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The study of island community assembly has been fertile ground for developing and testing theoretical ideas in ecology and

evolution. The ecoevolutionary trajectory of lineages after colonization has been a particular interest, as this is a key component

of understanding community assembly. In this system, existing ideas, such as the taxon cycle, posit that lineages pass through a

regular sequence of ecoevolutionary changes after colonization, with lineages shifting toward reduced dispersal ability, increased

ecological specialization, and declines in abundance. However, these predictions have historically been difficult to test. Here, we

integrate phylogenomics, population genomics, and X-ray microtomography/3D morphometrics, to test hypotheses for whether

the ecomorphological diversity of trap-jaw ants (Strumigenys) in the Fijian archipelago is assembled primarily through colonization

or postcolonization radiation, andwhether species show ecological shifts toward niche specialization, toward upland habitats, and

decline in abundance after colonization. We infer that most Fijian endemic Strumigenys evolved in situ from a single colonization

and have diversified to fill a large fraction of global morphospace occupied by the genus. Within this adaptive radiation, lineages

trend to different degrees toward high elevation, reduced dispersal ability, and demographic decline, and we find no evidence of

repeated colonization that displaces the initial radiation. Overall these results are only partially consistent with taxon cycle and

associated ideas, while highlighting the potential role of priority effects in assembling island communities.

KEY WORDS: 3D geometric morphometrics, community assembly, formicidae, phylogenomics, population genomics, taxon cycle.

On remote islands, ecological communities assemble through

transoceanic colonization and the subsequent evolution of lin-

eages after colonization (Macarthur and Wilson 1967; War-

ren et al. 2015; Gillespie 2016). Their well-defined boundaries

make them attractive model systems for studying the interplay

of ecological processes, such as dispersal and competition, and
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evolutionary processes such as adaptive shifts and speciation.

Relevant ecoevolutionary theory ranges from the more stochas-

tic perspectives, in which the central processes of dispersal and

evolution are essentially unpredictable and lead to different out-

comes for lineages (Hubbell 2001; Grant and Grant 2002; Fukami

2015), to more deterministic perspectives, in which lineages and

communities assemble through regular pathways that are pre-

dictable and repeated (Losos et al. 1998; Gillespie 2004).

While such theorizing is nearly as old as biogeography, it

has traditionally been difficult to test theoretical predictions and

make strong links between observable static patterns and inferred

dynamical processes (Warren et al. 2015). However, emerging

data-rich methods, including phylogenomics, community-level

population genomics, 3D imaging, and computational inference,

give us a much broader window into the past and new opportu-

nities to test longstanding ideas in biogeography (Economo and

Sarnat 2012; Gillespie 2016; Cotoras et al. 2018).

Here, we examine a series of hypotheses about the com-

munity assembly of trap-jaw ants (Strumigenys) in Fiji, a re-

mote archipelago in eastern Melanesia. Strumigenys is the most

species-rich ant genus on this archipelago, which harbors a highly

endemic ant fauna (Sarnat and Economo 2012) with several doc-

umented in situ radiations (Lucky and Sarnat 2010; Sarnat and

Moreau 2011; Darwell et al. 2020). This Melanesian ant system

was influential in the early development of island biogeography

theory. In the 1950s, E.O. Wilson formulated two influential (but

very different) ideas about how island communities assemble, the

taxon cycle, and later his equilibrium theory of island biogeogra-

phy. The taxon cycle hypothesis (Wilson 1959, 1961; Ricklefs

and Bermingham 2002) has a more deterministic aspect. Inspired

by patterns he observed through taxonomic work on Melanesian

ants, Wilson (1959, 1961) proposed that lineages pass through

phases of range expansion and contraction, associated with evo-

lutionary niche shifts into and out of marginal habitats. On remote

islands, lineages arrive at disturbed lowland habitats and subse-

quently evolve on trajectories toward the upland interior, eventu-

ally exhibiting ecomorphological specialization and a decline in

both abundance and ecological dominance (Wilson 1959, 1961).

Wilson (1959, 1961) envisioned new “expanding” lineages occa-

sionally arriving and outcompeting the species derived from past

colonizations, possibly even pushing them extinct. The taxon cy-

cle has drawn interest by those analyzing various systems (e.g.,

Ricklefs and Cox 1972; Ricklefs and Bermingham 1999; Ricklefs

and Bermingham 2002; Cook et al. 2008; Jønsson et al. 2014), as

well as criticism (e.g., Pregill and Olson 1981; Losos 1992), but

remains viewed (at least by some) as still a theoretically relevant

idea in island biogeography (Ricklefs and Bermingham 2002;

Steinbauer 2016; Whittaker et al. 2017). Recently, there has been

renewed interest in testing its predictions using the original sys-

tem that inspired it: Melanesian ants (Economo and Sarnat 2012;

Economo et al. 2015; Matos-Maraví et al. 2018a; Matos-Maraví

et al. 2018b; Darwell et al. 2020).

Both Wilson’s original articles and subsequent works have

touched on many different issues under the framework of the

taxon cycle, making it sometimes unclear what exactly is being

tested. However, most formulations of the taxon cycle include

components that are more general themes discussed in the bio-

geographic literature. Rather than seek to test the taxon cycle as a

singular hypothesis, we frame our study around these more gen-

eral themes.

First, there is a question of whether the ecological diversity

of the island community is assembled primarily through disper-

sal assembly or in situ radiation. The latter can occur in isolated

islands when colonization is very infrequent (Whittaker 1998;

Heaney 2000; Valente et al. 2020), where arriving lineages may

take advantage of ecological opportunities (Schluter 2000). This

can also occur, however, when dispersal rates are habitat depen-

dent (Sukumaran and Knowles 2018), leading certain habitats to

be colonized first on the island, followed by evolution of lineages

into other “empty” niches or habitats. The particular habitats that

are most connected may vary by taxon (Gillespie et al. 2012).

For example, migrating birds may more frequently deposit plant

propagules at high elevations in Hawaii, leading to greater col-

onization rates of high elevation forests (Carlquist 1967). In the

case of Melanesian ants, it is likely that coastal, high-disturbance

habitats have higher connectivity, because rafting is thought to

be a primary long-distance dispersal mechanism of ants (Wilson

1959, 1961). Adaptation to such habitats facilitates range expan-

sion of a lineage, while lineages adapted to high-elevation interior

habitats do not disperse long distances and colonize similar habi-

tats in remote islands. Evidence for this habitat-dependent disper-

sal has been found for Indo-Pacific ants including the genus Phei-

dole (Economo et al. 2015), the genus Camponotus (Clouse et al.

2015), the Prenolepis-genus group (Matos-Maraví et al. 2018a),

and Odontomachus (Matos-Maraví et al. 2018b). Quantitative ap-

proaches are now available to test this statistically (Sukumaran

et al. 2015; Matzke 2016; Sukumaran and Knowles 2018).

The fact that dispersal is habitat dependent, however, does

not in itself mean that niches can shift after colonization and as-

semble the community. If niches are conserved after coloniza-

tion, low elevation species should be more related to mainland

low elevation species than to high elevation species in the same

archipelago. In the taxon cycle hypothesis (Wilson 1959, 1961;

Ricklefs and Bermingham 2002), niche shifts and niche spe-

cializations occur, as the lineage penetrates from the marginal

habitats into the interior. Thus, disturbed coastal habitats are the

“door” through which lineages first pass and (may) subsequently

radiate to assemble the island community. The evidence here is a

bit more fragmentary. Building on an inventory of the Fijian ants

(Sarnat and Economo 2012), Economo and Sarnat (2012) showed
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that level of endemism is correlated to habitat affinity and eleva-

tion across the entire fauna, with the most endemic ants in Fiji

being restricted to more pristine habitats and higher elevations.

This is the pattern one would expect from directional niche shifts

after colonization, but without phylogenetic information it is far

from sufficient to show that they did occur (e.g., Losos 1992).

Both Sarnat and Moreau (2011) and Economo and Sarnat (2012)

used phylogenetic methods to show that high-elevation, morpho-

logically specialized lineages of the ant genus Pheidole evolved

in situ from more generalized ancestors, even though they resem-

ble spinescent forms found around the Indo-Pacific (Sarnat et al.

2017). While this is a convincing example of niche shift, the ex-

tent to which it represents a special case restricted to Pheidole or

a general pattern observed among Fiji’s many other endemic ant

radiations is unclear.

Another theme in both the taxon cycle and island biogeog-

raphy in general is that after colonization, lineages undergo de-

mographic decline and loss of dispersal ability (Wilson 1959,

1961; MacArthur and Wilson 1967; Gillespie 2002, Gillespie

et al. 2012; Burns 2019). This could be because of an increase

in ecological specialization leading to reduced competitive abil-

ity and increased vulnerability (Ricklefs and Bermingham 1999;

Ricklefs and Bermingham 2002). This prediction has tradition-

ally been difficult to test, and one weakness of many historical

taxon cycle analyses is that lower dispersal ability for later-stage

endemic species was often inferred from their narrow ranges,

which is somewhat circular without independent estimates of dis-

persal ability (e.g., from genetic data) (Dexter 2010). Modern

population genomic methods offer a route to examining differ-

ences in dispersal ability and demography independent of geo-

graphic distribution per se. Although a recent study on spiders

showed that species with high abundance and generalized ecolo-

gies can persist for millions of years after colonization (Gillespie

et al. 2017), this prediction has not been tested directly in ants.

A related question is whether lineages evolve to acquire

a consistent set of morphological changes that are expected to

be associated with postcolonization evolution—the evolution of

a morphological “island syndrome” of traits (Adler and Levins

1994; Novosolov et al. 2013; Burns 2019). An alternative is adap-

tive radiation, which is the diversification of lineages that take

advantage of ecological opportunities (Schluter 2000). This can

fill morphospace occupied by continental groups, and in some

cases exceeding it. For example, rather than evolve toward a con-

sistent set of traits, Fijian Pheidole have evolved to fill much of

the global morphospace (Darwell et al. 2020) including the evo-

lution of specialized traits such as extreme spinescence (Sarnat

et al. 2017).

Finally, there is a question of whether after a lineage es-

tablishes on an island, the new arrivals can invade and pene-

trate the island’s interior, eventually replacing the original inhabi-

tants. Thus, we could see evidence of repeated colonization, with

species derived from earlier colonizations more specialized and

less abundant, a key prediction of the taxon cycle. One alternative

to this would be a strong priority effect associated with ecological

release. Ecological release is the expansion of species’ released

niche when it arrives in a new environment with less competi-

tors, and has been considered as an important process to shape

community assembly of island fauna such as birds, lizards, spi-

ders, and snails (Losos et al. 1998; Chiba 2004; Gillespie 2004;

Reding et al. 2009). The first colonizing lineage seizes ecological

opportunity and undergoes niche shift, radiation, and evolution-

ary community assembly—after which the community is resis-

tant to subsequent colonists (Vannette and Fukami 2014; Fukami

2015). New arrivals may colonize the lowland disturbed habitats

or deposit a lineage on the island but never manage to penetrate

and usurp the existing community that has filled a diverse set of

niches.

Here, we examine these dynamics using a combination

of field inventory, phylogenomics, population genomics, X-ray

imaging, linear and 3D geometric morphometrics to unravel the

assembly of a community of Strumigenys miniature trap-jaw ants

in Fiji, where it is the most speciose ant genus. The hypothesis

that long-distance ant dispersal is habitat dependent is best ad-

dressed on a regional or continental scale and has been tested

for other ant groups in the region (Economo et al. 2015; Matos-

Maraví et al. 2018a, Matos-Maraví et al. 2018b), and is beyond

the scope of this study. We focus instead on the other themes

listed above using a combined phylogenomic and population ge-

nomic analysis.

Specifically, we (i) use phylogenomics to test whether the

Fijian Strumigenys community evolved primarily in situ within

the archipelago or through dispersal assembly, (ii) use phenomic

methods to test whether ecomorphological changes are consis-

tent with evolution of an island syndrome of traits, or adaptive

radiation into a broad range of ecomorphologies. Furthermore,

we use population genomic approach to (iii) test whether niche

shifts into interior and upland habitats are associated with an in-

crease in geographic population structure, an indication of a de-

cline in dispersal ability and connectivity, and (iv) we use demo-

graphic inference to test whether endemics are undergoing more

demographic decline relative to newer arrivals, and whether evo-

lution into more upland habitats and more specialized niches is

associated with demographic decline. Finally, we examine (v)

whether repeated colonizations lead to “takeovers” of the local

community, would come in the form that multiple colonizations

have occurred, and that in more than one colonization we see

niche shift and ecomorphological radiation. If priority effects are

strong, we would see most ecomorphological diversification de-

scended from the initial colonizing lineage, with no evidence for

niche shift and cladogenesis of more recent colonizations.
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Material and Methods
THE STUDY SYSTEM AND TAXON SAMPLING

Many remote Pacific islands are thought to lack native ants en-

tirely (Wilson and Taylor 1967), but Fiji supports a rich and dis-

tinctive ant fauna, including 45 genera and 188 known species,

of which over 68% are endemic to Fiji (Sarnat 2006, 2008; Sar-

nat and Economo 2012). Strumigenys (Hymenoptera: Formici-

dae) is the third most speciose ant genus on earth with more

than 1000 described species across tropical and subtropical forest

(Bolton 2000), and it is also the most speciose ant genus in Fiji

(23 species, with 20 endemics, Sarnat et al. 2019). Strumigenys

is a pantropical, hyperdiverse clade of leaf-litter predators (Wil-

son 1953; Brown and Wilson 1959). Strumigenys are known to

vary along several important morphological axes including body

size and relative mandible length. Relative mandible length (i.e.,

relative to head length), is thought to vary with hunting strat-

egy and microhabitat (Brown and Wilson 1959; Bolton 2000).

Species with long mandibles tend to be more epigaeic (above-

ground active), and use a powerful trap-jaw mechanism as a

weapon for active hunting. In contrast, short-mandibled species

tend to be more hypogaeic (underground active)—they sit and

wait until prey comes within close proximity of the mandibles,

sometimes using chemical lures, then grip and hold onto their

prey item until they can sting and immobilize it (Wilson 1953;

Deyrup and Cover 2009). In a global revision of the genus,

Bolton (2000) assigned Fijian species to six different morpho-

logical species groups, all of which are widespread in the Indo-

Pacific. These species groups provide some a priori expectations

about community assembly of the archipelago: if morphologi-

cal species groups are monophyletic, this would imply that the

archipelago has been colonized a minimum of six times. Thus,

dispersal would be a key mechanism assembling morphological

diversity on the archipelago. To put the Fijian Strumigenys in

phylogenetic context, we sampled 42 Strumigenys species (387

specimens in total; see Supporting information Table S1 for de-

tails), including 17 from Fiji and 25 non-Fijian outgroups. We

have another ongoing effort to reconstruct the global phylogeny

of the genus with a dataset of 462 species representing all main

geographic regions, thus, we chose these outgroups to be both

representatives of global diversity and include closest relatives

of the Fijian fauna on our broader phylogeny. Unfortunately, six

rare Fijian species were not able to be included in the molecu-

lar study due to the lack of available material. However, we se-

quenced representative species from all the morphological groups

in Fiji (Sarnat et al. 2019), and the missing species are closely al-

lied with those taxa that were included. Thus, while we cannot

completely rule out that these species represent distant lineages

or independent colonizations of the island, we view it as highly

unlikely.

SEQUENCING, RAD ASSEMBLY, AND GENOTYPING

The genomic DNA of each specimen was extracted using a non-

destructive method following Tin et al. (2014). RAD library

preparation was performed as in Tin et al. (2015) by using

a Biomek FXP Laboratory Automation Workstation (Beckman

Coulter). Equimolar concentrations of libraries with different bar-

codes were pooled, and a gel extraction was performed to select

200—400 bp DNA. Finally, the libraries were sequenced single

end with read length of 55 bp on an Illumina HiSeq 2500 platform

in DNA Sequencing Section (SQC) at the Okinawa Institute of

Science and Technology Graduate University. Samples were de-

multiplexed, separated by individual, and filtered by quality using

Trimmomatic (Bolger et al. 2014).

To assemble the dataset for phylogenomic analysis, we first

assembled a dataset of a maximum of 10 specimens per species

(the number of specimens range from 1 to 10, see Supporting in-

formation Table S2 for detail), by selecting the specimens with

the highest data coverage after demultiplexing. We then de novo

assembled the loci from raw RAD data using ipyrad (Eaton and

Overcast 2018) pipeline. We largely followed the default setting

for the assembling parameters, except we deleted the parameter

8 (“restriction_overhang”) in the parameter file since our sam-

ples were already demultiplexed. More specifically, we first fil-

tered the reads with more than five ambiguous sites (Phred qual-

ity score <20). We then clustered the filtered reads within each

sample using 85% sequence similarity. After the consensus se-

quences were called within each sample, we removed the poten-

tial paralogs by filtering out the consensus loci with more than

two alleles. Finally, we clustered the loci across samples at 85%

similarity and included all loci shared by at least four samples.

The final assembled loci were exported in ipyrad formats ∗.loci

(see ipyrad document for details). Because the 3’ edge of loci

were not well aligned and might introduce false SNP calling dur-

ing the ipyrad assembly, we trimmed the last 5 bp of each final

aligned locus from the ∗.loci file, and then concatenated all loci

into one supermatrix using custom python script.

To assemble datasets for population genomics analyses,

we first selected eight Fijian Strumigenys species with enough

specimens (at least three specimens from the same geographic

population) sampled across the Fiji archipelago (two nonen-

demic species, including one Pacific-widespread native species

Strumigenys godeffroyi, and one exotic species Strumigenys

rogeri, and six Fijian endemic species: Strumigenys trauma, Stru-

migenys basiliska, Strumigenys chernovi, Strumigenys ekasura,

Strumigenys nidifex, and Strumigenys sulcata; Supporting infor-

mation Table S3 to S10). We then applied separate ipyrad de

novo assembly analyses on each species for genotyping (the min-

imum locus coverage across specimens = 70%). After assembly,

we used VCFTools version 0.1.14, (Danecek et al. 2011) to re-

move individuals with average loci coverage <70%. SNPs with
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minimum minor allele frequency (MAF < 0.05) were also fil-

tered out. Finally, for the downstream population structure infer-

ences, we randomly selected one SNP per locus to reduce the

effect of linkage disequilibrium.

PHYLOGENOMIC ANALYSIS

We included loci that had a high percentage of missing data

across specimens, as previous work on RAD-seq phylogenomics

showed that loci missing across many or even most taxa can col-

lectively contain a great deal of information about internal nodes

in the phylogeny (Eaton et al. 2017). Our own informal testing

on this and other datasets support this conclusion. Thus, we in-

cluded even loci with low coverage across specimens. The final

concatenated matrix for the phylogenomic analysis contained 330

413 loci and 13 993 656 bps with average 2.8 million bps present

on the specimen level and 5.6 million bps presented per species

(calculated from a consensus sequence within each species). To

infer the history and the origins of Fijian Strumigenys, we re-

constructed a maximum likelihood phylogeny in ExaML version

3.0.17 (Kozlov et al. 2015). All the starting trees were generated

using RAxML version 8.2 (Stamatakis 2014), and we used a gen-

eral GTR substitution model and a gamma distribution (GTR +
G) of among site rate variation as selected by PartitionFinder 2

(Lanfear et al. 2017). We estimated the topology support by gen-

erating 100 bootstrap replicates using RAxML and then using

ExaML to infer one ML tree per replicate.

We also inferenced an SVDquartets based species tree on

Fijian Strumigenys using tetrad version 0.7.20, a program that is

implemented in ipyrad (Chifman and Kubatko 2014; Eaton et al.

2017). We ran tetrad on the same assembled dataset that include

330, 288 unlinked SNPs. We inferred all 19 720 001 possible

quartets for the 41 taxa, and then conducted 100 nonparametric

bootstraps replicates to assess the support.

We estimated the divergence dates of Fijian endemic Stru-

migenys using BEAST version 2.4.4 (Bouckaert et al. 2014) with

molecular evolution model set to GTR + G as suggested by Par-

titionFinder 2. To select the most appropriate clock model for

our data, we applied the stepping-stone sampling method imple-

mented in BEAST version 2.4.4 to test whether the evolutionary

rate of the taxa in our dataset is consistent (strict clock model vs.

relaxed model). The result strongly suggests the relaxed model

for our data (mean marginal likelihood: relaxed log normal model

= −271 661.46, and strict model = −273 532.38). We then used

the same stepping-stone sampling on the two tree priors and se-

lected Yule model as our tree prior (mean marginal likelihood:

Yule = −271 661.46, Birth-Death model = −272 948.05). We

conducted the stepping-stone sampling analyses with 50 steps

and 200 000 generations within each step. The posterior distribu-

tions were sampled every 1000 generations and the convergence

was accessed by examining the estimated marginal log likelihood

values. For data calibration, we used the root divergence time of

Strumigenys from Ward et al. 2015 as the minimum and max-

imum age constraint in our uniform distribution. We fixed the

tree topology by using the phylogeny obtained from ExaML as

the starting tree. We conducted two independent runs for 1 ×
108 generations each, sampling every 10 000 generations. We

assessed the convergence by examining whether the ESS of all

parameters were greater than 200 in Tracer version 1.6 (Drum-

mond and Rambaut 2007). We generated the maximum credibil-

ity clades trees using TreeAnnotator with the first 10% of pos-

terior trees discarded as burnin (with burnin determined by the

trace).

MORPHOMETRICS ANALYSES

We used both linear morphometrics and 3D geometric morpho-

metrics to quantify the ecomorphological diversification of Fijian

Strumigenys. We provide an overview here, but detailed meth-

ods can be found in Supporting information Appendix S1. The

linear morphometrics were based on a series of measurements

across the ant body, including head length, head width, scape

length, eye length, Weber’s length, and pronotum height follow-

ing Bolton (2000), for each of the 14 Fijian Strumigenys species

with total 281 specimens. To compare the level of morphological

divergence in Fijian Strumigenys to that of the genus as a whole,

we assembled a dataset of morphological measurements for 1056

non-Fijian Strumigenys species (mainly using Bolton (2000) but

adding our own measurements for some species, detail can be

found in the Supporting information Appendix S1), and used it to

characterize a global morphospace.

To quantify morphological shape variation in 3D using

geometric morphometrics, we scanned 14 Strumigenys species

using X-ray microcomputed tomography (X-ray micro-CT)

and applied a system of landmarks to the head and mesosoma

(Supporting information Appendix S1) which were analyzed

with the package geomorph. We estimated a phylomorphospace

for both linear and 3D geometric morphometrics datatypes, and

used phylomorphospace function in the R package phytools

(Revell 2012) to evaluate the diversification of Fijian Stru-

migenys in morphospace. We reconstructed ancestral states for

body size and elevational affinity of Fijian Strumigenys by using

fastAnc function in the R package phytools (Revell 2012).

POPULATION GENOMICS ANALYSES

To test whether species decline in abundance and dispersal ability

after colonization, we examined the degree of geographic popu-

lation structure and the population demography. Specifically, we

applied a population genomics approach to the eight Strumigenys

species with sufficient sampling for analysis. These species in-

clude both nonendemic species and those from different clades

within the Fijian endemics.
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Population structure inference
We used three approaches to study the population structure of the

eight Strumigenys species to assess the degree of genetic cluster-

ing of each species across different islands. We first examined ge-

netic structure by conducting PCA on SNP data using the Python

package scikit-allele version 1.2.0 (Miles and Harding 2016).

Second, we used sNMF version 1.2 (Frichot et al. 2014) to test the

most likely number of genetic clusters within each species (k) and

assign individuals to populations. We tested each k value (range

from 1 to 10) with 20 replicated runs, and then examined their

cross-entropy criterion of each k. We visualized the sNMF results

in R and determined the optimal k as the k value that minimizing

the cross-entropy criterion. Third, we used the Neighbor-Net al-

gorithm (Bryant and Moulton 2004) implemented in the program

SplitsTree version 4.14.4 (Huson and Bryant 2006) to visualize

population structure by generating phylogenetic networks. Ge-

netic differentiation of populations in each species (FST) were es-

timated at both per-SNP and genome-average level using Python

package scikit-allele. Calculation of FST requires the designation

of subpopulations. We generally used specimens collected from

the same island as a single subpopulation, as we did not detect

any within-island structure for most species. For S. sulcata and S.

trauma, specimens collected from western and eastern Viti Levu

(the largest island) showed differentiation, and thus, were treated

as separate subpopulations in the population structure analyses

(in total, six populations for S. basiliska, four populations for

S. chernovi, three populations for S. ekasura, five populations

for S. godeffroyi, four populations for S. nidifex, four populations

for S. rogeri, four populations for S. sulcata, four populations for

S. trauma were selected; see Supporting information Appendix

Table S3 to S10 for detail). We used Welch’s two-sample t test to

investigate whether the FST estimates between the species of the

two clades were significantly different from each other.

Population demographic analyses
To test the different historical demographic syndromes (popu-

lation expansion/contraction) of Fijian Strumigenys populations,

we analyzed one dimensional site frequency spectra (1D-SFS)

using δaδi version 1.7.0 (Gutenkunst et al. 2009). We examined

the following four alternative 1D models that differ in assump-

tions related to historical population change: (1) constant pop-

ulation size model, (2) instantaneous size change, (3) exponen-

tial size change, and (4) instantaneous size decline followed by

exponential growth. The populations of each species were de-

fined the same way as calculating FST in the previous section.

Parameter optimizations for each model were performed using

the optimization routine procedure in Portik et al. (2017). We

then used the Godambe Information Matrix (GIM, Coffman et al.

2015) to compare maximum likelihood models across the four

demographic scenarios. For the best-fit model, we estimated stan-

dard errors (SE) for each parameter using the GIM on 200 boot-

strap data sets that randomly sampled from the original frequency

spectrum using the built-in sampling method in δaδi. We then cal-

culated 95% confident intervals for each parameter estimate us-

ing the point estimate ±1.96 SE. We focused on the ratio of his-

torical and current population size as an indicator of demographic

growth or decline.

To cross-validate the demographic results from δaδi, we

also used fastsimcoal version 2.6 (Excoffier et al. 2013) to

simulate a simple exponential population expansion or contrac-

tion model for each species. We set the prior distribution for

this model as follows: time (TG) of instantaneous population

size change ∼ uniform (U) (1 k, 1 million) generations ago,

current effective population size (NCUR) ∼ U (100, 100K), and

ancient effective population size (NANC) ∼U (100, 100K). We

conducted 1 million coalescent simulations of this population

expansion or contraction model with the following options: - N

100 0000 (number of coalescent simulations), -L 40 [number

of expectation-maximization [M] cycles], -M 0.001 (minimum

relative difference in parameter values for the stopping criterion),

and -c 10 (threshold for observed SFS entry count, pooling all

entries with less than 10 SNPs). For each species, we performed

100 independent fastsimcoal runs to determine the parameter

estimates at maximum likelihood (Excoffier et al. 2013).

Results
IN SITU RADIATION OF FIJIAN STRUMIGENYS

The tree topology inferred with maximum likelihood method

showed strong support (bootstrap 100%) for the monophyly of a

single Fijian endemic long-mandibled Strumigenys clade (Clade

a in Fig. 1). The SVDQuartets based species tree matched the

ML tree topology for all the endemic Fijian Strumigenys species

(Supporting information Fig. S1). The monophyly indicates that

the high endemism of long-mandibled Strumigenys in Fiji is due

to in situ radiation of a single colonist lineage, not indepen-

dent colonizations of multiple lineages. The divergence dating

analysis revealed the 14 extant species of long-mandibled Stru-

migenys descended from a single lineage that colonized Fiji in the

Miocene and split into two archipelago-wide radiations (clade b

and clade c in Fig. 2A).

NICHE SPECIALIZATION AND ECOMORPHOLOGICAL

DIVERSIFICATION

Within the endemic radiation, some species were only found

in the lowland forest (e.g., Strumigenys ekasura, Strumigenys

frivola, Strumigenys basiliska, Strumigenys chernovi, Stru-

migenys vakara, Strumigenys gunter, and Strumigenys oasis),

while other species were more often found in high-elevation
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Figure 1. Maximum likelihood phylogeny of the ant genus Strumigenys in Fiji based on 330 413 Radseq loci. Nodes with 100% support

values are represented by closed circles. Grey circles indicated the support value between 80 and 100%, while open circles indicated the

nodes with less than 80% support.
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Figure 2. Radiation and diversification of Strumigenys in Fiji. (A) Dated chronogram inferred by Bayesian method based on 267 715 RAD

loci showing the evolutionary radiations of Strumigenys in Fiji archipelago. (B) The elevation distribution (loess-smoothed) indicated that

in general, the species in small size clade tend to live in low elevation, while large Strumigenys species were often found in low and high

elevation. (C) Species distribution across the whole archipelago. VL, Viti Levu; VN, Vanua Levu; LA, Ovalau; ML, Moala; KR, Koro; GA, Gau;

KV, Kadavu; BQ, Beqa; TA, Taveuni. (D) 3D-rendered models of Strumigenys species in the two clades to show the body size differences.

forest (e.g., Strumigenys praefecta, Strumigenys mailei, Stru-

migenys tumida, Strumigenys sulcata, Strumigenys avatar, and

Strumigenys nidifex; Fig. 2B). Species collected at high eleva-

tions were much larger than species collected at low elevations

(Fig. 2D).

The distribution of the Fijian Strumigenys species in 2D

morphospace indicates a considerable amount of morphologi-

cal divergence between the two endemic clades (Fig. 3A , B).

The first principal component (body size, variance explained =
91.3%) separated all endemic long-mandibled Fijian Strumigenys

into two major groups: large Strumigenys group with positive

PC1 values and small Strumigenys group with negative PC1 val-

ues (Fig. 3A, B). Body size divergence in Strumigenys reflected

phylogeny, with all the species in one endemic clade exhibit-

ing small size (“small-bodied clade”) and species in another en-

demic clade showing large size (“large-bodied clade”). PC2 (eye
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Figure 3. 2D-Phylomorphospace of morphological divergence in Fijian Strumigenys based on the morphological traits measurements.

(A) PC1 (body size) versus PC2 (eye size). (B) PC1 (body size) versus PC3 (mandible length). The positive value indicates larger size. The dots

in the same color indicate specimens from the same species. The red branch indicates large Strumigenys clade (negative PC1) and the blue

branch represents the small Strumigenys clade (positive PC1). The key ancestral nodes are indicated using letters a, b, and c. (C) Ancestral

state reconstruction of body size in long-mandibled Strumigenys species, showing that the larger body sized Strumigenys species evolve

in situ in Fiji. (D) The Fijian species (black dots) overlaid onto global Strumigenysmorphospacewhich includes 1506 non-Fijian Strumigenys

species (grey dots).

size, variance explained = 3.98%) further separated ant species

within each clade based on their eye size and other character-

istics (Fig. 3A). Moreover, PC3 (mandible length, variance ex-

plained = 2.63%) revealed some variations in mandible length

and other characteristics among species in the small-bodied Stru-

migenys clade, while the mandible size in the large-bodied Stru-

migenys clade was more conserved (Fig. 3B). The ancestral state

reconstruction of body size showed that larger body-sized form

evolved with Fiji from more typical ancestors (Fig. 3C). The

results indicate that the ecomorphological diversification of Fi-

jian endemic Strumigenys evolved in situ within the archipelago.

Moreover, we found that the Fijian Strumigenys lineages filled
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Figure 4. 3D geometric morphometric analysis of morphological divergence in Fijian Strumigenys. (A) Landmarks placement on head,

mandible, and mesosoma. (B-D) Phylomorphospace of morphological divergence in head shape, mandible shape, and mesosoma shape.

(B) For the head, PC1 (43% of variance) described species with a narrow anterior region of the head, especially the clypeus, and PC2 (20%

of variance) described species with large eyes and a narrow posterior head. (C) The mandible varied from thick and triangular to thin and

elongate (PC1; 63% of variance), with “teeth” along the same versus different axes (PC2; 16% of variance). Lastly, (D) for the mesosoma,

PC1 (39% of variance) described species with a broad mesosoma and relatively enlarged pronotum, and PC2 (18% of variance) described

species with a relatively enlarged mesonotum. The dots in the same color indicate specimens from the same species. The red branch

indicates large Strumigenys clade and the blue branch represents the small Strumigenys clade.

a large fraction of the entire global Strumigenys morphospace

(Fig. 3D).

In Fig. 4, 3D geometric morphometrics also revealed vari-

ation among species in head, mesosoma, and mandible shape.

The small- and large-bodied Strumigenys clades were consis-

tently separated in each morphospace plot. For the head, PC1

(43% of variance) described the width of the posterior head, es-

pecially the breadth of the clypeus, and PC2 (20% of variance)

described the depth of the posterior head (Fig. 4B). For the meso-

soma, PC1 (39% of variance) described the relative size of the

pronotum, and PC2 (18% of variance) described an apparent

trade-off in overall elongation of the pronotum versus propodeum

(Fig. 4C). Lastly, the mandible varied from thick and triangu-

lar to thin and elongate (PC1; 63% of variance), with “teeth”

along the same versus different axes (PC2; 16% of variance)

(Fig. 4D).
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population structures (C-H). (I) The map of the Fiji archipelago. Colored nodes at the terminal of tree correspond to the sample from
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POPULATION GENOMICS ANALYSES

Population structure
Inferred population structures of the selected Strumigenys species

were largely consistent across methods, with no clear pop-

ulation structure in the two nonendemic species and clear

population structure in endemic species (Fig. 5). More specif-

ically, there were no clear geographic clustering patterns in

the PCA plot for the two nonendemic species indicating low

or no within-archipelago differentiation (Supporting information

Fig. S3). In contrast, PCA on SNP genotypes showed that all Fi-

jian endemic Strumigenys species grouped geographically with

individuals collected from the same locality (Supporting infor-

mation Fig. S3). In sNMF, the best-supported K value of the two

nonendemic species S. rogeri and S. godeffroyi is 1, indicating no

population structure among all the specimens. The optimum K

values as well as the population assignments on the six endemic

species were consistent with the clustering results from the PCA

(Supporting information Fig. S4). Based on the Neighbor-Net al-

gorithm conducted on our SNP data, SplitsTree produced a tree

for each species (Fig. 5) that was congruent with the genetic clus-

ters inferred by sNMF and PCA.

The FST values among all populations of different species

vary from nearly 0 to 0.3 indicating the variable levels of geo-

graphic population structure across species (Fig. 6A). For exam-

ple, the FST values of S. godeffroyi and S. rogeri are very small

suggesting little genetic differentiation among island populations

in nonendemic species, while the FST values in S. sulcata are

around 0.3 indicating that populations from different islands were

notably divergent from each other. It is worth noting that the three

species from the small-bodied clade (S. basiliska, S. chernovi,
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and S. ekasura) showed significantly lower genetic differentia-

tion compared to the two species from the large-bodied clade (S.

nidifex and S. sulcata, P < 0.001, Welch’s two-sample t test).

Population demographic history
The best demographic models inferred by δaδi indicate dramatic

population expansion in the two nonendemic species with their

population size increasing 22 and 10 times instantaneously after

colonization (S. godeffroyi and S. rogeri, respectively, Supporting

information Table S12, Fig. 6B). On the contrary, we detected ex-

ponential population contraction for all the endemic species with

an average population decline of 0.25 times to their ancestral pop-

ulation size, Na (Supporting information Table S12, Fig. 6B). The

population contraction of the one endemic species outside of the

main radiation (S. trauma) was not significant (confidence inter-

val including 0, Supporting information Table S12). Among the

five other endemic species included in the analysis, the decline

of population size in upland endemics (S. nidifex, and S. sulcata)

was greater compared to that of the lowland endemic species (S.

basiliska, S. ekasura, and S. chernovi) (0.15 Na compared to 0.36

Na; Fig. 6B, Supporting information Fig. S5).

Our fastsimcoal2 analysis produced similar results as the

δaδi analysis: population contraction in all six endemic species,

and population expansion in the two nonendemic species. De-

tailed results can be found in Supporting information Table S13.

Discussion
Understanding the processes assembling island biota has long

been a fascination of ecological and evolutionary science. Mod-

ern methods of phylogenomics, geometric morphometrics, and

population genomics applied to communities of species offer

powerful new tools to test ideas about community assembly

(Andújar et al. 2015; Sarnat et al. 2017; Cotoras et al. 2018;

Maestri et al. 2018). Our multifaceted analyses found that the

ecological and evolutionary assembly of Fijian Strumigenys com-

munity is partially consistent with a priori expectations based on

island biogeography theory, and existing ideas in the system such

as the taxon cycle.

COLONIZATION AND ADAPTIVE RADIATION IN FIJI

Our phylogenomic analysis of the Fijian Strumigenys reveals that

all the endemic long-mandibled species are derived from a sin-

gle colonization from Asia 9–14 Ma followed by in situ clado-

genesis. The colonization date (9–14 Ma) is also consistent with

other studies of Fijian ant radiations (Lucky and Sarnat 2010;

Sarnat and Moreau 2011). This was in contrast to the a priori ex-

pectation based on the fact that long-mandibled species belong

to different morphological species groups present in the Indo-

Pacific region. The only other endemic species, S. trauma, be-

longs to a widespread short-mandibled group spread across the

Indo-Pacific.
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Within the in situ radiation of Fijian Strumigenys, we found

evidence of ecological niche diversification, with one endemic

clade found in lower-elevation habitats and the other found pri-

marily in higher-elevation habitats. However, because these two

sister clades are derived from the same colonization event, it is

difficult to determine the direction of niche shifts and recon-

struct the ecological status of the original colonist. Ancestral state

reconstruction inferred an intermediate ancestral elevation, al-

though models of continuous trait evolution inherently assume

evolution is undirected so ancestors are typically inferred to be

within the variation of extant taxa (Supporting information Fig

. S2). A dynamic, such as the taxon cycle, whereby all lineages

shift in the same direction away from an ancestor will result in

misleading inferences. So while we can reject dispersal assem-

bly as a mechanism of community assembly of ecomorphologi-

cal variation, it is clear that not all species shift into more high-

land/interior as predicted by the taxon cycle, rather there is diver-

sification in elevational affinity.

In total, the morphological analysis is consistent with an

adaptive radiation of Strumigenys in Fiji, rather than an evolution

trend toward specific island syndromes. The phenotypic diversi-

fication was dramatic, with a relatively small number of Fijian

species filling much of the global morphospace (Fig. 3D). The

species in the clade associated with upland habitat have under-

gone a marked increase in body size relative to their ancestors

(Fig. 3C), and S. nidifex is among the largest Strumigenys species

in the world. In addition to body size divergence, the 3D geomet-

ric morphometric analysis also indicates morphological diver-

gence in head, mandible, and mesosoma shapes among species

and between those two clades (Fig. 4). Relative mandible size

is notable as an important ecological trait correlated with more

epigaiec or hypogaiec lifestyles (Wilson 1953; Brown and Wil-

son 1959). It general is highly conserved among species groups

(Bolton 2000), and clades (D. Booher, unpubl data). Thus, the

rapid shortening in mandible size and shift to hypogaeic lifestyle

is a remarkable change within this small clade, and evidence for

ecological opportunity promoting ecomorphological diversifica-

tion after colonization.

DECLINES IN DISPERSAL ABILITY AND POPULATION

SIZE

Our population genomic analysis largely supports the prediction

that lineages show reduced dispersal ability and undergo demo-

graphic decline as they become affiliated with interior and higher-

elevation habitats (Wilson 1959, 1961). First, species from the

upland clade both show greater genetic differentiation among

their geographic subpopulations compared to the species from

the lowland. For example, the average pairwise FST in S. sulcata

is about 0.3, while the average pairwise FST in S. basiliska is

about 0.1. This suggests that the upland species have reduced in-

terisland dispersal ability and cannot maintain gene flow between

their geographic populations. Moreover, the upland species also

showed stronger population contraction compared to the lowland

species. The strong link between morphological and ecological

niche specialization—together with the decline in dispersal abil-

ity and population growth—supports the later phase of taxon

cycles which suggests the shift requires adaptation and reduces

commonness (Economo and Sarnat 2012; Economo et al. 2015).

Future studies are needed to identify the morphological and geo-

graphic mechanisms behind this reduction of dispersal ability.

In contrast, the two nonendemic species showed very low ge-

netic differentiation and high population growth. Both species are

widely distributed across Southeast Asia and Oceania, and their

strong dispersal ability should permit frequent gene flow among

island populations. This is in part because in the lowland habitats

they inhabit and likely to have a high connectivity, facilitating the

oceanic dispersal among islands and reducing the level of genetic

differentiation (Economo and Sarnat 2012; Economo et al. 2015).

ECOLOGICAL RELEASE AND THE ROLE OF PRIORITY

EFFECTS

We examined whether there is any evidence that later arrivals are

competitively superior and usurp the early colonist lineages, the

key component of the taxon cycle (Wilson 1959, 1961 . This pre-

diction would have been supported if we observed multiple inde-

pendent colonization origins of Fijian endemic Strumigenys lin-

eages with ecomorphological radiations. However, our results did

not support this prediction since ecomorphological divergence of

most Fijian endemic Strumigenys were descended from the initial

colonization. On the contrary, the postcolonization ecomorpho-

logical diversification may suggest an important role of ecologi-

cal release and priority effect in shaping community assembly of

Strumigenys in Fiji.

Our phylogenomic analysis of Fijian Strumigenys revealed

that larger body size of Fijian endemic Strumigenys ants resulted

from the ecological release of its ancestor upon colonizing the

archipelago. When the ancestral Strumigenys lineage arrived in

the Fiji, it quickly expanded its range and ecological niche. Some

descendent lineages evolved larger body size as a result of eco-

logical release, enabling them to catch larger prey that was pre-

viously inaccessible expand their ecological dimensions (e.g.,

reaching higher elevation). Moreover, we also observed diver-

gence of relative eye and mandible size as well as variations

among head, mandible, and mesosoma shape in the Fijian Stru-

migenys, suggesting they have filled multiple available microhab-

itats (niches). For example, species with small eye size, such as

S. oasis, are typically subterranean ants that live underground.

This postcolonization ecomorphological radiation in the context

of ecological release can produce a strong positive feedback that

promotes evolution-mediated priority effects: the radiation and
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evolution of early arrivals has strong influence on the community

assembly (Vannette and Fukami 2014; Fukami 2015; De Meester

et al. 2016).

It is worth noting that another potential reason why we did

not find multiple radiations of Fijian Strumigenys could be be-

cause the colonization event was so rare since the degree of

evolution-mediated priority effect largely depends on the race

between evolution of initial colonists and the immigration of

preadapted species (De Meester et al. 2016). For example, thanks

to human-mediated invasions, the two nonendemic Strumigenys

species are experiencing significant population expansion across

the whole archipelago. It is unclear whether the nonendemic

species represent the vanguard of new radiations.

Conclusions
Modern methods in genomics, imaging, and computation are fi-

nally allowing us to gain traction on testing ideas that have been

around for decades. Using multiple lines of investigation, this

study advances our knowledge of community assembly by un-

raveling the evolutionary history of Fijian Strumigenys ants. We

find that the remote island community was primarily assembled

through in situ diversification rather than dispersal assembly. The

ecomorphological diversification was intense, filling much of

the global morphospace and different ecological and elevational

niches on the island. These niche shifts were also associated with

loss of dispersal ability and demographic decline. However, al-

though there is evidence of niche shifts, it is not clear whether

they were unidirectional toward upland habitats or occurring in

different directions as species diversified. It is clear that even old

lineages can remain associated with lower elevation habitats even

as others trend upwards, thus, there is not a single pathway of

changes that all species follow. Overall, our findings for the Fi-

jian Strumigenys echoes in large part patterns observed in the sec-

ond most species-rich genus in Fiji, Pheidole (Sarnat and Moreau

2011; Economo and Sarnat 2012; Darwell et al. 2020), and only

partially support the presence of taxon cycles. It remains to be

seen whether these cases reflect general patterns across the Fi-

jian and broader Indo-Pacific ant faunas, but the integration of

phylogenomic, phenomic, and population genomic tools offers a

powerful approach to evaluating longstanding ideas in ecology

and evolution.
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Figure S1. SVDQuartets based species tree of Fijian Strumigenys inferred by using 330,288 unlinked SNPs and 19,720,001 possible quartets.
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