Section 2 presents our setup and introduces the correlation measures that
are used to monitor the dynamics. In section 3 we address the ground state properties of the impurities for a wide
range of interspecies interaction strengths. The emergent non-equilibrium dynamics triggered by an
interspecies interaction quench is analyzed in detail in section 4. In particular, we present the time-evolution of
the contrast and the system’s spectrum (sections 4.1-4.3) and study the full dynamics of the single-particle and
two-body reduced density matrices for repulsive (section 4.4) and attractive (section 4.5) postquench
interactions. We summarize and discuss future perspectives in section 5. Finally, appendix details our numerical
simulation method and demonstrates the convergence properties.

2. Theoretical framework

2.1. Hamiltonian and quench protocol
We consider a highly particle number imbalanced Bose—Bose mixture composed of Ny = 2 bosonic impurities
(I) possessing an additional pseudospin-1/2 degree of freedom [76], which are immersed in a bosonic gas of

2
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Npg = 100 structureless bosons (B). Moreover, the mixture is assumed to be mass-balanced, namely

mp = m; = mand each species is confined in the same one-dimensional external harmonic oscillator potential
of frequency wy = w; = w. Such a system can be experimentally realized by considering e.g. a*’Rb BEC where
the majority species resides in the hyperfine state |F = 2, mr = 1) and the pseudospin degree of freedom of the
impurities refers for instance to the internal states |T) = |[F = 1, mp = 1)and|]) = |[F =1, mp = —1)

[77, 78]. Alternatively, it can be realized to a good approximation by a mixture of isotopes of *’Rb for the bosonic
gas and two hyperfine states of *’Rb for the impurities. The underlying MB Hamiltonian of this system reads

A=f+ 3 A+ Y A+ A + g + A’ )
a:T»l a:T l
The non-interacting Hamiltonian of the bosonic gas is HB = f dx @ B(x)(—z—d—zZ + mw 2) {(x), while for
the impurities it reads H = fdx ol o )(72—@ + mw2x2)\I/u(x) with a = {1,] } being the indices of the

spin components. Here 0, (x) refers to the bosonic field-operator of either the bosonic gas (¢ = B) or the
impurity (c = a = {T,]}) atoms. Furthermore, we operate in the ultracold regime where s-wave scattering is
the dominant interaction process. Therefore both the intra- and the intercomponent interactions can be

adequately modeled by contact ones. The contact intraspecies interaction of the BEC component is modeled by
A int

Hpp = g fdx \i';(x)\ifg(x)\ilB(x)\ilB(x) and between the impurities via I—AI;Z} =g fdx@l(x)@z/(x)\ffu/(x)\i/u(x)
whereeithera = a’ = 1,| ora = 1,4’ = |. Notealso that we assume 81 = §| = & =8&;- Mostimportantly, we
consider that only the pseudospin- T component of the impurities interacts with the bosonic gas while the pseudospin-
| is non-interacting. The resulting intercomponent interaction is I—AII;lt = gy f dx \il;(x) \if;(x)\iﬁ(x)\fl]g(x), where
s = gpyand g5 = 0.

In all of the above-mentioned cases, the effective one-dimensional coupling strength [79] is given by

) = 2 “”” L% (1 — 1€ /2)| aly/N2a) ,where o, 0/ = B, T,/ and pn = flsthereducedmass The

gO'(T

transversal length scaleis a, = // /pw, withw, being the transversal confinement frequency and a,,, denotes
the three-dimensional s-wave scattering length within (¢ = ¢”) or between (o = ¢’) the components. Ina
corresponding experiment, g, can be tuned either via a; ., with the aid of Feshbach resonances [15, 16] or by
adjusting w, using confinement-induced resonances [79]. In the following, the MB Hamiltonian of equation (1)
is rescaled with respect to fw. As a consequence, length, time, and interaction strengths are given in units of

i 7 .
2w tand |2 respectively.
mw m

To study the quench dynamics, the above-described multicomponent system is initially prepared in its
ground state configuration for fixed ggp = 0.5 and gg; = 0 and either g;; = 0 or gy = 0.2. In this way, the case of
two non-interacting and that of weakly interacting impurities are investigated. This initial (ground) state
emulates a system preparedinthe |1, —1) = ||); ® ||}, configuration for the spin degree of freedom i.e. where
the impurity-BEC interaction is zero. Note that the spinor part of the wavefunction is expressed in the basis of
the total spini.e. |S, S,) [80]. Accordingly, the spatial part [U'%;) of the ground state of the system obeys the
following eigenvalue equation (H — Hg;)[¥%,) |1, —1) = Eo|¥%,) |1, —1), with E, being the corresponding
eigenenergy and I—AIBI|\IIOBI> |1, —1) = 0.To trigger the dynamics we carry out an interspecies interaction quench
from gy = 0 to a finite positive or negative value of ggyat t = 0 and monitor the subsequent time-evolution. Ina
corresponding experiment, this quench protocol can be implemented by using a radiofrequency 7/2 pulse with
an exposure time much smaller than w ™' [19]. The pulse acts upon the spin degree of freedom of the impurity,

which maps the pseudospin- | impurities to the superposition state |)s); = It j_ll% withi = 1,2[18]. The

corresponding MB wavefunction of the system, [¥(¢)) = e /% [[WY%) (Jihsh ® |1hs)2)], is then given by

1 AT, 1 R A
(1)) = ﬁeﬂHf/’l[lﬂz%»ll, 0)] + E(e*’Eof/ﬁlxlf%»ll, —1) + e w1, 1)), )

The setup and processes addressed in our work can be experimentally realized utilizing radiofrequency
spectroscopy [9, 18,22, 23, 43] and Ramsey interferometry [18].

2.2.MB wavefunction ansatz

To calculate the stationary properties and to track the MB non-equilibrium quantum dynamics of the
multicomponent bosonic system discussed above we employ the ML-MCTDHX method [70-72]. This is an

ab initio variational method for solving the time-dependent MB Schrédinger equation of atomic mixtures and it
is based on the expansion of the total MB wavefunction with respect to a time-dependent and variationally
optimized basis tailored to capture both the intra- and the interspecies correlations of a multicomponent system
[35,65,81,82].
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To include the interspecies correlations, the MB wavefunction (¥(t))) is first expanded in terms of D
distinct species functions, |7 ()), for each component o = B, I, and then expressed according to a truncated
Schmidt decomposition [83] of rank D, namely

@) = Z VA W) WD), 3

Here the time-dependent expansion coefficients \i(f) are the Schmidt weights and will be referred to in the
following as the natural populations of the kth species function. Evidently, the system is entangled [84] or
interspecies correlated when at least two different A\i(t) possess a non-zero value. If this is not the case, i.e. for
A1) = 1, M= 1 (f) = 0, the wavefunction is a direct product of two states.

Therefore, in order to account for intraspecies correlations, each of the above-mentioned species functions
is expressed as a linear superposition of time-dependent number-states, |7 (¢)), with time-dependent
coefficients A7;(t) as

7 () = ZAI (O (1)°. 4)

Each number state |7 (¢)) is a permanent building upon d“ time-dependent variationally optimized single-
particle functions (SPFs) | ¢7 (£)),] = 1,2, ...,d” with occupation numbers # = (n,, ..., n47). Consecutively,
the SPFs are expanded on a time-independent primitive basis. The latter refers to an M dimensional discrete
variable representation (DVR) for the majority species and it is denoted by {| k) }. For the impurities this
corresponds to the tensor product { |k, s)} of the DVR basis for the spatial degrees of freedom and the two-
dimensional pseudospin-1/2basis {|1), ||)}. Accordingly, each SPF of the impurities is a spinor wavefunction
of the form

¢7(1) = Z( it (DR T) + Bjey (D1k) (1), )

with B} e (1) [BJIk 1 ()] being the time-dependent expansion coefficients of the pseudospin-T [ | ] (see also [35, 82]
for amore detailed discussion).

The time-evolution of the (N + Nj)-body wavefunction |¥(t)) governed by the Hamiltonian of
equation (1) is obtained via solving the so-called ML-MCTDHX equations of motion [70]. The latter are
determined by utilizing e.g. the Dirac—Frenkel [85, 86] variational principle for the generalized ansatz
introduced in equations (3)—(5). This procedure results in a set of D* linear differential equations of motion for

. . (Ng +dB —1)! (N +d —1)!
the (1) coefficients which are coupled to D( TR

equations for the species functionsand d” + d' nonlinear integrodifferential equations for the SPFs.

A main aspect of the ansatz outlined above is the expansion of the system’s MB wavefunction with respect to
atime-dependent and variationally optimized basis. The latter allows to efficiently take into account the intra-
and intercomponent correlations of the system using a computationally feasible basis size. In the present case the
Bose gas consists of a large number of weakly interacting particles and therefore its intracomponent correlations
are suppressed. As a consequence they can be adequately captured by employing a small number of orbitals,

dl < 4. Additionally, the number of impurities, N; < 3, is small giving rise to a small number of
integrodifferential equations allowing us to employ many orbitals, dj, and thus account for strong impurity—
impurity and impurity-BEC correlations. Therefore, the number of the resulting equations of motion that need
to be solved is numerically tractable. Since our method is variational, its validity is determined upon examining
its convergence. For details on the precision of our simulations see appendix.

) nonlinear integrodifferential

2.3. Correlation measures
To study the quench-induced dynamics of each species at the single-particle level we calculate the one-body
reduced density matrix for each species [87, 88]

PO, x5 £) = (U0 [ Ge) B (o) [T (E)). 6)

Here, W, (x) is the o-species bosonic field operator acting at position x and satisfying the standard bosonic
commutation relations [89]. For simplicity, we will use in the following the one-body densities for each species
ie. pffl) 1) = pfjl) (x, x' = x; t), which is a quantity that is experimentally accessible via averaging over a
sample of single-shot images [65, 90, 91]. We remark that the eigenfunctions and eigenvalues of pg) (x, x'; t)are
termed natural orbitals 7 (x; t) and natural populations ;7 () [65, 70] respectively. In this sense, each bosonic
subsystem is called intraspecies correlated if more than a single natural population possess a non-zero
contribution. Otherwise, i.e. for n (t) = land n,(t) = 0, the corresponding subsystem is said to be fully
coherent and the MB wavefunction (equations (3), (5)) reduces to a mean-field product ansatz [92, 93].

To unveil the role of impurity—impurity correlations following the interspecies interaction quench we
calculate the time-evolution of the corresponding diagonal of the two-body reduced density matrix

4
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Pk, 25 1) = <\Il(t)|\ijz(x1)\APZ’(xZ)@a’(xZ)@a(xl)|\Il(t)>> (7)

where a, a’ = 7,|. The two-body reduced density matrix refers to the probability of finding simultaneously one
pseudospin-a boson at x, and a pseudospin-a’ boson at x, [65, 66]. Moreover, it provides insights into the
spatially resolved dynamics of the two impurities with respect to one another. Indeed, the impurities are dressed
by the excitations of the bosonic gas forming quasiparticles which in turn can move independently or interact,
and possibly form abound state [8, 10,42, 94].

To capture the emerging effective interactions between the two bosonic impurities we monitor their relative
distance [9, 42] given by

B fdxldx2|xl — xlp2 (1, %33 1)

aa(t)) = — ®
Ve ) (WO IN,(Na = D (1))

Here, Z\AT,Z with a = T,| is the number operator that measures the number of bosons in the spin-a state.
Experimentally, (r,,(¢)) can be probed via iz situ spin-resolved single-shot measurements on the spin-a state
[91]. More precisely, each image gives an estimate of (r,,(¢)) between the bosonic impurities if their position
uncertainty is assured to be adequately small [91]. Subsequently, (r,,(¢)) is obtained by averaging over several
such images.

3. Induced interactions in the ground state of two bosonic impurities

Before investigating the non-equilibrium dynamics of the two bosonic impurities immersed in a BEC it is
instructive to first analyze the ground state of two impurities interacting with the bosonic medium for varying
interspecies interactions g, ranging from attractive to repulsive. Note that such a configuration corresponds in
our case to two impurities residing in the pseudospin- | state since only this state is interacting with the bath (see
also equation (1)). The aim of this study is to reveal the presence of induced impurity—impurity interactions
mediated by the bath. As discussed in section 2.1, the mass-balanced multicomponent bosonic system consists
of two impurities Ny = 2 immersed in a MB bath of Ny = 100 atoms with ggg = 0.5 and it is externally confined
in a harmonic oscillator potential of frequency w = 1. Later on, also the mass-imbalanced and the few-body
(N = 10) scenaria will be investigated. Below we consider either two non-interacting (g;; = 0) or two weakly
interacting impurities (g;; = 0.2). To obtain the interacting ground state of the system as described by the
Hamiltonian of equation (1) we employ either imaginary time propagation or improved relaxation [70, 71]
within ML-MCTDHX.

The relative distance (equation (8)) between the two impurities as well as their two-body reduced density
matrix (equation (7)) for different values of gy are shown in figure 1. Focusing on the case of two non-
interacting impurities, gy = 0, we see that for larger attractions the relative distance between the impurities
decreases (see figure 1(a)) and converges towards a constant valuei.e. (r7) ~ 0.1 for g < —2. The decrease in
(ry7) for =2 < gy, < 0 implies that the impurities effectively experience an attraction with respect to one
another. This attraction is a manifestation of the attractive induced interactions mediated by the bosonic gas
since g;; = 0[8]. The impurities reside together in the vicinity of the trap center since pﬁ) (—l<x<l,

—1 < % < 1)ispredominantly populated (see figure 1(b,)). Additionally, for & < =2 where (77) become
approximately constant, the impurities come very close with respect to one another. Here, the corresponding
p%) (x1, %) shrinks along its anti-diagonal and its diagonal becomes elongated (see figure 1(b;)), which is
indicative of a bound state having formed between the impurities known as a bipolaron state [8, 10, 94].

Turning to weak interspecies repulsions 0 < gz, < 0.5 we find that (r;;) slightly increases (see figure 1(a))
while the two impurities reside close to the trap center (see figure 1(bs)). Itis important to mention that this
increase in (ry1) does not directly imply that the impurities experience a weak repulsion mediated by the bosonic
bath. Indeed, by neglecting all correlations between the impurities, i.e. by substituting p%) (x1, %)=

p(TD (1) p%l) (%) /2 into (r}1) we find the same tendency of (r;1) with even slightly larger values (see also the
discussion below). Since in the limit of the non-correlated case there are no induced interactions, the fact that
(ry1) is smaller when correlations are taken into account means that the impurities still feel an effective attractive
force. Note that for the other interaction regimes presented herein such an unexpected behavior of (r1) does not
occur as it can also be deduced by the corresponding two-body spatial configurations building upon pﬁ) (2, %)
(see below). Furthermore, it can be seen thatat gy, = gzz = 0.5, where the miscibility/immiscibility transition
between the impurity and the BEC takes place [65, 67], the behavior of ( rm is suddenly altered. Indeed for

g = 0.5, (r77) shows a decreasing tendency which indicates the presence of attractive induced interactions
between the impurities. In particular, for 0.5 < gz < 1.1, (r;) reduces and the impurities tend to bunch
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Figure 1. (a) Relative distance, (r;1), between the two bosonic impurities residing in the pseudospin- 1 state for varying bath
pseudospin- T interaction strength. The cases of two non-interacting (g;; = 0), weakly interacting (g;; = 0.2) impurities as well as few-
and many bath particles are shown (see legend) for a mass-balanced system m; = mg. (r;;) from the effective potential picture of
equation (9) for two non-interacting bosonic impurities is also illustrated (see legend) with respect to gy,. Inset illustrates (rp1) of two
non-interacting impurities in the case of a mass-balanced (m; = mp) and a mass-imbalanced (m; &~ 1.53mp) system with respect to
81 The corresponding two-body reduced matrix of the ground state of the two pseudospin- T (b;)—(bs) non-interacting and (c;)—(cs)
interacting (g;; = 0.2) impurities for different interspecies interactions (see legends). In (b;)—(bs) and (c;)—(cs) the mixture consists of
Np = 100 bosons and N; = 2 bosonic impurities. Also, in (by), (bs), (¢;) and (c5) the dashed magenta lines indicate the location of the
Thomas—Fermi radius of the bosonic gas. In all cases gz = 0.5 and the system is trapped in a harmonic oscillator potential with
w=1.

together at the same location. This can be confirmed by the fact that p 2 (x, %) shows a populated elongated
diagonal as depicted in figure 1(by) for gz, = 0.5. Moreover for stronger repulsions gy, > 1.1, (1) remains
almost constant. Especially so for gz, > 1.5, where the two impurities residing either on the left or the right edge
of the Thomas—Fermi profile of the BEC. The latter can be evidenced in figure 1(bs) by the two strongly
populated spots appearing atx; ~ x, &~ £ Rypwith Ry denoting the Thomas—Fermi radius.

In view of the results of [35] it is tempting to interpret our above findings in terms of an effective potential,
Vet (26 ggp)- A valid candidate for such a potential can be constructed as

1
Veff(x§ gB[) = Emlw2x2 + gB[pg)(x; 81 — 0): (9)

where pg) (x; g5; = 0) refers to the equilibrium density of the BEC for gz; = 0. Equation (9) implies that

pg) (%; gg; = 0) acts on the impurities just as an additional repulsive (gz; > 0) or attractive (gg; < 0) potential on
top of the externally imposed parabolic trap. It is noteworthy that the simplification of the impurity problem
provided by equation (9) neglects several phenomena that might be important for the description of the ground
state of the impurity system. First, the renormalization of the impurity’s mass, m; — mf" by the coupling with
its environment is neglected and, most importantly, the possible emergence of induced interactions is not
contained in equation (9), due to the absence of two-body terms. The latter are extremely important for the
description of p(z) (%1, %). Indeed, within Vg (x; ggy) no deformations can appear in the antidiagonal of the two-
body density of the impurities which dictates their relative distance. This result is in contrast to the one obtained
within the full MB Hamiltonian (equation (1)) shown in figures 1(b;)—(bs).

To provide an estimate of the quantitative error obtained by the approximation of equation (9) we include in
figure 1(a), also the results for (1) within the effective potential picture. Itis evident that when using Ve (x; g51),
(r17) is always larger than the corresponding full MB result for gz, = 0 . This effect is particularly pronounced for
gsr > 0.5 where (1) within equation (9) exhibits an increasing tendency instead of a decreasing one with gg;.
Such an effect can be attributed to the vanlshlng off-diagonal elements of p(z) (x1, %) which cannot be captured

within Vg (5 gpp), as in the latter case pm ) (xp, %) = p?) (x) p%l)(xz) /2.1Indeed, the large impurity—impurity
interactions within this regime render the effective potential incapable of describing the ground state of the bath
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impurity system within this interaction regime. Similarly, for gg; < —2, (1) using the effective potential is
significantly larger than the corresponding MB result, which can be attributed to the prominent role of induced
interactions in the formation of the bipolaron state [10].

Considering a smaller bath consisting of Ng = 10 atoms does not significantly alter the ground state
properties of the two non-interacting bosonic impurities. Here, (1) (figure 1(a)) exhibits a similar behavior as
for Ng = 100 atoms, with the most notable difference occurring in the region of gy, ~ gz, where asmoother
decrease occurs when compared to the Np = 100 case. The value for which the distance becomes constant is also
shifted to larger values when Ny = 10. These differences can be qualitatively understood within a corresponding
effective potential picture which we will discuss in section 4.4.1, see equation (15) and the remark”.

A similar to the above-described overall phenomenology of the two non-interacting bosonic impurities for a
varying g, is also observed for the case of heavier impurities as can be seen in the inset of figure 1(a). Here we
consider a *Rb bosonic gas and two '**Cs impurities prepared e.g. in the hyperfine states |[F = 1, mp = 0)and
|F = 3, mp = 2) respectively and being both confined in the same external harmonic oscillator [95, 96].
Compared to the mass-balanced scenario the behavior of (r;7) around gy, = g5, becomes somewhat smoother
and the maximum value is also slightly shifted to larger interaction strengths. Another conclusion that can be
drawn, is that heavier impurities prefer to remain closer to each other compared to the lighter ones, since (r;)
has smaller values in the former than in the latter case. As a consequence we can infer that heavy impurities
experience stronger attractive induced interactions than light ones. These differences can also be explained in
terms of the effective potential picture which will be introduced in section 4.4.1, see also remark” .

When a weak intraspecies repulsion among the impurities is introduced, gy = 0.2, see figure 1(a), the
ground state properties remain the same for attractive gy, but change fundamentally in the repulsive regime.
Indeed (r;7) decreases for an increasing interspecies attraction, signifying an induced attraction between the
impurities despite their repulsive mutual interaction, until it becomes constant for g, < —2. More specifically,
for—2 < gy <0 the impurities are likely to remain close to the trap center (see figure 1(c,)) where
pﬁ) (=1 <x <1, =1 < x < 1)is predominantly populated. Furthermore, for g5, < —2 the impurities
bunch together at a fixed distance (figure 1(a)) and the two-body reduced density matrix becomes elongated
along its diagonal (see figure 1(c,)), suggesting the formation of a bound state similar to the g;; = 0 case.
However, for St > 0, (rm exhibits an overall increasing tendency, which indicates that the two impurities are
located mainly symmetrically around the trap center. This latter behavior can be directly deduced by the
relatively wide distribution of the anti-diagonal of their two-body reduced density matrix (see figures 1(c3) and
(cy)for0 < 8t < 1). Moreover, and in sharp contrast to the gy = 0 case, for gy > 1 the impurities acquire a
large fixed distance and in particular can be found to reside one at the left and the other at the right edge of the
BEC. This configuration of the impurities can be seen from the fact that solely off-diagonal elements of
pﬁ) (x1, %) exist in figure 1(cs) for gy = 3. Finally, it is worth mentioning that for two weakly repulsive
impurities the induced effective attraction can never overcome their direct s-wave interaction for gz, > 0.

To further support the existence of attractive induced interactions between the two impurities we study the
ground state energy of the system for varying g;,. In particular, we calculate the expected position of the
polaronic resonances [9] namely Aff (&) = [E(ND, gg1) — E(ND, gy = 0)] /M, where E(Nj, pp) is the energy
of the system for Nyimpurities at interaction S (figure 2(a)). As it can be seen, for both, N; = 1 and Ny = 2, the
resonance position A% (gsy) increases for alarger g, and it takes negative and positive values for attractive and

repulsive interactions, respectively. Moreover, in the N; = 2 scenario A% (gg1) is found to be negatively shifted
when compared to the corresponding N; = 1 case for g, = 0. This behavior indicates the presence of attractive
induced interactions for both attractive and repulsive Bose polarons [8, 10, 63]. Focusing on g;; = 0.2 and

&gt < Oasmall decrease of AN (gs1) occurs when compared to the g = 0 case showing that attractive induced
interactions become more pronounced when direct s-wave impurity—impurity repulsions are involved.
However, for repulsive polarons i.e. 8y >0 the presence of s-wave impurity—impurity interactions counteracts

the effect of attractive induced interactions and accordingly A% (g31) is almost the same for Ny = 2, ¢y = 0.2
and Ny = 1, see the inset of figure 2(a).

The underlying mechanism behind the above-mentioned impurity—impurity induced interactions can be
qualitatively understood as follows. For attractive g, the presence of impurities gives rise to a small density
enhancement of the BEC in the vicinity of their spatial position. This effect is captured by the deformation of the

* Note that for 8p1 > ggp = 0.5 theeffective potential of equation (15) possesses a double-well structure as shown in figure 6(e). The width
ofits central barrier is determined by Rt which substantially decreases for smaller Ng. This decreasing tendency leads to a much more
prominent overlap of the impurity wavefunction among the wells which in our case implies a smoother behavior of (7).

> Within the effective potential picture of equation (15) the miscibility/immiscibility transition is imprinted as a change in the shape of
V() from parabolic (figure 6(a)) to a double-well (figure 6(e)) potential. This transition occurs at 8y = :—;gBB and therefore for m; > mjp
is shifted to larger values of g5 than for m; = mp, abehavior that explains the shift of (r;;) for heavy impurities.
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Figure 2. (a) Position of the polaronic resonances, AN (8)> with varying g, for N; = 1and N; = 2 bosonic non-interacting and
weakly interacting impurities (see legend). Inset: 2 < AN (8p) < 12.5for gp; > 0. (b) Deformation of the BEC ground state density
measured via 5pg)(x; &) = pg)(x; S1) — pg)(x; 0) with respect to g, for Ny = 2and g;; = 0. (c) Ground state one-body density

of two non-interacting impurities as a function of g,. Inall cases the bath consists of Ny = 100 bosons with ggp = 0.5.

BEC density quantified by 6pg)(x; 8) = pg)(x; 8pt) — pg)(x; 0) and shown in figure 2(b) with respect to gg..
Indeed 5p§31)(x; g < 0) >0 (figure 2(b)) in the vicinity of p(Il)(x; g1 < 0) (figure 2(c)). This density
enhancement of the BEC forces the impurities to approach each other leading to the emergence of attractive
impurity—impurity induced interactions. Similarly for g, < 0 the impurities tend to reside in regions of lower

bath density causing a density depletion of the BEC characterized by 6, pg) (x5 ggy > 0) < 0(figure 2(b)). The
above-described density depletion of the bath gives rise to the attractive induced interactions analogously to
gpr < 0.Itisalso worth commenting that for g;. > 0.5 pg)(x; gy > 0.5) splits into two branches lyingat the
Thomas—Fermi edges +Rp of the BEC (see also figure 1 (bs)). At these values of a1 Af’ (8s1) tends to saturate
indicating the impurity-BEC phase separation transition.

4. Quench induced dynamics

Next, we study the interspecies interaction quenched dynamics for the mass-balanced multicomponent system
which is initially prepared in its ground state and characterized by gz = 0.5and gz, = 0. In this case the
Thomas—Fermi radius of the BEC is Rtp &~ 4.2 and the impurities are in a superposition of their spin
components described by equation (2). We mainly analyze the case of two non-interacting (g;; = 0) impurities
and briefly discuss the scenario of two weakly interacting impurity atoms in order to expose the effect of their
mutual interaction in the dynamics.

To induce the non-equilibrium dynamics we performat # = 0 asudden change from g = 0 to either
attractive (section 4.5) or repulsive (section 4.4) finite values of - To examine the emergent dynamics we first
discuss the time-evolution of the spin polarization (alias contrast) and its spectrum. Consequently we discuss the
dynamical response of the impurities in terms of their single-particle densities and the corresponding two-body
reduced density matrix. An effective potential picture for the impurities is constructed in order to provide an
intuitive understanding of the quench dynamics.

4.1. Interpretation of the contrast of two impurities

To examine the quench-induced dynamics of the two spinor bosonic impurities we first determine the time-
evolution of the total spin polarization (contrast) | (é(t)) | = \/ <§,C(t)>2 + <§}, (¢))* which enables us to infer the
dressing of the impurities during the dynamics [18]. Note that (S, (t)) = (S,(t = 0)) = Osince[S,, H] = 0
and the spin operator in the kth direction (k = x, y, z) is given by Se=1/Np) f dx>",, @Z(x) a’;b 0, (x), with a';b
denoting the Pauli matrices. The contrast for a single impurity has been extensively studied [25, 39, 43, 97] and it

is related to the so-called Ramsey response [ 18] and therefore the structure factor. The time-dependent overlap
between the interacting and the non-interacting states is given by

(S|P = [(Byleifor/rei/ 2130 2 = |5,(1) P, (10)

where |\ff(])3 ;) is the spatial part of the MB ground state wavefunction of a single impurity with energy £, when

gz = 0. H = PAP with P being the projector operator to the spin-1 configuration, and H denotes the
postquench Hamiltonian (equation (1)). Note also that the contrast is chosen here to take values in the interval
[0, 1]. From equation (10) zero contrast implies that the overlap between the interacting and the non-interacting
states vanishes signifying an orthogonality catastrophe phenomenon [52, 97]. On the other hand, if
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[(S(t))|* = 1then the non-interacting and the interacting states coincide and no quasiparticle is formed.
Therefore only in the case that 0 < [(S(£))|> < 1we can infer the dressing of the impurity and the formation of
aquasiparticle.

When increasing the number of impurity atoms to N; > 1,|(S(¢)) |* is more complex since additional spin
states contribute to the MB wavefunction (see equation (2)). To understand the interpretation of | <§(t)> |?
during the dynamics we therefore first discuss it for the case of two impurities. The contrast of two pseudospin-

1/2 bosonic impurities reads

|&mvzbmmoxmfm+ﬁmAMLmﬁ (11)

where the spatial overlap between two different spin configurations namely |S, S,)and |S’, S.) is defined as [80]

A(S, S2); 1S, SI) = (S, S.(U 11 A]s, S,) (S, Sl H (1w, |8, S1)]
- f dxNedxNWE (35, &5 1) (&P, £ 1), (12)

: =B I &S s ww)
ithWeg(x ,x 3t) = 222 I/
with Ws,s.( ) = s vy I

configuration |S, S,)and [I'%;) being the spatial part of the initial MB state for two impurities. Also,
—B —I . . . .
x =P ,xﬁB) and x = (x/,.. .,xl{,B) refer to the coordinates of each bath and impurity particle,

respectively. In particular in our case we consider two pseudospin-1/2 bosons where |1, 1) = |[T); ® |T)2,

1, =1) = || @ 1)1, 0) = W.Therelevantoverlapsread A(lL, 0); 11, —1) =

et/ 1 [ NN "dNx Wy o X WG, x5 0)and AL, 0); 11, 1)) = [dNx dNx Wy

—B —] —B —I . . . . . . :
(x5 x5 )P 1(x , x ;5 t). Recall thata quasiparticle is a free particle that is dressed by the excitations of a
bosonic bath via their mutual interactions. As a consequence, W%, (x5, X!) refers to the wavefunction where
no polaron quasiparticle exists since it is the ground state wavefunction of the system with g, = 0.

referring to the spatial wavefunction corresponding to the spin

Moreover, ¥, o(x¥8; X7) and ¥, 1(¥8; X7) denote the wavefunctions where a single and two impurities
respectively interact with the bosonic gas and therefore describe the formation of a single and two polarons,
respectively. Accordingly, A(|1, 0); |1, —1)) provides the overlap between the state of a single and no
impurities interacting with the bath, while A(|1, 0); |1, 1)) is the overlap between a single and two
impurities interacting with the bath.

Asaresult, | (é(t)> > = 1meansthat A(|1, 0); |1, —1)) = A(|1, 0), |1, 1)) = el¥ where ¢ is a phase factor.
The factthat |A(|1, 0); |1, —1))| = 1implies that the spatial state of a single impurity interacting with the bath
is the same as the non-interacting one, except for a possible phase factor, and therefore a quasiparticle is not
formed. Moreover sincealso |[A(|1, 0), |1, 1))| = litholds that the state of a single pseudospin- | interacting
impurity coincides with the state of two pseudospin- T impurities interacting with the bath and as a consequence
with a bare particle due to |A(|1, 0); |1, —1))| = 1. Thus, |(S(¢)) > = 1implies that there is no quasiparticle
formation. On the contrary for | <§(t)> [> = Oeither A(|1, 0); |1, —1)) = A(|1, 0), |1, 1)) = Oor
A(|1, 0); |1, —1)) = —A*(|1, 0), |1, 1)) should be satisfied. In the former case we can deduce the occurrence
of an orthogonality catastrophe phenomenon as in the single impurity case while the latter scenario is given by
the destructive interference of the A (|1, 0); |1, —1))and A(]1, 0), |1, 1)) terms However, for
0 < |(8(t))]* < 1the corresponding overlaps acquire finite values and a quasiparticle can be formed.

Noticealso thatin the special case of g, = 0and g | = 0 (butg; arbitrary) it can be shown that

A( L,0); | 1, 1)) = (\I~IOBI| eiPoHRut/hibot/h) \TIOBI) = S,(t), where P, refers to the projection operator to the
spinstate| 1, 0). The latter is exactly the contrast or the structure factor of a single impurity (equation (10)).
Indeed [TY;) = |\Tl%,> ® [4?) for g, = 0holds where [49) is the single-particle ground state of the impurity

while |\i/% ;) and |U%;) refer to the spatial part of the MB ground state wavefunction of a single (energy E) and two
impurities (energy Eo), respectively. Additionally H is the postquench Hamiltonian given by equation (1).
Consequently, the contrast in this special case acquires the simplified form

|&mP:imm+ﬁmmxmnw. (13)

Evidently, here | ($(t)) | depends explicitly on the structure factor S, (f) of a single impurity allowing for a direct
interpretation of the dynamical dressing of the two impurities with respect to the single impurity case discussed
in [35]. In the following, g, = g | = g =g, andasaconsequence g, = 0, g = 0isencountered for g = 0
while the general case of equation (12) applies for the case of gy = 0.2 analyzed below.
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Figure 3. Time-evolution of the contrast, | <§(t)) |, of two (a) non-interacting (g = 0) and (b) weakly repulsive (¢;; = 0.2) impurities
immersed in abath of N = 100 atoms for different interspecies interaction strengths gz;. (c) The same as (a) but when considering a
few-body bath of Ny = 10 bosons. (d) | (S(t )) | for N; = 3 non-interacting impurities inside a few-body bath consisting of Ny = 10
atoms. (e;), (€,) | {S(#)) | of two non-interacting impurities in a bath of Ny = 10 bosons for different St (seelegends). (f) Dynamics of

| (S(t)) | for specific postquench interaction strengths (see legend) when N; = 2, gy = 0 and Ny = 100. In all cases the
multicomponent system is harmonically trapped and it is initialized in its ground state with ggg = 0.5and w = 1.

4.2. Evolution of the contrast

The dynamics of the two particle contrast | <§( 1)) |is presented in figures 3(a)—(c) for both attractive and
repulsive postquench interspecies interactions g,. In particular, | (8()) |is shown for either two non-
interacting (figure 3(a)) or interacting (figure 3(b)) impurities and Ny = 100 as well as for a few-body bosonic
gaswith Ny = 10and gy = 0 (figure 3(¢)). In all cases, six different dynamical regions with respect to 8pp can be

identified marked as R;, Ry, Ry, Rpys Rjy and Ryy;. Focusing on the system with N = 100 and g; = 0 these
regions correspond to —0.2 < gg < 02,02 < glfg < 04,04 < gg" <L1< g]fTW <5,

B
interacting region R; the contrast is essentially unperturbed remaining unity in the course of the time-evolution

and therefore there is no quasiparticle formation. For postquench interactions lying within R;; or Rj; the

—0.5 < gRT’/’ < —0.2and —1 < g;’/“ < —0.5 respectively (figure 3(a)). Specifically, within the very weakly

contrast performs small and constant amplitude oscillations, weakly deviating from | (S(t = 0))| = 1
(figure 3(f)). This behavior indicates the generation of two long-lived coherent quasiparticles (see also
section 4.3). Entering the intermediate repulsive interaction region Ry, | (S(¢)) | exhibits large amplitude
o <| (S(t)> | < 1)multifrequency temporal oscillations (figure 3(f)). The latter signifies the dynamical
formation of two Bose polarons which are coupled with higher-order excitations of the bosonic bath when
compared to regions Rj;and Rj; as we shall expose in section 4.4.1. For intermediate attractive interactions
(region R};y) | (8(t)) | undergoes large amplitude oscillations taking values in the interval 0 < |(S(¢))| < 1
(figure 3(f)). This response of | (é(t)) | again signals quasiparticle formation. However, in addition to this
dynamical dressing the destructive (| (@(t)) | = 0) and the constructive (| <§(t)> | & 1) interference between the
states of a single and two Bose polarons can be seen (see also equation (11) and its interpretation in section 4.1).
For strong repulsive interactions lying within Ry the contrast shows a fastly decaying amplitude at short
evolution times (0 < t < 2)and subsequently fluctuates around zero (figure 3(f)). This latter behavior of
[(S(t))| — 0isa manifestation of an orthogonality catastrophe phenomenon of the spontaneously generated
short-lived (0 < t < 2) Bose polarons. Itis a consequence of the spatial phase separation between the impurity
and the bosonic bath (see also figure 5(h) and the discussion in section 4.4.1), where the impurity prefers to
reside at the edges of the BEC background, see also figure 2(c). Note that this behavior is also supported by the
effective potential of the impurities, see equation (9). Most importantly this process results in an energy transfer
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from the impurity to the BEC, which prohibits the revival of the dynamical state of the impurity to its initial one,
implying | (8(¢))| < 1. Such a mechanism has been also identified to occur for the case of a single impurity,
see [35].

The emergence of the different dynamical regions in the evolution of the contrast holds equally when the size
of the bath decreases to Np = 10 (figure 3(c)). For such a few-body scenario region R;, where coherently long-
lived quasiparticles are formed, becomes slightly wider, i.e. 0.2 < ngT" < 0.6, compared to the Ny = 100 case.
The most notable difference between the few and the many particle bath takes place in the intermediate
interaction region Ryy;. The latter, occurs nowat 0.6 < glf%” < 1.8, with | <§(t)> | performing large amplitude
multifrequency oscillations implying in turn the formation of highly excited polaronic states. Note that the
amplitude of the oscillations of | <§(t)> | here is larger than in the Ny = 100 case (figure 3(a)). Additionally, we
observe that | (§(t)) | decreases smoothly as 8 increases, which is in sharp contrast to the Ny = 100 case. Recall
that such a smooth behavior occurring in the few-body scenario has already been identified in our discussion of
the ground state properties and in particular when inspecting the relative distance between the impurities. Also,
the oscillations of | (é(t)) [(0 < | <§(t)> | < 1)for intermediate attractive interactions (region Rjj;) beinga
consequence of the destructive (| (S(t))| = 0)and constructive (| (S(t))| & 1) interference between the states of
asingle and two Bose polarons are much more prevalent and regular for Ny = 10 as compared to the Ny = 100
case. Concluding, we can infer that the overall phenomenology of the dynamical formation of quasiparticles as
imprinted in the contrast is similar for Ny = 10 and Ny = 100.

To test the effect of the number of impurities on the interaction intervals of quasiparticle formation we also
consider the case of N; = 3 non-interacting, gy = 0, bosons immersed in a few-body bath of Ny = 10 atoms.
The dynamics of the corresponding contrast for this system following a quench from gy = 0 to a finite either

attractive or repulsive g, is illustrated in figure 3(d). As it can be seen, | (8(t)) | shows a similar behavior to the
case of two impurities (figure 3(c)) but the regions of finite contrast become narrower. Particularly, the
intermediate repulsive interaction region here occurs for 0.5 < ngf” < 1.5instead of 0.6 < glff" < 1.8 for

Nr = 2. Additionally, | (é(t)} | acquires lower values within the regions Ry;and Rjj; for more impurities.
Moreover, for N; = 3 within Rjj; we observe a pronounced dephasing of the contrast which is absent for the
N = 2 case, see figures 3(e}), (e,). As a consequence, we can deduce that the basic characteristics of the regions
of dynamical polaron formation do not significantly change for a larger number of impurities in the regime

N; < Np.

Finally, we discuss | (S(t)) | for weakly interacting impurities. Comparing the temporal evolution of | ($(¢)) |
for g;r = 0.2 (figure 3(b)) to the one for gy = 0 (figure 3(a)) we observe that the extent of the above-described
dynamical regions (Ry, Ry Ry Ryys Rjy and Rjy;) can be tuned via g;. For instance, region Rj;occurs at
0.2 < gl < 0.4forgy = 0.2instead of 0.2 < g~ < 0.5when g;; = 0, while region Ry, takes place at

B B1
0.4 < ngf” < 1.3ifgr = 0.2 and within 0.5 < gf{” < linthe non-interacting scenario. Also region Ry where

the orthogonality catastrophe takes place is shifted to slightly larger interactions for g;; = 0.2 compared to the
gir = 0 case. Interestingly we observe that the contrast within Ry;;and R/;; exhibits a decaying tendency for long
evolution times ¢ > 50 in the presence of weak impurity—impurity interactions, a behavior which is absent when
gu=0.

4.3. Spectrum of the contrast
To quantify the excitation spectrum of the impurity we calculate the spectrum of the contrast, namely

—1 8e)

Awy) = ‘j;oo dt el | (§(1)) |eitan G | . (14)

1
0
Recall that at low impurity densities and weak interspecies interactions it has been shown that | (S( ) |is
proportional to the so-called spectral function of quasiparticles [18, 97, 98]. Figure 4 presents A(wy) in the case of
asingle and two either non-interacting (g;; = 0) or weakly interacting (g;; = 0.2) impurities when Ng = 100 for
different interspecies couplings of either sign. Evidently, for weak g, belonging either to region Ry with
gy = 0.25 (figure 4(a)) or Rj; with g = —0.25 (figure 4(d)) we observe a single peak in A(wy) located at
wr ~= 4.27 and wy ~ —4.39 respectively. This single peak occurs independently of the number of impurities and
their intraspecies interactions. Therefore, this peak at small g, = £0.25 corresponds to the long-time evolution
of awell-defined repulsive or attractive Bose polaron respectively. Within region Ry e.g. at gy, = 0.5 two
dominant peaks occur in A(wy) (figure 4(b)) at frequencies wy ~ 8.42 and wy ~ 8.79 for both the N; = 1and
N; = 2 cases. Accordingly, these two peaks suggest the formation of a quasiparticle dressed, for higher
frequencies, by higher-order excitations of the BEC background.
Entering the strongly interspecies repulsive region Ryya multitude of frequencies are imprinted in the
impurity’s excitation spectrum e.g. at g, = 1.5, see figure 4(c). The number of the emerging frequencies is
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Figure 4. Excitation spectrum, A(wy), of a single, two non-interacting, and two interacting bosonic impurities (see legend) for different
interspecies interaction strengths gz Note that for better visibility A(wy) for N; = 2is scaled by a factor of two when compared to the
N; = 1 case. The dashed line in figure 4(f) indicates the position of the two polaron resonancei.e. 2AN=2 — AN=! = _18.98.(g) A
(wp) of two non-interacting impurities with varying gs;. The dashed lines indicate the expected position of the polaronic resonances
A(gp) (seelegend). The harmonically trapped bosonic mixture is initialized in its ground state and consists of Ny = 100 atoms with
gap = 0.5and either N; = 1 or N; = 2 impurities.

larger for the two compared to the single impurity but does not significantly depend on gj; for Ny = 2. For
instance, when N; = 1 mainly three predominant peaks centered at wy ~ 23.75, wy = 25.13, and wy =~ 26.26
appear in A(wy) whilst for N; = 2 and g;; = 0 five dominantly contributing frequencies located at wy ~ 22.31,

wr R 23.81, wp ~ 25.2,wyp ~ 26.39 and wy = 27.52 occur. These frequency peaks correspond to even higher
excited states of the quasiparticle than the ones within the region Ry;;. We note that for values of o deeperin Ryy,
avariety of low amplitude but large valued frequency peaks occur in A(wy). This fact indicates that the impurities
tend to populate a multitude of states indicating the manifestation of the polaron orthogonality catastrophe as
discussed in [35, 75] (results not shown here).

Turning to intermediate attractive interactions lying within R such as gt = —0.5asingle frequency peak
can be seen in A(wy) whose frequency is shifted towards more negative values for N; = 2 compared to N; = 1
and also for increasing g;; (figure 4(e)). Specifically, when N; = 1 the aforementioned peak occurs atwy ~ —8.79
while for N; = 2and g = 0[gy = 0.2]itlies atw; ~ —8.92 [w; ~ —8.86]. This peak indicates the generation of
an attractive Bose polaron. A further increase of the attraction, e.g. gy, = —1,leads to the appearance of three
quasiparticle peaks in A(wy) when N; = 2 and either g;; = 0 org;; = 0.2, centered atwy ~ —18.1,w; ~ —18.35
and wy ~ —18.98, but only one for N; = 1 withwy~ —17.91, as shown in figure 4(f). This change of A(wp) for
increasing Ny within the regions R}; and Rf;; demonstrates the prominent role of induced interactions for
attractive interspecies ones. More specifically for N; = 2, A(wy) possesses additional quasiparticle peaks as
compared to the N; = 1 case. Indeed, according to equation (11) we can predict at least two peaks at positions
wp = AN = —17.96and wy = 2A=* — AN=! = —18.98 explaining two of the above identified peaks.
The third dominant peak at wy = 18.35 appearing in the spectrum is attributed to the occupation of an excited
state with S, = 1 (see also equation (2)) according to equation (11). Recall that the |1, 1) spin state in the time-
evolved wavefunction (equation (2)) corresponds to the two polaron case while |1, 0) contains only one polaron
and the |1, —1) describes impurities that do not interact with the bath and thus no polarons. The
aforementioned population of the additional polaronic states for N; = 2 is a clear evidence of impurity—
impurity induced interactions.

The overall behavior of the excitation spectrum A (wy; ggy) for Ny = 2and gy = 0is shown in figure 4(g)
with varying gz,. Evidently, the position of the dominant quasiparticle peak in terms of wyincreases almost
linearly for larger g;,. This behavior essentially reflects the linear increase of the energy of the initial state | ¥/(0))
(equation (2)) directly after the quench. Moreover, comparing the position of the dominant quasiparticle peak
with AN=!reveals that for gy > 0.5, while the latter saturates, the former increases and additional peaks appear
in the spectrum A (wy; gg,). These peaks correspond to excited states of the system and already for g5, > 1the
ground states corresponding to A’ cease to be populated during the dynamics. In a similar fashion, such
additional quasiparticle peaks occur also for attractive interactions, see figure 4(g) for gy, < —0.5.In this case
the additional quasiparticle peaks stem from the induced interactions resulting in the presence of a peak at
wp = 2AN=2 — AN=! o« AN=!and other ones which correspond to the occupation of higher-lying excited
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Figure 5. Time-evolution of the single-particle density, pg)(x; 1), of (a), (d), (g) the bosonic bath (¢ = B) and (b), (e), (h) the
pseudospin- 1 part (¢ = 1) of the two non-interacting impurities for different postquench interspecies repulsions g, (see legend).
Evolution of p%”(x; t) for two weakly interacting, g = 0.2, impurities following a quench to (c) g5, = 0.25, (f) g, = 0.5 and (i)

g = 1.5. The Bose—Bose mixture consists of Ny = 100 atoms and N; = 2 impurities with ggz = 0.5and itis trapped in a harmonic
oscillator potential.

polaronic states with S, = 1(equation (2)). Note that such an almost linear behavior of the polaronic spectrum is
reminiscent of the corresponding three-dimensional scenario but away from the Feshbach resonance regime.
The latter corresponds in one-dimension to an interspecies Tonks—Girardeau interaction regime which is not
addressed in the present work. We remark that in one-dimension there is no molecular bound state occurring
for repulsive interactions.

Summarizing, we can infer that the quasiparticle excitation spectrum depends strongly on the value of the
postquench interspecies interaction strength and also on the number of impurities outside the weakly attractive
and repulsive coupling regimes [98]. However, this behavior is also slightly altered when going from two non-
interacting to two weakly interacting impurities. For a relevant discussion on the lifetime of the above-described
spectral features we refer the interested reader to [99]. It is also important to mention that in the weakly
interacting impurity-BEC regime where the contrast is finite in the course of the evolution the spectral function
A(wy) corresponds to the injection spectrum in the framework of the reverse rf spectroscopy [2, 26].

4.4. Quench to repulsive interactions

Below we further analyze the dynamical response of the multicomponent system, and especially of the
impurities, following an interspecies interaction quench from g, = 0 to g, > 0 within the above identified
dynamical regions of the contrast. In particular, we explore the dynamics of the system on both the single- and
the two-body level and further develop an effective potential picture to provide a more concrete interpretation of
the emergent phenomena. We mainly focus on the nonequilibrium dynamics of two non-interacting impurities
(g = 0) and subsequently discuss whether possible alterations might occur for weakly interacting (g;; = 0.2)
impurities. Also, in the following, only the temporal-evolution of the pseudospin-T part of the impurities is
discussed since the pseudospin- | component does not interact with the bosonic medium.

4.4.1. Density evolution and effective potential

To visualize the spatially resolved dynamics of the system on the single-particle level we first inspect the time-
evolution of the o-species single-particle density pg) (x; t) (equation (6)) illustrated in figure 5. For weak
postquench interspecies repulsions lying within the region Ryre.g. gy = 0.25, such that g, < ggp, the

impurities (see figure 5(b)) exhibit a breathing motion of frequency wi. ~ 1.44 inside the bosonic medium
[73, 74]. Moreover, at initial evolution times (¢t < 60) the amplitude of the breathing is almost constant whilst
later on (+ > 60) it shows a slightly decaying tendency, see for instance the smaller height of the density peak at
t = 70 compared to t = 20 in figure 5(b). This decaying amplitude can be attributed to the build up of impurity—
impurity correlations in the course of the evolution [42] due to the presence of induced interactions discussed
later on, see also figure 7(a). The breathing motion of the impurities is directly captured by the periodic
contraction and expansion in the shape of the instantaneous density profiles of p%l)(x; t) depicted in figure 6(b).
On the other hand, the bosonic gas remains essentially unperturbed (figure 5(a)) throughout the dynamics,
showing only tiny distortions from its original Thomas—Fermi cloud due to its interaction with the impurity.

An intuitive understanding of the observed dynamics of the impurities is provided with the aid of an effective
potential picture. Indeed, the impurity-BEC interactions can be taken into account, to a very good
approximation, by employing a modified external potential for the impurities. The latter corresponds to the
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Figure 6. Time-averaged effective potential, fof (x),over T = 100 (equation (15)) of the impurities for (a) weak g1 = 0.25,(0)
intermediate gy, = 0.5and (e) strong gz, = 1.5 interspecies repulsions. The densities of the single-particle eigenstates and
eigenenergies E, i = 1,2, ... of V¥ (x) are also shown. Profiles of the single-particle density of the two non-interacting impurities at
distinct time-instants of the evolution following an interspecies interaction quench to (b) gg; = 0.25,(d) gz; = 0.5and () gy =15
obtained within the MB approach.

time-averaged effective potential created by the harmonic oscillator and the density of the bosonic gas
[35,51,73,75] namely
Vit =

gBIfT (1)
mwx + = dtp,’ (x; ). 15
5 T Jo Py (x5 1) (15)

The averaging process aims to eliminate the emergent very weak distortions on the instantaneous density of the
BEC p(l) (x; t),and itis performed herein over T = 100. These distortions being a consequence of the motion of
thei 1mpur1t1es within the BEC are imprinted as a slow and very weak amplitude breathing motion of p(l) (x5 1)
with wp, ~ 1.82, hardly visible in figure 5(a). They are canceled out in our case for T > 20. Note that wp, < 2 is
attributed to the repulsive character of the BEC background which negatively shifts its breathing frequency from
the corresponding non-interacting value [100]. At gy, = 0.25 this V& (x) takes the form of a modified harmonic
oscillator potential illustrated in figure 6(a) together with the densities of its first few single-particle eigenstates.
Furthermore, assuming the Thomas—Fermi approximation for p(l) (x, t) the effective trapping frequency of the

impurities corresponds to wegg = w, |1 — ? . Therefore their expected effective breathing frequency would be
BB

Wit = 2w ~ 1.41 which is indeed in a very good agreement with the numerically obtained wy,.. The

discrepancy between the prediction of the effective potential and the MB approach is attributed to the
approximate character of the effective potential which does not account for possible correlation induced shifts to
the breathing frequency. Moreover, in the present case the impurities which undergo a breathing motion within
V& (x) reside predominantly in its energetically lowest-lying state Ej, see figure 6(a). It is also important to
mention that this effective potential approximation is adequate only for weak interspecies interactions where the
impurity-BEC entanglement is small [35, 75]. Note also that the inclusion of the Thomas—Fermi approximation
in the effective potential of equation (15) can not adequately describe the impurities dynamics when they reach
the edges of the bosonic cloud, see [36] for more details. However in this case p(l) (x; t)lies within p(l) (x5 1)
throughout the evolution indicating the miscible character of the dynamics for gt < &pp [35,65]. Furthermore,
for these weak postquench interspecies repulsions a similar to the above-described dynamics takes place also for
two weakly (g;; = 0.2) repulsively interacting impurities as shown in figure 5(c). The impurities undergo a
breathing motion within the bosonic medium in the course of the time-evolution exhibiting a slightly larger
oscillation frequency than for the g;; = 0 case but with the same amplitude (hardly visible by comparing
figures 5(b) and (¢)).

For larger postquench interaction strengths gy = 0.5 (region Ryp), i.e. close to the intraspecies interaction of
the bosonic bath ggp, the impurities show a more complex dynamics compared to the weak interspecies
repulsive case (figure 5(e)). Also, the BEC medium performs a larger amplitude breathing motion (figure 5(d))
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compared to the gy, = 0.25 scenario but again with a frequency wp. ~ 1.82. Focusing on the impurities motion,

we observe that at short evolution times (0 < t < 5) after the quench p%l)(x; t) expands and then splits into two
counterpropagating density branches with finite momenta that travel towards the edges of the bosonic cloud, see
figure 5(e) and the profiles shown in figure 6(d). The appearance of these counterpropagating density branches is
a consequence of the interaction quench which imports energy into the system. Reaching the edges of pg) (x5 1)
the density humps of p(TD (x; t) are reflected back towards the trap center (x = 0) where they collide around

t ~ 15 forming a single density peak (figure 6(d)). The aforementioned impurity motion repeats itselfin a
periodic manner for all evolution times (figure 5(e)). Here, the underlying time-averaged effective potential
(equation (15)) corresponds to a highly deformed harmonic oscillator possessing an almost square-well like
profile as illustrated in figure 6(c). Moreover, a direct comparison of the densities of the lower-lying single-
particle eigenstates of V£ (x) (figure 6(c)) with the density profile snapshots of p(Tl) (x; t) of the MB dynamics
(figure 6(d)) reveals that the impurities predominantly reside in a superposition of the two lower-lying excited
states (E; and E,) of V£ (x). Additionally in the case of two weakly repulsively interacting impurities, shown in
figure 5(f), the impurities’ motion remains qualitatively the same. However, due to the inclusion of intraspecies
repulsion the impurities possess a slightly larger overall oscillation frequency and the collisional patterns at the
trap center appear to be modified as compared to the gy = 0 case.

Turning to strong postquench repulsions, i.e. gz, = 1.5 >> gy, which belongs to Ryy, the dynamical
response of the impurities is greatly altered and the bosonic gas exhibits an enhanced breathing dynamics as
compared to the weak and intermediate interspecies repulsions discussed above. Initially p%l) (x; t = 0) consists
of adensity hump located at the trap center which, following the interaction quench, breaks into two density
fragments, as illustrated in figure 5(h), each of them exhibiting a multihump structure (see also figure 6(f)). Note
that the density hump at the trap center remains the dominant contribution of p%l) (x; t) until it eventually fades

outfort > 5, see figure 5(h). This multihump structure building upon p(Tl) (x; t)is clearly captured in the
instantaneous density profiles depicted in figure 6(f). Remarkably, the emergent impurity density fragments that
are symmetrically placed around the trap center (x = 0) perform a damped oscillatory motion in time around
the edges of the Thomas—Fermi radius of the bosonic gas, see in particular figures 5(g), (h).

The emergent dynamics of the impurities can also be interpreted to lowest order approximation (i.e.
excluding correlation effects) by invoking the corresponding effective potential which for these strong
interspecies repulsions has the form of the double-well potential shown in figure 6(e). Comparing the shape of
the densities of the eigenstates of fof (x) (figure 6(e)) with the density profiles p(Tl) (x; t) (figure 6(f)) obtained
within the MB dynamics simulations it becomes evident that the impurities reside in a superposition of higher-
lying states of the effective potential. Furthermore the double-well structure of V£ (x) suggests that each of the
observed density fragments of the impurities is essentially trapped in each of the corresponding two sites of
V& (x). Of course, as already mentioned above, for these strong interactions V¢ (x) provides onlya crude
description of the impurity dynamics since it does not account for both intra- and interspecies correlations that
occur during the MB dynamics. However V5 (x) enables the following intuitive picture for the impurity
dynamics. Namely, the damped oscillations of p(Tl) (x5 t) designate that the pseudospin- | impurities at initial
times are in a superposition state of a multitude of highly excited states (see e.g. figure 6(f) at t = 8) while for later
times they reside in a superposition of lower excited states (see e.g. figure 6(f) at t = 15). We should also remark
that a similar overall dynamical behavior on the single-particle level has been reported in the case of a single
spinor impurity and has been also related to an enhanced energy transfer from the impurity to the bosonic bath
[35,68,69,75]. Such an energy transfer process takes place also in the present case (results not shown here).
Another important feature of the observed dynamical response of the impurities is the fact that they are not
significantly affected by the presence of weak intraspecies interactions. This can be seen by inspecting figure 5(i)
which shows the time-evolution of p%l) (x; t) for gy = 0.2. Here, the most noticeable difference when compared

to the gy = 0 scenario is that the splitting of p(Tl) (x; t) into two branches occurs at shorter time scales (compare
figures 5(h), (1)) due to the additional intraspecies repulsion.

4.4.2. Dynamics of the two-body reduced density matrix
To investigate the development of impurity—impurity correlations during the quench dynamics we next resort
to the time-evolution of the pseudospin- T impurity intraspecies two-body reduced matrix pﬁ) (x1, x5 1)
(equation (7)). Recall that pﬁ) (x1, %5 t) provides the probability of finding at time ¢ a pseudospin- | boson at
location x; and a second one at x, [65, 66]. Most importantly, it allows us to monitor the two-body spatially
resolved dynamics of the impurities and infer whether they move independently or correlate with each other
[8, 10, 42].

Figure 7 shows pﬁ) (%1, %5 t) at specific time-instants of the evolution of two non-interacting (figures 7
(a;)—(bs) and (d;)—(de)) as well as weakly interacting (figures 7(c;)—(cs)) impurities for different postquench
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Figure 7. Two-body reduced density matrix, p%) (%1, %3 t), between the two pseudospin- T non-interacting (g;; = 0) bosonic
impurities at different time instants of the MB evolution (see legend) following an interspecies interaction quench to (a;)—(as)

gy = 0.25, (by)—(be) gy =05 and (d,)—(de) gy = 1.5. (c1)—(ce) The same as in (b;)—(bs) but for two weakly interacting g;; = 0.2
impurities. The harmonically trapped bosonic mixture is composed by Ny = 100 atoms with ggz = 0.5 and N; = 2 impurities and it
is initialized in its corresponding ground state configuration.

interspecies repulsions. To reveal the role of induced impurity—impurity correlations via the bath we mainly
focus on two initially non-interacting impurities where pﬁ) (xp x5t =0) = p(Tl) (x, t =0) p(Tl) (%, t = 0) / 2
since gy = Oandinitially g;, = 0. Asalready discussed in section 4.4.1 for weak interspecies postquench
repulsions, namely gy, = 0.25 (region Ryy), the impurities perform a breathing motion on the single-particle
level (figure 5(b)) exhibiting a decaying amplitude for large evolution times. Accordingly, inspecting

pﬁ) (%1, x5 t) (figures 7(a;)—(ag)) we observe that the impurities are likely to reside together close to the trap

center since pﬁ)(—Z < x <2, =2 < % < 2; t)ismainly populated throughout the evolution. In particular, at

initial times pﬁ)(— 2 < x <2, -2 < % < 2;t)showsa Gaussian-like distribution which contracts (figure 7

(a,)) and expands (figures 7(a;3), (a4)) during the dynamics as a consequence of the aforementioned breathing
motion. Deeper in the evolution p(Tl) (x; t) decays and pﬁ) (x1, %5 t) is deformed along its diagonal (figures 7(ay),
(ag)) or its anti-diagonal (figure 7(as)) indicating that the impurities tend to be slightly apart or at the same
location respectively. This is indicative of the admittedly weak induced interactions as the breathing mode along
the anti-diagonal of p%) (%1, %3 t) (relative coordinate breathing mode) does not possess exactly the same
frequency as the breathing along the diagonal (center-of-mass breathing mode).

For larger interspecies repulsions e.g. for gy, = 0.5 (region Rypy) the two-body dynamics of the impurities is
significantly altered, see figures 7(b;)—(b). At the initial stages of the dynamics the impurities reside together in
the vicinity of the trap center as 'O(TzT)(_ 3 <x <3, -3 < x < 3;t)ispredominantly populated. However for

later times two different correlation patterns appear in pﬁ) (x1, %; t) in a periodic manner. Recall that for these

interactions p(Tl) (x; t) splits into two counterpropagating density branches traveling towards the edges of the
bosonic bath and then are reflected back to the trap center where they collide (figure 5(e)). Consequently, when
the two density fragments appear in pgl) (x; t) the impurities reside in two different two-body configurations
(figures 7(b,), (by) and (bs)). Namely the bosonic impurities either lie together at a certain density branch (see the
diagonal elements of pﬁ) (%1, %5 1)) or they remain spatially separated with one of them residing in the left and
the other in the right density branch (see the anti-diagonal elements of pﬁ) (x1, %5 t)). Moreover, during their
collision atx = 0 the impurities are very close to each other as it is evident by the enhanced two-body probability
in the neighborhood of x; = x, = 0 (figures 7(bs), (bs)). The dynamics of two weakly repulsive (g; = 0.2)
impurities shows similar two-body correlation patterns to the non-interacting ones, as it can be seen by
comparing figures 7 (b;)—(be) to (c;)—(cs). This behavior complements the similarities already found at the
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single-particle level (see section 4.4.1). The major difference on the two-body level between the g;; = 0.2 and
g = Oscenario is that in the former case pﬁ) (%1, %5 t) is more elongated along its anti-diagonal when the
impurities collide at x = 0 (figures 7(c;), (c3)). Therefore weakly interacting impurities tend to be further apart
compared to the g;; = 0 case, aresult that reflects their direct repulsion. Other differences observed at the same
time-instant in pﬁ) (x1, x5 t) between the interacting and the non-interacting cases are due to the repulsive s-
wave interaction that directly competes with the attractive induced interactions emanating in the system. For
instance, shortly after a collision point e.g. at + = 55, shown in figures 7(bs) and (c5), we observe that due to the
repulsive s-wave interactions the attractive contribution between the impurities, see the diagonal of
pﬁ) (-2 <x <2, -2 < x < 2; t)infigure 7(bs) disappears (figure 7(cs)).

Turning to very strong repulsions, e.g. for g;, = 1.5lying in region Ryy, the correlation patterns of the two
non-interacting impurities (figures 7(d;)—(ds)) show completely different characteristics compared to the
gp1 < &p regime. Note here that in the dynamics of p%l) (x; t) the initially formed density hump breaks into two
density fragments (figure 5(h)) possessing a multihump shape (see also figure 6(f)). Subsequently, the fragments
lying symmetrically with respect tox = 0 perform a damped oscillatory motion in time residing around the
edges of the Thomas—Fermi radius of the bosonic gas. The corresponding two-body reduced density matrix
shows a pronounced probability peak around x; = x, = 0 (figure 7(d,)) indicating that at the initial stages of the
dynamics the impurities are mainly placed together in this location. As time evolves, the impurities
predominantly move as a pair towards the edge of the Thomas—Fermi background, see in particular the diagonal
of pﬁ) (%1, %5 t) in figures 7(d,), (d3), and simultaneously they start to exhibit a delocalized behavior as can be

deduced by the small values of the off-diagonal elements of pﬁ) (x1, % = x5 t). Entering deeper in the evolution
the aforementioned delocalization of the impurities becomes more enhanced since pﬁ) (x1, %5 t) disperses as

illustrated in figures 7(d)—(de). This dispersive behavior of pﬁ) (%1, %5 t) is inherently related to the multihump
structure of p%l) (x; t) and suggests from a two-body perspective the involvement of several excited states during

the impurity dynamics. It is also worth mentioning that at specific time instants the diagonal of pﬁ) (2, %5 ) 1s
predominantly populated (figures 7(d,), (d3), (ds)) which is indicative of the presence of induced interactions.

4.4.3. Two-body dynamics within the effective potential picture
To further expose the necessity of taking into account the intra- and the interspecies correlations of the system in
order to accurately describe the MB dynamics of the impurities we next solve the time-dependent Schrodinger
equation that governs the system’s dynamics relying on the previously introduced effective potential picture
(equation (15)) via exact diagonalization®. Thus our main aim here is to test the validity of fof (x) atleast to
qualitatively capture the basic features of the emergent non-equilibrium dynamics of the two impurities. We
emphasize again that VT does not include any interspecies correlation effects that arise in the course of the
temporal-evolution of the impurities. Within this approximation the effective Hamiltonian that captures the
quench-induced dynamics of the impurities reads

Heff — f dx \if’T"(x)(_ o fof)\iﬁ(x) tg f A o b o) B 0 B (x) (16)

1 A2 1 1) W () Wy () Wy (),

where \TJT(x) is the bosonic field-operator of the pseudospin- T impurity and 81 denotes the intraspecies
interactions between the two pseudospin- | impurity atoms. Recall that the intercomponent contact interaction
of strength g, and the intraspecies interaction between the bath atoms are inherently embedded into Vet
(equation (15)). In particular, within fof we account for the correlated Thomas—Fermi profile of the BEC since
pg) (x; t)is determined from the MB approach. Below, we exemplarily study the dynamics of two non-
interacting impurities and therefore we set g, = 0 in equation (16). Moreover, in order to trigger the non-

equilibrium dynamics we consider an interspecies interaction quench from gz, = 0 (t = 0) toa finite repulsive

value of g;.. Such a sudden change is essentially taken into account via a deformation of V& (equation (15)).

The corresponding instantaneous two-body reduced density matrix of the impurities within H" is depicted
in figure 8 for distinct values of gy,. Focusing on weak postquench interactions, e.g. g, = 0.25, we observe that
at the initial times the two-body dynamics of the impurities is adequately described within H* (compare
figures 7(a;)—(as) to figures 8(a;)—(as)). Indeed, in this time-interval only some minor deviations between the
heights of the peaks of p%) (x1, %3 t) obtained within the MB and the Hf approach are observed. However, for

longer times HT (figures 8(a4)—(ae)) fails to capture the correct shape of pﬁ) (%1, %5 t) and more precisely its

deformations occurring along its diagonal or anti-diagonal (see figures 8(a4)—(as)) which stem from the build up
of higher-order correlations during the dynamics.

Notice that the exact diagonalization simulations are performed within the two-body number state basis constructed by the single-particle
states of a sine DVR consisting of 600 grid points, see also appendix.
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Figure 8. Snapshots of the two-body reduced density matrix, pﬁ) (%1, %3 1), of the two pseudospin- T non-interacting (¢;; = 0) bosonic
impurities within the effective potential picture when considering an interspecies interaction quench to (a;)~(as) gg; = 0.25, (b1)~

(be) gy =05 and (c;)—(cg) gy = 1.5 The harmonically trapped bosonic mixture consists of Ny = 100 atoms with gz = 0.5 and
N; = 2 impurities and it is prepared in its corresponding ground state configuration.

Increasing the repulsion such that gy, = 0.5, deviations between the effective potential approximation and
the correlated approach become more severe. For instance, at the initial times the sharp two-body probability
peak of pﬁ) (%1, x5 t) in the vicinity of x; = x, = Oarising in the MB dynamics (figure 7(b;)) becomes smoother
within H% (figure 8(b,)) although the overall shape of p(TZT) (%1, %5 t) remains qualitatively similar. Moreover, the

observed elongations along the diagonal of p%) (x1, %; t) exhibited due to the presence of correlations are not
captured in the effective picture, e.g. compare figures 7(bs), (bs) with figures 8(bs), (bs). Remarkably, the two-
body superposition identified in pﬁ) (%1, %5 t) of two different two-body configurations occurring at specific
time-instants is also predicted at least qualitatively via H see figures 8 (b,), (by) and (bs). We remark that the
differences in the patterns of p(TZT) (%1, %; t) between H*" and the correlated approach are even more pronounced
when gy = 0.2 (results not shown).

Strikingly for strongly repulsive interactions, gy, = 1.5, H*  completely fails to capture the two-body

dynamics of the impurities. This fact can be directly inferred by comparing pﬁ) (%1, %5 t) within the two

approaches, see figures 7(c;)—(cg) and figures 8(c;)—(cs). Even at the initial stages of the dynamics the effective
potential cannot adequately reproduce the correct shape of p(TZT) (x1, %5 t), compare figure 8(c;) with figure 7(d,).
Note, for instance, the absence of the central two-body probability peak in the region —2 < x,x, < 2 within
H*fwhich demonstrates the correlated character of the dynamics. More precisely, p%) (x1, %; t) obtained

via H* shows predominantly the development of two different two-body configurations. The first pattern
suggests that the impurities either reside together at the same edge of the BEC background or each one islocated
atadistinct edge of the Thomas—Fermi profile, see e.g. figures 8(c,), (cs). However, at different time-instants

pﬁ) (x1, %; t) indicates that the impurities lie in the vicinity of the trap center as illustrated e.g. in figures 8(c,),
(c4) and (cg), an event that never occurs for ¢ > 5 in the MB dynamics (see figure 5(h)). It is also worth
mentioning that the observed dispersive character of p%) (%1, %; t) in the MB dynamics (see e.g. figures 7
(d4)—(de)) is a pure correlation effect and a consequence of the participation of a multitude of excited states in the
impurity dynamics which is never captured within H*",

4.5. Quench to attractive interactions

Next we discuss the dynamical behavior of both the BEC medium and the bosonic impurities on both the one-
and the two-body level after an interspecies interaction quench from gz, = 0 to the attractive regime of gy, < 0.
To explain basic characteristics of the dynamics of the impurities an effective potential picture is also employed.
As in the previous section we first examine the emergent time-evolution of two non-interacting impurities

(grr = 0) and then compare our findings to that of two weakly interacting (g;; = 0.2) ones.
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Figure 10. Time-averaged effective potential, Vi (x), over T = 100 (equation (15)) of the impurities for interspecies attractions

g1 = —0.5. The corresponding densities of the single-particle eigenstates and eigenenergies E;, i = 1,2,... of Vi (x) are also
depicted. Instantaneous single-particle density profiles of the two non-interacting impurities for an interspecies interaction quench to
gy = —0.5 within the MB approach.

4.5.1. Single-particle dynamics and effective potential
To investigate the spatially resolved dynamics of the multicomponent system after an interaction quench from
ggr = 010 gy < 0, we firstanalyze the spatio-temporal evolution of the o-species single-particle density
pfrl) (x; t). The dynamical response of pgl) (x; t) triggered by the quench is presented in figure 9 for postquench
interspecies attractions gy = —05 (figures 9(a)—(c)) and g = —1 (figures 9(d)—(f)).

Inspecting the dynamics of two non-interacting impurities at g5, = —0.5 (region R};;), shown in
figures 9(a), (b), we deduce that p%l) (x; t) undergoes a breathing motion inside pg) (x; t) characterized by a

predominant frequency w}, ~ 2.76 and a secondary one wi\ ~ 2.88 thus producing a beating pattern. These
two distinct frequencies stem from the center-of-mass and relative coordinate breathing modes of the
impurities, whose existence originates from the presence of attractive induced interactions in the system. We
remark that the breathing frequency of the center-of-mass can be estimated in terms of the corresponding
effective potential of the impurities, see also equation (17). In particular for g5, = —0.5, Wi, = 242.06 ~ 2.87
(see also the comment in” )which is in very good agreement with wi.. The relevant contraction of p%l)(x; t)can
be inferred by its increasing amplitude that takes place from the very early stages of the non-equilibrium
dynamics (figure 10(b)). The beating pattern can be readily identified e.g. by comparing the maximum height of
p%l) (x; t) during its contraction at initial and later stages of the dynamics, see e.g. p%l) (x; t)att = 10andt = 40
in figure 9(b). Moreover, as a consequence of the motion of the impurity and the relatively weak interspecies
attraction, i.e. gz, = —0.5, the Thomas—Fermi cloud of the bosonic gas becomes slightly distorted. In particular,
alow amplitude density hump is imprinted on pg) (x; t) exactly at the position of p(T])(x; t) as shown by the
white colored region in figure 9(a) in the vicinity of x = 0[75]. An almost similar effect to the above-mentioned
breathing dynamics is present also for the case of two weakly interacting impurities (figure 9(c)). Here, the

7 Notice here that the time-resolved form of the effective potential fof (6, 1) = V(x) — |ggl p(BD(x; t) corresponds to a deformed
attractive harmonic oscillator potential exhibiting a faint additional dip around x & 0 resulting from the appearance of the density hump of
P (x; 1) [75]. However in the averaged form of the effective potential this density dip contributes just as a shift of the frequency of the
resulting parabolic potential. Asan exampleat g, = —0.5 the effective trapping frequency wef ~ /2.06 within VT (x) while wef = /2
within Vi (x, t = 0).
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secondary frequency manifests itself at later evolution times resulting in turn in a slower beating of p%l) (x5 1)
compared to the gy = 0 scenario (hardly visible in figure 9(c)). This delayed occurrence is attributed to the
presence of intraspecies repulsion which competes with the attractive induced interactions.

For alarger negatively valued interspecies coupling, e.g. for gz; = —1 within region Ry, p%l) (x; t) becomes
more spatially localized and again performs a decaying amplitude breathing motion, the so-called beating
identified above, but with a larger major frequency, w{, ~ 3.2, compared to the gy = —0.5 case (figure 9(e)).
Notice that the observed beating motion of the impurities persists while being more dramatic for this stronger
attraction (compare figures 9(b) and (e)). This enhanced attenuation of the breathing amplitude together with
the stronglocalization of the impurities is a direct effect of the dominant presence of interspecies attractions
between the impurity and the bath, see also [75]. Also, due to the stronger g;, and the increased spatial

localization of p%l) (x; 1), the density hump building upon p(Bl) (x; t) at the instantaneous position of the
impurities is much more pronounced than that found for gz, = —0.5 (figure 9(d)). Note that the density hump

(1)
B

medium. Indeed, pgl) (x5 t) exhibits a sech-like form tending to be more localized for alarger interspecies

appearingin p},’ (x; t) is essentially an imprint of the impurities presence and motion within the bosonic

attractions gz, see e.g. p(TD (x; t) ata fixed time-instant for gy, = —0.5and gy, = —1infigures 9(b)and (e)
respectively, a behavior that also holds for the consequent density hump in pg) (x; t) (figures 9(a), (d)). We
should remark that for large negative g, the system becomes strongly correlated and the BEC is highly excited.
The latter is manifested by the development of an overall weak amplitude breathing motion of the bosonic gas,
see figure 9(d). Furthermore, the inclusion of weak intraspecies repulsions between the impurities does not
significantly alter their dynamics (figure 9(f)). Indeed, a faint increase of their expansion magnitude takes place
and the corresponding amplitude of the beating decays faster (compare figures 9(d) and (f)).

The above-mentioned dynamics can also be qualitatively explained in terms of a corresponding effective
potential approximation [35, 73, 75]. Yet again, the effective potential experienced by the impurities consists of
the external harmonic oscillator V(x) and the single-particle density of the BEC background. Importantly, since
pg) (x; t)is greatly distorted from its original Thomas—Fermi profile due to the motion of the impurities, we
invoke a time-averaged effective potential. Consequently, the effective potential of the impurity reads

— eff lgg| T
Ve (x) = Vix) — % fo dtp (1), (17)

where T' = 100 denotes the corresponding total propagation time. We remark that for the considered negative
values of g, the shape of V& (x) does not significantly change after averaging over T = 60. A schematic

illustration of V£ (x) and the densities of its first few single-particle eigenstates at gt = —lispresentedin
figure 10(a), see also remark (see footnote 7). The observed localization tendency of p(Tl) (x; t)around the

aforementioned potential minimum is essentially determined by the strongly attractive behavior of VT (x).
Remarkably, the distinct dynamical features of the impurities for an increasing interspecies attraction can be
partly understood with the aid of V™ (x). Indeed, for increasing |g;, | the effective frequency of V™ (x) is larger
and V£ (x) becomes more attractive. The former property of V£ (x) accounts for the increasing breathing
frequency of the impurity wavepacket for larger |g, |. Additionally, the increasing attractiveness of Vet (x) is

responsible for the reduced width of p(Tl)(x; t) foralarger |g;, | and thus its increasing localization tendency.

4.5.2. Two-body correlation dynamics and comparison to the effective potential approximation
Having described the time-evolution of the impurities on the single-particle level, we next analyze the dynamical
response of the pseudospin- T component by invoking the corresponding two-body reduced density matrix

pﬁ) (x1, %5 t) (see also equation (7)).

The time-evolution of pﬁ) (%1, %5 t) is depicted in figures 11(a;)—(a5) for two non-interacting (g = 0)
impurities following an interspecies interaction quench from g, = 0to g5, = —0.5 (region R};). Before the
quench the impurities lie together in the vicinity of the trap center since pﬁ) (1 = 0, %, = 0; t = 0) shows ahigh
probability peak (figure 11(a,;)). However as time evolves the two bosons start to occupy a relatively smaller
spatial region as can be deduced by the shrinking of the central two-body probability peak across the diagonal at
t = 10in figure 11(a,). Then they move either opposite to each other (see the elongated anti-diagonal in
figures 11(a3), (as)) or tend to bunch together at the same location (see the pronounced diagonal of
p%) (x1, % = x5 t = 60)1in figure 11(ay)). This latter behavior of the impurities is the two-body analog of their
wavepacket periodic expansion and contraction (relative coordinate breathing motion) discussed previously on
the single-particle level (figure 9(b)).

The dynamics of two weakly repulsively interacting (g;; = 0.2) impurities (figures 11 (b;)—(bs)) shows
similar characteristics to the above-described non-interacting scenario. Indeed, initially (figure 11(b;)) and at
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Figure 11. Snapshots of p! Jus: D (x, X3 t) (see legend), within the MB approach, of the two pseudospin- | non-interacting (g;; = 0)
impurities upon con51der1ng an interaction quench from g1 = 0to(a)—(as) gy = —0.5 and (d,)—(ds) g =1 (by)—(bs) The
same as in (a;)—(as) but for two weakly interacting (g;; = 0.2) impurities in the correlated MB approach. (¢;)—(cs) The same as in (b;)—
(bs) but within the effective potential approximation. (e;)—(e5) Instantaneous profiles of the antidiagonal of the two-reduced density
p%? (%, —2xp; t) of two non-interacting (figures 11(a;)—(as)) and two weakly interacting (figures 11(b;)—(bs)) impurities (see legend).
The harmonically trapped Bose—Bose mixture is initially prepared in its corresponding ground state and consists of Ny = 100 atoms
with ggg = 0.5and N; = 2 impurities.
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short times (figure 11(b,)) the impurities reside close to the trap center while later on they repel (see e.g. figure 11
(bs)) or attract (figure 11(b,)) each other as a result of their breathing dynamics (see also figure 9(c)). The major
difference between the weakly interacting and the non-interacting impurities is that their distance which is given
by the anti-diagonal distribution of their two-body reduced density matrix is slightly different, see figures 11
(ey)—(es). Forinstance at t = 40 the non-interacting impurities are further apart from each other as compared to
the case of interacting impurities, while this situation is reversed at t = 90. The aforementioned difference owes
its existence to the distinct relative coordinate breathing frequencies. This can be directly inferred from the fact
that pﬁ) (%1, %; t) possesses a larger spatial distribution when g;; = 0.2 and it is attributed to their underlying

mutual repulsion. For instance, even initially pﬁ) (%1, %5 t = 0) for gy = 0.2 (figure 11(b,)) is slightly deformed
towards its anti-diagonal compared to the gr; = 0 case (figure 11(a,)). This behavior persists also during the
evolution independently of the expansion or the contraction of the impurity cloud, as can be seen by comparing
figures 11(by) to (ay) and figures 11(bs) to (as).

To reveal the importance of both intra- and interspecies correlations for the impurity dynamics we then
utilize the effective potential, V£ (x), introduced in equation (17) and solve numerically the time-dependent
Schrodinger equation of the impurities via exact diagonalization. We remark once more that V£ neglects the
interspecies correlations of the multicomponent system but includes the density profile of the BEC determined
by the MB approach. In particular, we construct the effective Hamiltonian H*™ of equation (16) but using the
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V& (x) of equation (17). For brevity we focus on the case of 81 = 0.2 and analyze the dynamics after an
interspecies interaction quench from gy, = 0 (f = 0) to g5, = —0.5. As explained in section 4.4.3 within the

effective potential picture this quench scenario accounts for the deformation of V. Snapshots of pﬁ) (X1, %5 1)
when gy = 0.2and gy = —0.5 obtained within H*® are illustrated in figures 11(c;)—(cs). As it can be seen by
comparing pﬁ) (x1, %5 t) for the MB approach (figures 11(b;)—(bs)) and Heff(ﬁgures 11(cy)—(cs)) significant
deviations occur between the two methods. Indeed, during the time-evolution the correlation patterns visible in
pﬁ) (x1, %3 t) calculated via H*™ exhibit similar overall characteristics to the ones taking place in the correlated

approach but at completely different time-scales. In fact, pﬁ) (x1, %5 t) shows elongated shapes along its diagonal
(figure 11(c3)) or anti-diagonal (figure 11(c,)) implying that the impurities tend to be relatively close or apart
from one another respectively. The latter is again a manifestation of the breathing motion of the impurities at the
two-body level. However H*" fails in general to adequately capture the correct spatial shape of pﬁ) (x1, %5 1),
since e.g. it predicts a repulsion of the impurities (figure 11(c,)) when in the presence of correlations they attract
each other (figure 11(b,)) and vice versa (compare figures 11(c3) and (bs)). This difference is caused by the failure
of the effective potential to account for induced interactions emanating within the MB setting.

Finally, turning to strong postquench attractions within R}y, e.g. for gt = —1presented in figures 11
(d1)—(ds), we observe that the two-body dynamics of the impurities is drastically altered with respect to the
weakly attractive case g, = —0.5 described above. Initially, at £ = 0, the two bosons bunch together in the

vicinity of the trap center since pﬁ)(—l <x <1, -1 < % < 1; t = 0)is predominantly populated (figure 11
(dy)). Subsequently the two-body distribution of pﬁ) (x1, %5 t) spatially shrinks exhibiting a highly intense
peaked structure around —0.2 < x;,x, < 0.2 as shown in figures 11(d,), (ds). For longer evolution times

pﬁ) (x1, %5 t) deforms possessing an elongated shape across its diagonal (see figures 11(d,), (ds)) which indicates
that the impurities experience a mutual attraction. This latter behavior suggests the appearance of attractive
induced interactions between the impurities mediated by the bosonic gas.

5. Summary and conclusions

We have investigated the ground state properties and the interspecies interaction quench quantum dynamics of
two spinor bosonic impurities immersed in a harmonically trapped bosonic gas from zero to finite repulsive and
attractive couplings. For two non-interacting impurities, we have shown that for an increasing attraction or
repulsion their overall distance decreases indicating the presence of attractive induced interactions. Moreover, at
strong attractions or repulsions the impurities acquire a fixed distance and bunch together either at the trap
center or at the edge of the Thomas—Fermi profile of the bosonic gas respectively. For two weakly repulsive
impurities we find that their ground state properties remain qualitatively the same for attractive couplings, but
for repulsive interactions they move apart being located symmetrically with respect to the trap center. A similar
to the above-described overall phenomenology takes place for smaller system sizes and heavier impurities.

Regarding the quench dynamics of the multicomponent system we have analyzed the time-evolution of the
contrast and its spectrum. We have revealed the emergence of six different dynamical response regions for
varying postquench interaction strength which signify the existence, dynamical deformation and the
orthogonality catastrophe of Bose polarons. We have also shown that the extent of these regions can be tuned via
the intraspecies repulsion between the impurities, the impurity concentration and the size of the bath.
Moreover, we have found that the polaron excitation spectrum depends strongly on the postquench interspecies
interaction strength and the number of impurities but it is almost insensitive on the impurity—impurity
interaction for the weak couplings.

Focusing on weak postquench interspecies repulsions the non-interacting impurities perform a breathing
motion manifested as a periodic expansion and contraction of their density on both the one- and two-body level.
For an increasing repulsion the impurities single-particle density splits into two counterpropagating density
branches that travel to the edges of the BEC medium where they are reflected back towards the trap center and
subsequently collide, repeating this motion in a periodic manner. Here the impurities mainly residein a
superposition of two distinct two-body configurations, namely they either reside together or each one liesat a
specific density branch, while during their collision they tend to remain very close to each other. In the strong
repulsive regime we have observed that the density of the impurities shortly after the quench breaks into two
fragments which are symmetric with respect to the origin and which exhibit a multihump structure and perform
adamped oscillatory motion close to the Thomas—Fermi radius of the bosonic gas. This multihump structure
leads to a spatially delocalized behavior of the corresponding two-body correlation patterns and suggests the
involvement of higher excited states. In all cases the bosonic gas exhibits a breathing motion whose amplitude
becomes more pronounced for an increasing repulsion.
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Turning to attractive interspecies couplings, the impurities show a beating breathing motion and experience
aspatial localization tendency at the trap center on both the one- and two-body level, a behavior that becomes
more pronounced for larger attractions. Strikingly, for strong attractive interactions we unveil that gradually the
impurities experience a mutual attraction on the two-body level. This effect demonstrates the pronounced
presence of induced interactions for attractive interspecies ones. As a result of the impurities motion the density
of the bosonic bath deforms, developing a low amplitude density hump located at the origin. The occurrence of
this hump is a direct consequence of the presence of induced interactions.

In all cases investigated in the present work, an intuitive understanding of the dynamics of the impurities is
provided via an effective potential picture which is shown to be an adequate approximation for weak couplings
where correlations are negligible. However, for increasing interaction strengths this effective model largely fails
to adequately describe the dynamics on both the one- and two-body level due to the presence of both induced
attraction and higher-order correlations. Finally, in all of the above-mentioned cases we showcase that a similar
dynamical response takes place for two weakly repulsive impurities but the corresponding time-scales are
slightly altered due to the competition between their mutual repulsion and the developed attractive induced
interactions.

There is a multitude of fruitful possible extensions of the present effort that can be addressed in future works.
A intriguing aspect would be to examine whether thermalization of the impurities dynamics takes place for
strong repulsions in the framework of the eigenstate thermalization hypothesis [101]. An imperative prospect is
to study the robustness of the emergent quasiparticle picture in the current setting in the presence of
temperature effects [102, 103]. Moreover, the study of induced interactions of two bosonic impurities immersed
in a Fermi sea would be an interesting prospect especially in order to expose their dependence on the different
statistics of the medium. Additionally, the generalization of the present results to higher-dimensional settings
would be highly desirable. Another interesting direction would be to investigate the collisional dynamics of
subsonically or supersonically moving impurities in a lattice trapped bosonic gas. Here, one could unravel the
properties of the emergent quasiparticles, such as their lifetime, residue, effective mass and induced interactions
with respect to the interspecies interaction strength.
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Appendix. Remarks on the MB simulations

To solve the underlying time-dependent MB Schrodinger equation of the considered multicomponent system
we invoke the ML-MCTDHX [70, 71]. As discussed in section 2.2 it constitutes a variational approach for
calculating the stationary and most importantly the non-equilibrium quantum dynamics of bosonic and
fermionic multicomponent mixtures [35, 36, 65] including spin degrees of freedom [9, 35, 82]. A key advantage
of the method is that it assumes the expansion of the total MB wavefunction in terms of a time-dependent and
variationally optimized basis. Such a treatment enables us to capture both the intra- and intercomponent
correlation effects by employing a computationally feasible basis size. The latter flexibility allows to span the
relevant subspace of the Hilbert space efficiently for each time-instant which is in contrast to numerical methods
relying on a time-independent basis.

The used Hilbert space truncation can be deduced from the employed orbital configuration space, denoted
by C = (D;d% d")withD = D® = D;and d”, d' being the number of species and SPFs of each species
respectively (equations (3)—(5)). Additionally, within our implementation a sine discrete variable representation
(sine-DVR) is utilized as the primitive basis for the spatial part of the SPFs with M = 600 grid points. The latter
intrinsically introduces hard-wall boundary conditions at both edges of the numerical grid imposed herein at
x4 = £50. We have ensured that the position of the hard-walls does not affect the presented results by assuring
that no appreciable density occurs beyond x. = +20. The eigenstates of the composite MB system are obtained
by means of the so-called improved relaxation method [70, 71] implemented in ML-MCTDHZX. In order to
simulate the non-equilibrium dynamics we propagate in time the wavefunction (equation (3)) utilizing the
appropriate Hamiltonian within the ML-MCTDHX equations of motion.

To infer the convergence of our MB simulations we ensure that all observables of interest, e.g. | ($(t)) |,
p(Tl) (x; t), become to a certain degree insensitive upon varying the employed orbital configuration space chosen
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Figure 12. Temporal-evolution of the deviation of the two impurity contrast A |S(t)|¢,c’ between the C = (12; 3; 10) and other
orbital configurations C' = (D; d®; d") (see legend) for (a) 8 =1 and (b) g =4.In all cases Ng = 100, N; = 2, gz = 0.5and

gH = 0.

hereintobe C = (D;d B.d I) = (12;3;10). Below, we exemplarily showcase the convergence behavior of the
contrast during evolution for a system composed of Ny = 100 bosons with ggg = 0.5 and N; = 2 non-
interacting (¢ = 0) impurities. More precisely, we investigate its absolute deviation between the C = (10; 3; 10)
and other orbital configurations C' = (D; d”; d") during the non-equilibrium dynamics, namely

_ I8) e — 1(8@) e
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The time-evolution of A |S(t)|c ¢ is illustrated in figure 12 after an interspecies interaction quench from
gt = 0 tointermediate repulsions e.g. gz, = 1(figure 12(a)) and strong ones such as g, = 4 (figure 12(b)). Asit

can be readily seen by inspecting A |S(#)|c, ¢/, @ systematic convergence of | (S(t)> | can be achieved in both cases.
Atintermediate postquench repulsions, e.g. g =1L A |S®)]|c,c e.g. between the C = (12;3; 10)and C' = (10;
3;8)[C' = (8;3;8)] orbital configurations acquires a maximum value of the order of 3% [7%] at large
propagation times as shown in figure 12(a). As expected, an increasing g, yields alarger relative error

(figure 12(b)) but still remaining at an adequately small degree. Indeed, turning to strong repulsions such as

gpr =4 we observe that the deviation A |S(#)|c,cr with C = (12;3;10)and C' = (12;3;8) [C' = (10; 3; 8)] lies
below 5% [9%] throughout the evolution, see figure 12(b). Finally, we should mention that a similar analysis has
been performed for all other interspecies interaction strengths and observables discussed in the main text and
found to be adequately converged (results not shown here for brevity).
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