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ABSTRACT
Three non-Newtonian constitutive models are employed to investigate how fluid rheological properties influence the development of later-
ally asymmetric flows past confined cylinders. First, simulations with the shear-thinning but inelastic Carreau–Yasuda model are compared
against complementary flow velocimetry experiments on a semidilute xanthan gum solution, showing that shear-thinning alone is insuf-
ficient to cause flow asymmetry. Next, simulations with an elastic but non-shear-thinning finitely extensible non-linear elastic dumbbell
model are compared with experiments on a constant viscosity solution of poly(ethylene oxide) (PEO) in an aqueous glycerol mixture. The
simulations and the experiments reveal the development of an extended downstream wake due to elastic stresses generated at the stagna-
tion point but show no significant lateral asymmetries of the flow around the sides of the cylinder. Finally, the elastic and shear-thinning
linear Phan–Thien–Tanner (l-PTT) model is compared with experimental velocimetry on a rheologically similar solution of PEO in water.
Here, at low flow rates, lateral symmetry is retained, while the growth of a downstream elastic wake is observed, in qualitative similarity to
the non-shear-thinning elastic fluids. However, above a critical flow rate, the flow bifurcates to one of the two stable and steady laterally
asymmetric states. Further parameter studies with the l-PTT model are performed by varying the degrees of shear-thinning and elastic-
ity and also modifying the confinement of the cylinder. These tests confirm the importance of the coupling between shear-thinning and
elasticity for the onset of asymmetric flows and also establish stability and bifurcation diagrams delineating the stable and unstable flow
states.
© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0008783., s

I. INTRODUCTION

Flow around a circular cylinder is considered to be one of the
benchmark problems in non-Newtonian fluid dynamics. This fun-
damental geometry is representative of a wide range of systems
involving flows of viscoelastic fluids1,2 and has long been a popu-
lar choice for testing constitutive models and numerical schemes3–7

against the abundant experimental data.8–14 With the advent of
microfluidics since the early 2000s,15,16 the experimental study of
the viscoelastic flow around a cylinder has entered an interesting

regime in which inertia is almost negligible (i.e., Reynolds num-
bers Re ≪ 1), while elasticity can be simultaneously high (Weis-
senberg numbers Wi≫ 1).17–28 Such highly elastic flows combining
the streamline curvature are well known for being prone to interest-
ing and important elastic flow instabilities, and even “elastic turbu-
lence” (a turbulent-like state that can arise in viscoelastic fluids even
in the absence of inertia).19,26–33 However, such flows remain as a
great challenge to simulate numerically due in large part to the high
Weissenberg number problem (HWNP) along with other numerical
instabilities that cause solutions to diverge (see, e.g., Ref. 7).

Phys. Fluids 32, 053103 (2020); doi: 10.1063/5.0008783 32, 053103-1

© Author(s) 2020

https://scitation.org/journal/phf
https://doi.org/10.1063/5.0008783
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0008783
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0008783&domain=pdf&date_stamp=2020-May-8
https://doi.org/10.1063/5.0008783
https://orcid.org/0000-0001-9626-9685
https://orcid.org/0000-0003-0351-2100
https://orcid.org/0000-0002-1222-6264
https://orcid.org/0000-0001-5621-1593
https://orcid.org/0000-0002-1884-4100
mailto:simon.haward@oist.jp
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/5.0008783


Physics of Fluids ARTICLE scitation.org/journal/phf

A two-dimensional (2D) approximation of the geometry of a
cylinder confined inside a channel can be described succinctly by
the “blockage ratio” BR = 2R/W, where R is the radius of the cylin-
der and W is the width of the channel [see Fig. 1(a)]. The flow in
such a geometry presents a complex mix of kinematics. For an aver-
age flow velocity U inside the channel, the nominal wall shear rate of
the plane Poiseuille flow upstream of the cylinder is γ̇w = 6U/W.34

Approaching the cylinder, fluid elements undergo compression at
the upstream stagnation point of the cylinder, where streamlines are
caused to diverge into the gaps between the cylinder and the chan-
nel side walls. In these gaps (to an extent that depends on BR), shear
rates can be significantly higher than those in the upstream sections
of the channel with a nominal value γ̇w,gap = 12U/W(1 − BR)

2.35

If BR is high, there may also be an appreciable transient exten-
sional component in the flow as fluid elements approaching from
the upstream are squeezed and subsequently expanded as they pass
through the gaps. Finally, at the downstream stagnation point of the
cylinder, fluid elements are subjected to an extensional deformation
with a nominal elongational rate ϵ̇ = U/R and also a high residence
time.3

The dynamics of viscoelastic flows around microfluidic cylin-
ders are strongly affected by the blockage ratio. For high val-
ues of BR ≳ 0.5, the gaps between the cylinder and the chan-
nel walls dominate and the dynamics resemble those of viscoelas-
tic flows through microfabricated contractions, presenting insta-
bilities and flow recirculations upstream of the cylinder.18,21–24,36,37

If BR is reduced, thus reducing squeezing and shearing around

FIG. 1. Illustrations of the two-dimensional problem setup. (a) A circular cylinder
of radius R is located at the origin of coordinates inside a channel of width W and
subjected to flow at an average velocity U. (b) A zoomed-in view of one of the
numerical meshes employed (mesh M1, see Table I). The boundary conditions
are no slip and no penetration on the solid walls of the channel and the cylinder
(marked red), fully developed at the inlet upstream of the cylinder (blue), and open
at the downstream outlet (green).

the sides of the cylinder, a greater prominence is placed on
the influence of the stagnation points. In this case, for
Wi = λϵ̇ ≳ 1 (where λ is a characteristic relaxation time of the
fluid), greatly elongated wakes are observed downstream of the
cylinder due to the extensional stresses generated at the stagnation
point.3,25,38

Of particular note and relevant to the present work are recent
experiments on flows around slender cylinders with low blockage
ratios (BR = 0.1).28,35,38,39 For certain fluids tested in such devices,
an intriguing new viscoelastic flow instability is observed when
the Weissenberg number exceeds a fluid-dependent critical value
Wic ∼ O(10–100). The instability, which can be quite steady in time
over a range of Wi >Wic, is characterized by the preferential passage
of fluid around one side of the cylinder (i.e., a lateral asymmetry of
the flow field) and appears to be a pitchfork bifurcation with a ran-
dom selection of the preferred side of passage.35,39 In some cases,
the degree of asymmetry is so extreme that nearly all the fluid is
observed to pass on only one side of the cylinder, with a region of
nearly stagnant fluid developing on the opposite side.35,39 It is an
experimental observation to date that only fluids exhibiting both
shear-thinning and extensional elastic properties seem to be capa-
ble of developing this strongly asymmetric state.35,38–40 The limited
experiments conducted to date indicate that this flow state probably
arises due to a combination of high extensional stress in the down-
stream wake and shear-thinning around the sides of the cylinder. It
has been proposed that the flow imbalance may be initiated by some
small random fluctuation of the high-stress wake. This could cause a
small imbalance in the shear rate on either side of the cylinder, which
becomes compounded if the fluid is shear-thinning.35,39 However,
gaining a clear insight into the problem by an experimental approach
is complicated due to the difficulty in performing controlled rheo-
logical and/or geometric parameter studies allowing for independent
variation of shear-thinning and extensional properties (or γ̇w,gap
and Wi).

In this work, we employ a recently developed finite element
method (FEM) scheme that circumvents the HWNP7 in order to
numerically examine flows of various viscoelastic constitutive mod-
els around cylinders, reaching previously inaccessible high Weis-
senberg numbers. Simulations are performed with a shear-thinning
but inelastic fluid model (the Carreau–Yasuda, C–Y, model), an elas-
tic but non-shear-thinning model (a finitely extensible non-linear
elastic dumbbell model with Chilcott–Rallison closure, FENE-CR
model), and a model that is both elastic and shear-thinning (the lin-
ear Phan–Thien–Tanner, l-PTT, model). The parameters of the fluid
models are tuned so that their rheometric responses coincide with a
series of experimental test solutions that are used to validate the sim-
ulations via complementary flow velocimetry measurements. Our
aims are (1) to demonstrate the ability of the new FEM scheme to
accurately predict viscoelastic flows with complex mixed kinematics
up to high Wi, (2) to capture numerically the lateral flow asymme-
try observed in experiments, (3) to validate the numerical method by
comparison with complementary flow visualization experiments, (4)
to verify and understand the dependence of the flow asymmetry on
the nature of the fluid rheological properties, and (5) to numerically
examine how the geometric parameter BR affects the flow instabil-
ity, which has not yet been studied (and would be difficult to study)
experimentally.
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II. THEORETICAL APPROACH
A. Definition of the physical problem

In the numerical simulations, we consider the 2D creeping flow
of a non-Newtonian fluid in a planar channel that features a circular
cylinder located at the coordinate origin mid-way between the walls
[see Fig. 1(a)]. The fluid is incompressible with constant density ρ,
solvent viscosity ηs, zero shear rate viscosity η0, and characteristic
relaxation time λ. The width of the channel is denoted W and the
radius of the cylinder R. The length of the channel is L = 250R, and
in all simulations, the flow domain spans −125 ≤ x/R ≤ 125. The
fluid is driven into the channel by the action of a pressure gradient
generating a volumetric flow rate Q = UW per unit depth, where
U is the average flow velocity of the fluid far from the cylinder.
Figure 1(a) shows the flow geometry where the coordinates x and
y correspond to the local streamwise velocity and its normal direc-
tion, respectively. We scale all lengths with the cylinder radius R,
velocities with the average flow velocity U, and times with the char-
acteristic flow time R/U. In addition, both the pressure and stress
components are scaled with a viscous scale, η0U/R. All nondimen-
sional quantities will be indicated by the superscript “∗,” i.e., lengths
(x∗, y∗) = (x/R, y/R) and velocities u∗ = (u∗, v∗) = (u/U, v/U).
The dimensionless groups that arise are the Weissenberg number,
Wi = λU/R, the Newtonian solvent-to-total viscosity ratio β = ηs/η0,
and the blockage ratio BR = 2R/W. In most of the simulations, iner-
tia is neglected (i.e., the Reynolds number Re ≡ 0); however, we also
confirm that this simplifying assumption is valid by including inertia
in specific test cases.

B. Governing equations
The non-Newtonian flow is described by the incompressible

and isothermal Cauchy equations coupled with a constitutive equa-
tion, which accounts for the contribution of the non-Newtonian
stresses. Neglecting inertia, the forms of the continuity, momentum,
and constitutive equations are expressed, respectively, as

∇ ⋅ u = 0, (1)

∇ ⋅ (−PI + τ + ηsγ̇) = 0, (2)

g(τ, γ̇) = 0, (3)

where u is the velocity vector, P is the thermodynamic pressure, I is
the identity tensor, and τ is the non-Newtonian contribution to the
total stress tensor. The deformation rate tensor, γ̇, is defined as

γ̇ = ∇u + (∇u)T , (4)

where the superscript “T” denotes the transpose operator.
The usual no-slip and no-penetration boundary conditions

(i.e., u = 0) are imposed on the cylinder surface and channel walls
[see Fig. 1(b)]. At the inflow (x = −125R), we impose fully devel-
oped velocity and stress fields, i.e., one-dimensional (1D) equations
for the velocities and the components of the stress tensor that are
solved together with the 2D equations for the rest of the domain.
More specifically, in each time-step, we solve the governing equa-
tions for 1D flows in the channel, under the constraint of a flow rate

that is gradually increased from zero to UW,

Q = ∫
W/2

−W/2
u∣x=−125R dy = UW(1 − e−tU/R). (5)

The 1D flow profiles thus obtained (i.e., velocity and logarithm of
the conformation tensor) are then imposed as Dirichlet conditions
at the inflow boundary. Note that, in the case of direct steady state
simulations, the term (1 − e−tU /R) in Eq. (5) is dropped.

In order to eliminate any additional numerical error that could
arise due to the truncation of the domain, the open boundary
condition (OBC)41 has been applied along the outflow bound-
ary at x = 125R. According to the OBC, the fluid velocities and
stresses are not imposed at the outflow boundary but are calculated
from the weak form of the equations for both velocity unknowns
(extrapolated from the bulk).

The form of the operator g [given as a function of τ and γ̇ in
Eq. (3)] depends on the choice of the constitutive model. Three con-
stitutive models are selected for the numerical simulations, which
represent three broad classes of fluids and allow us to understand the
effects of different fluid rheologies: (1) shear-thinning but inelastic,
(2) elastic but constant viscosity, and (3) both shear-thinning and
elastic. The three models are discussed in detail in Subsection II C.

C. Rheology and constitutive models
1. Inelastic, shear-thinning fluid

The rheological response of an inelastic, but shear-thinning
fluid is modeled using the Carreau–Yasuda (C–Y) model.42 Flu-
ids that obey this constitutive equation are classified as generalized
Newtonian fluids (GNFs). The C–Y model can be used to describe
shear-thinning effects in the steady flow curve but does not include
memory effects and thus does not develop normal stresses related
to microstructural deformation of a fluid. The C–Y constitutive
equation is presented as

τ = (η0 − ηs)[1 + (
γ̇
γ̇c
)

a

]

(n−1)/a

γ̇, (6)

where γ̇c is the characteristic shear rate for the onset of shear-
thinning, n is the “power-law exponent” in the shear-thinning
region, and a is a dimensionless fitting parameter that controls
the rate of the transition between the constant viscosity and shear-
thinning regions of the flow curve. The magnitude of the deforma-
tion rate tensor is denoted as γ̇ =

√
0.5γ̇ : γ̇. In our simulations, the

adjustable parameters in Eq. (6) were selected by non-linear regres-
sion to the experimental flow curve measured with a very weakly
elastic solution of xanthan gum in a glycerol:water mixture (fluid
termed XG, see Sec. III B); see Fig. 2(a). We obtained η0 = 8.1 Pa s,
ηs = 0.1 Pa s, γ̇c = 0.11 s−1, n = 0.33, and a = 0.33. Figure 2(b) shows
the results of capillary thinning measurements made with the exper-
imental test fluids (see Sec. III B for details). In the case of the XG test
fluid, the mid-filament diameter D decays almost linearly with time
t until pinchoff occurs, as expected for a Newtonian (i.e., inelastic)
fluid.43,44 There is a slight departure to a fast exponentially decay-
ing region immediately before pinchoff, which is the signature of
the weak elasticity of the fluid.45,46 In Fig. 2(c), we plot the steady
uniaxial elongational viscosity (ηE) predicted by the C–Y model as a
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FIG. 2. Rheological response of the three representative fluid types employed. (a)
Shear viscosity η as a function of the applied shear rate γ̇ of the three fluid models
(solid lines) compared with the response measured for representative experimen-
tal test samples (open symbols) in steady shear using a stress-controlled Anton
Paar MCR 502 rotational rheometer. (b) Decay of the filament diameter D as
a function of time t for the experimental test samples in a uniaxial elongational
flow during capillary thinning in a CaBER device, compared with model predictions
(see the text for details). (c) Elongational viscosity ηE as a function of the applied
extensional strain rate ϵ̇, as predicted by the three fluid models.

function of the elongation rate ϵ̇. Since the GNF model is inelastic,
the Trouton ratio in uniaxial elongation isTr = ηE/η ≡ 3 and, over the
range shown, the elongational viscosity thins monotonically with the
increasing elongation rate, mirroring the flow curve in steady shear.

2. Non-shear-thinning, elastic fluid
We model the rheological response of elastic fluids with con-

stant shear viscosity using the finitely extensible non-linear elas-
tic dumbbell model with the Chilcott–Rallison closure (FENE-CR
model).3 The fluids that obey this constitutive equation are clas-
sified as Boger fluids. This means that these fluids do not exhibit
shear-thinning effects (the shear viscosity η is independent of the
shear rate), but they feature strong elastic effects and thus intense
extension-rate-hardening. The FENE-CR constitutive equation is
given in terms of the conformation tensor C as

▽

C +
f
λ
(C − I) = 0. (7)

Here, the inversed triangle over the conformation tensor denotes
the upper convected derivative and f accounts for the finite chain
extensibility effect,

f =
L2
−3

L2 − tr(C)
, (8)

where L2 is the extensibility parameter. Additionally, the stress
tensor is related to the conformation tensor as follows:

τ = Gf (C − I), (9)

where G is the elastic modulus of the viscoelastic fluid.
The parameters of the FENE-CR model are selected to approxi-

mate an almost non-shear-thinning experimental test solution com-
posed of 0.2 wt. % of a high molecular weight (Mw = 4 MDa)
poly(ethylene oxide) (PEO) dissolved in a glycerol:water mixture
(termed PEO4, Sec. III B). The solvent viscosity is ηs = 8 mPa s and
the elastic modulus is G = 0.175 Pa, which results in a steady shear
flow curve in good agreement with that of the experimental test fluid
[see Fig. 2(a)]. The relaxation time is set to match that measured for
the fluid used in the experiments (λ = 0.044 s, Sec. III B), determined
from the fit to the pronounced exponentially decaying portion of
the capillary thinning measurements shown in Fig. 2(b). Note that
this exponentially decaying “elastocapillary” thinning region is pre-
dicted by FENE-type fluid models.45,46 For most of the simulations,
the extensibility parameter is set to L2 = 5000, which is appropriate
for a 4 MDa PEO molecule,47 although we also investigate the effect
of varying this parameter in the model. As we can see in Fig. 2(c),
the FENE-CR model predicts strong elastic behavior manifested by
significant extension-rate-hardening.

3. Viscoelastic and shear-thinning fluid
Finally, we use the linear Phan–Thien–Tanner (l-PTT) model48

to simulate the response of fluids that exhibit both shear-thinning
and elasticity. The linear version of the PTT model is preferable
over its exponential counterpart when considering viscoelastic solu-
tions49 because of its capacity to predict both shear-thinning and
monotonic extension-rate-hardening. The l-PTT constitutive equa-
tion is given in terms of the conformation tensor C as

▽

C +
Y
λ
(C − I) = 0, (10)
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where Y is the linear PTT function,

Y = 1 + εtr(C). (11)

The magnitude of the PTT parameter ε governs the extension-rate
hardening of the fluid: lower ε implies stronger extension-rate hard-
ening. For the range of values of ε that we will consider, shear-
thinning is mainly controlled by the solvent-to-total viscosity ratio
β: smaller β implies stronger shear-thinning.7,49 The stress tensor is
related to the conformation tensor as follows:

τ = G(C − I). (12)

In the l-PTT model, the elastic modulus G = 2.1 Pa, solvent
viscosity ηs = 0.015 Pa s, PTT parameter ε = 0.05, and solvent-to-
total viscosity ratio β = 0.05. These parameters are selected so that
both the flow curve in steady shear [Fig. 2(a)] and the exponentially
decaying region of the capillary-thinning curve [Fig. 2(b)] are min-
imized with respect to an experimental test fluid composed of 0.5
wt. % of an Mw = 8 MDa PEO in water (termed PEO8, Sec. III B).
Specifically, the capillary-thinning data of the experimental sample
are fitted in the elastocapillary regime by non-linear regression to the
relation originally proposed by Anna and McKinley, 43,46,50,51

D(t) = Ae(−t/3λ) − [0.7127σ/ηE,∞]t + B, (13)

where A and B are constants and σ = 0.07 N m−1 is the surface ten-
sion of the fluid sample. Equation (13) provides the relaxation time λ
= 0.145 s of both the experimental fluid sample and the l-PTT model
fluid, and also an estimate for the upper plateau of the steady uniax-
ial elongational viscosity ηE ,∞ = 15.12 Pa s. 51 This value of ηE ,∞
is used to determine the parameter ε = 0.05 such that the exten-
sional response of the l-PTT model reaches a similar plateau value
at high extensional rates [Fig. 2(c)]. Clearly, as shown in Fig. 2(c),
this l-PTT model predicts quite strong extension-rate hardening in
uniaxial elongational flows. In our simulations, we also investigate
the effects of varying the degrees of shear-thinning and elasticity by
manipulating ε and β.

D. Numerical method
The Petrov–Galerkin stabilized Finite Element Method for Vis-

coelastic flows (PEGAFEM-V), which was proposed by Varchanis
et al.,7 is used to solve the governing equations. The aforementioned
finite element (FE) method makes use of linear interpolants for all
variables and combines classical finite element stabilization tech-
niques52–54 with the log-conformation representation of the consti-
tutive equation.55 The variational formulation along with a detailed
explanation of the FE method is given by Varchanis et al.7

The mesh is generated by the quasi-elliptic mesh generator
introduced by Dimakopoulos and Tsamopoulos.56 In all simula-
tions, we use triangular elements. To check the mesh convergence
of our numerical solutions, we used three consecutively doubled
meshes, whose characteristics are quoted in Table I. Mesh M2 was
used in all other simulations. Mesh M1 in a region of the flow
domain surrounding the cylinder is represented in Fig. 1(b). Time
integration is performed using a fully implicit second order back-
ward finite difference scheme preceded by a quadratic extrapolation
step for the prediction of the solution at each new time instant. Con-
sequently, the numerical method features second order accuracy in
space and time.

TABLE I. Characteristics of the numerical meshes employed in this study.

Mesh δy at cylinder δy at wall Number of elements

M1 0.01 0.2 46 000
M2 0.005 0.1 184 000
M3 0.0025 0.05 736 000

For a given set of flow parameters (Wi, β, etc.), we perform
transient simulations until a steady state is reached. Subsequently,
the steady state obtained by the transient simulation is used as the
initial guess for direct steady state simulations at the same values of
the flow parameters, and we perform continuation to a certain flow
variable (e.g., Wi).

In order to trace the families of the steady solution branches of
a parameter k (from the group [Wi, β, ε, and BR]), we employ the
pseudo-arc-length continuation algorithm,57 as implemented in the
FEM framework by Varchanis et al.58 According to this algorithm,
given a steady-state solution vector (S) and an initial solution (S0) at
an initial parameter value (k0) on a solution branch, the value of k for
the next computational step is not defined a priori but is a function of
the pseudo-arc-length Δsa. The inner product between the derivative
of the initial solution with respect to the pseudo-arc-length (Ṡ) and
(S − S0) is added to the derivative of k0 with respect to the pseudo-
arc-length (k̇0) and (k − k0) and set to be equal to Δsa. The resulting
equation

ṠT
0 ⋅ (S − S0) + k̇0(k − k0) + Δsa = 0 (14)

is added to the total system of equations that are solved by the
Newton–Raphson method. This handling enables efficient tracking
of pitchfork and saddle-node bifurcations in the parameter space.
Furthermore, using the bifurcation theory and the fact that the
parameter continuation starts from a steady state obtained by tran-
sient simulations, we can determine whether a solution branch is
stable or unstable.

III. EXPERIMENTAL APPROACH
A. Microfluidic device

The microfluidic cylinder device, which is the same as that
employed in several prior experimental studies and described in
detail therein,35,38,39 was fabricated by selective laser-induced etch-
ing in fused silica glass using a commercial “LightFab” three-
dimensional (3D) printer (LightFab GmbH, Germany).59–61 This
method enables production of extremely slender cylinders that
retain rigidity owing to the high material modulus (≈75 GPa). The
device has a width W = 400 μm and a cylinder radius R = 20 μm.
The finite height of the channel (hence also the length of the cylin-
der in the direction normal to the plane of the page in Fig. 1) is
H = 2000 μm. The channel aspect ratio is relatively high
AR = H/W = 5, which has been shown to provide good uniformity
of the flow profile through much of the channel height,38,39 i.e., a
good approximation to the 2D flow assumed in the simulations. The
blockage ratio BR = 0.1 also matches that used in the majority of the
simulated flows.
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B. Test fluids
Three viscoelastic test solutions are studied in experiments that

serve as comparisons to validate the numerical simulations with
each of the three constitutive models. The first test fluid, which
will be referred to as XG, is a very weakly elastic, but strongly
shear-thinning solution of 0.1 wt. % of xanthan gum dissolved in an
82 wt. % mixture of glycerol and water (ρ = 1210 kg m−3,
ηs = 56 mPa s). The second fluid, referred to as PEO4, is a viscoelastic
solution with almost constant shear viscosity composed of 0.2 wt. %
of an Mw = 4 MDa PEO dissolved in a 50 wt. % mixture of glycerol
and water (ρ = 1124 kg m−3, ηs = 5 mPa s). The final fluid, referred
to as PEO8, is a viscoelastic and shear-thinning solution composed
of 0.5 wt. % of an Mw = 8 MDa PEO dissolved in pure water
(ρ = 997 kg m−3, ηs = 0.9 mPa s). All reagents were obtained from
Sigma-Aldrich. The rheology of the test fluids in steady shear was
measured at 25 ○C using an Anton Paar MCR 502 stress-controlled
rotational rheometer fitted with a 50 mm diameter 1○ cone-and-
plate geometry, and the resulting flow curves are shown in Fig. 2(a).
The shear rheology of the XG fluid is well described by the shear-
thinning but inelastic C–Y model discussed in Sec. II C. The PEO4
test fluid is reasonably approximated by the constant viscosity but
elastic FENE-CR model (Sec. II C) with the extensibility parameter
set to L2 = 5000. The final PEO8 test fluid is represented by the l-PTT
model (Sec. II C) with the shear-thinning and elasticity parameters
set to β = 0.05 and ε = 0.05, respectively.

The relaxation times (λ) of the fluids at 25 ○C were determined
in a uniaxial extensional flow by measuring the diameter as a func-
tion of time of the liquid bridge generated in a capillary thinning
extensional rheology device [Haake CaBER 1, Thermo Scientific, see
Fig. 2(b)].45,46 The CaBER device was fitted with plates of diameter
D0 = 6 mm, the initial gap between the plates was 1 mm, and the
plates were separated to a final gap of 6 mm by linear displacement
at a rate of 0.1 m s−1. The measured relaxation times are λ = 0.006 s
(XG), λ = 0.044 s (PEO4), and λ = 0.145 s (PEO8).

C. Flow control
The test fluids are driven through the microfluidic cylinder

device at precisely controlled volumetric flow rates Q using two
neMESYS low pressure syringe pumps (Cetoni GmbH) with 29:1
gear ratios. One of the pumps is used to infuse fluid into the device,
while the second pump withdraws fluid at an equal and opposite
rate from the downstream outlet. The pumps are fitted with Hamil-
ton Gastight syringes of appropriate volumes such that the specified
“pulsation free” dosing rate is always exceeded even at the lowest
imposed Q. Connections between the syringes and the microfluidic
devices are made using non-compliant poly(tetrafluoroethylene)
tubing. The average flow velocity in the microchannel is U = Q/WH.

D. Microparticle image velocimetry
The flow of the polymeric test solutions around the cylinder

is quantified using microparticle image velocimetry (μ-PIV, TSI
Inc., MN). The test fluids are seeded with a low concentration (cp
≈ 0.02 wt. %) of 2 μm diameter fluorescent tracer particles (PS-
FluoRed particles, Microparticles GmbH) with excitation/emission
wavelength 530/607 nm. The midplane of the geometry (i.e., the
plane bisecting the axis of the cylinder) is brought into focus on

an inverted microscope (Nikon Eclipse Ti) with a 5×, numerical
aperture NA = 0.15 Nikon Plan Fluor objective lens. Under these
conditions, the measurement depth over which microparticles con-
tribute to the determination of the velocity field is δm ≈ 125 μm (or
≈H/16),62 and the flow field is expected to be 2D over this region.38

Particle fluorescence is induced by excitation with a dual-pulsed
Nd:YLF laser with a wavelength of 527 nm and a time separation
between laser pulses Δt. A high speed camera (Phantom MIRO)
operating in the frame-straddling mode captures pairs of particle
images in synchrony with the laser pulses. At each flow rate exam-
ined, the time Δt is set so that the average displacement of particles
between the two images in each pair is ≈4 pixels. The flows exam-
ined appear steady on the spatiotemporal scale of the experiment,
so at each flow rate, 50 image pairs are processed using an ensemble
average cross-correlation PIV algorithm (TSI Insight 4G) in order to
reduce noise. A recursive Nyquist criterion is employed with a final
interrogation area of 16× 16 pixels2 to enhance the spatial resolution
and obtain 2D velocity vectors u = (u, v) spaced on a square grid of
12.8 × 12.8 μm. Further image analysis, generation of contour plots
and streamline traces, is performed using the software Tecplot Focus
(Tecplot, Inc., WA).

The Reynolds number, describing the relative strength of iner-
tial to viscous forces in the flow experiments, can be defined in a
number of different ways due to the various length scales in the flow
domain. Considering the flow around the cylinder itself, we define
Recyl = ρUR/η0, where the fluid density ρ is assumed to be equal to
that of the solvent and we use the zero-shear-rate viscosity η0 as a
representative viscosity since the cylinder is located on the chan-
nel centerline where the shear rate vanishes. By this definition, Recyl
≤ 0.05 at the highest applied values of U. However, since some of the
fluids are significantly shear-thinning [Fig. 2(a)], it is also important
to consider the Reynolds number in the regions between the cylin-
der and the channel walls, Regap = 0.5ρUW/η(γ̇w,gap), where γ̇w,gap
is the nominal wall shear rate in the gap and η(γ̇w,gap) is the shear-
rate-dependent viscosity. Based on this definition, Regap approaches
a maximum value of 0.25 at the highest imposed flow rates. Based
on these two estimates of the Reynolds number (both <1) computed
using contrasting length scales and fluid viscosities, we consider that
inertial effects can be ignored, and the assumption of creeping flow
in the numerical simulations is reasonable.

The Weissenberg number, describing the relative strength of
elastic to viscous forces in the flow around the cylinders, is defined
identically in both the experiments and the numerical simulations,
i.e., Wi = λU/R = λϵ̇, where U/R = ϵ̇ is a characteristic deforma-
tion rate for the flow, defined by the nominal velocity gradient in the
cylinder wake. Strong elastic effects and extension-rate-hardening
can be expected in the wake for Wi ≳ 1.

For ease of comparison between the numerical and experimen-
tal results that follow, lengths and velocities in the experimental data
are also nondimensionalized by R and U, respectively. All nondi-
mensionalized quantities in the results that follow are indicated by
the superscript “∗,” as defined in Sec. II A.

IV. RESULTS AND DISCUSSION
A. Shear-thinning, inelastic fluid

First, we report on the flow of a shear-thinning but inelas-
tic fluid around the confined cylinder. The fluid is modeled
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numerically by the C–Y GNF model (Sec. II C) and represented in
experiments by the very weakly elastic XG solution (relaxation time
λ = 6 ms, Sec. III B). Velocity fields around the cylinder determined
by the respective simulations and experiments performed over a
range of U are shown in Fig. 3. In the simulations, the velocity fields
appear almost self-similar and the flow is, in fact, perfectly symmet-
ric about both the x = 0 and y = 0 axes. In the experimental flow
fields (right column of Fig. 3), we note the development of a minor
degree of fore-aft asymmetry as the flow rate is increased, with a
more extended region of low flow velocity observed downstream
of the cylinder, which is not seen in the corresponding numerical
simulations. Since this fore-aft asymmetry is already observed at
flow rates where the Reynolds numbers in the experiments are very
low [in Fig. 3(b), Recyl ≈ 10−4 and Regap ≈ 0.04] it is unlikely to be
due to inertia and is most likely explained by the slight elasticity of
the experimental fluid, which is not accounted for in the numeri-
cal model. However, in the experiments, as in the simulations, the
flow remains essentially perfectly symmetric about the y = 0 axis
over the whole range of accessible flow rates. The lateral asymme-
try in the flow field around the cylinder, which has been reported for
flows of wormlike micellar (WLM) solutions and for shear-thinning
viscoelastic polymer solutions,28,35,38,39 is not observed here for this
shear-thinning but essentially inelastic fluid.

The features of the flow fields discussed above are presented
in a more quantitative form by the flow velocity profiles provided
in Fig. 4. There is a rather good agreement between the streamwise
numerical and experimental profiles along y = 0 upstream of the
cylinder [i.e., for x∗ < 0, Fig. 4(a)] and between the general forms of
the numerical and experimental streamwise velocity profiles taken
along x = 0 [Fig. 4(b)]. Of course, the slightly higher maximum
values of the flow velocity measured experimentally are expected
since (in contrast to the simulation) the experimental geometry is
not perfectly 2D but has a finite height. As mentioned, the small
deviation between simulation and experiment downstream of the
cylinder [i.e., for x∗ > 0, Fig. 4(a)] is most likely explained by the
slight elasticity of the XG test fluid.

In Fig. 5, we present additional numerical data from the C–Y
model simulations in the form of the normalized principle stress dif-
ference, PSD∗ = PSD(R/η0U), where PSD =

√
(τxx − τyy)2 + (2τxy)2.

The range of average flow velocities extends significantly higher than
that shown in Fig. 3, but clearly, the flow continues to remain per-
fectly symmetric about both the x = 0 and y = 0 axes. In addition,
since the fluid is inelastic, there is no intense stress growth in the
cylinder wake, which has been observed for strongly viscoelastic flu-
ids and extensible models such as FENE-CR (e.g., Refs. 3 and 38),
and this will be seen in Subsection IV B.

B. Non-shear-thinning, elastic fluid
Here, we report results on the flow of non-shear-thinning but

elastic fluids. The numerical simulations are performed using the
FENE-CR model (Sec. II C), while experiments are conducted with
the PEO4 polymer solution of almost constant shear viscosity (see
Sec. III B).

Figure 6 shows a comparison between simulated and experi-
mental velocity magnitude fields (where the extensibility parameter
of the FENE-CR model is set to L2 = 5000), for a range of flow
rates and hence Wi. As Wi is increased, both the simulations and
experiments show the growth of a greatly extended downstream
wake of low velocity, not seen in the inelastic fluid (Fig. 3). This is
attributed to the stretching of polymers (or dumbbells) in the wake,
with an increase in the extensional stress, which locally viscosifies
(extension-rate-hardens) the fluid and modifies the flow field.3,38 In
the present simulations, this strong stress growth with increasing
Wi > 1 in the cylinder wake is illustrated in Fig. 7. Although the
development of this downstream wake means that the flow becomes
strongly asymmetric about x = 0 as Wi becomes high, laterally about
y = 0, perfect symmetry is maintained in both the experiments and
the simulations up to the highest Wi = 46 tested. There is no clear
preference for the fluid to flow around either one or the other side of
the cylinder. This observation is also consistent with earlier experi-
ments using almost constant viscosity but highly elastic polystyrene

FIG. 3. Normalized velocity fields with
superimposed streamlines for the flow of
an inelastic shear-thinning fluid as the
average flow velocity U is progressively
increased through (a)–(c). The left col-
umn shows simulations performed using
the C–Y GNF model, while the right col-
umn shows experimental data from the
XG test fluid (at the same values of the
average flow velocity, U).
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FIG. 4. Normalized numerical and experimental velocity profiles along (a) the y = 0
axis and (b) the x = 0 axis for the flow of an inelastic shear-thinning fluid at various
values of the average flow velocity, U.

solutions in a similar flow geometry.38 We note that, in the numer-
ical simulations presented here, the solutions become transient for
Wi ≥ 10; in these cases, the fields presented in Figs. 6 and 7 are time
averaged. This transience is not evident in the experiments. As dis-
cussed in Sec. III D, the flows examined experimentally appeared
essentially steady given the accessible spatiotemporal scales and
noise levels of the velocimetry method, and all the presented experi-
mental velocity fields are time-averaged. We note that, for Wi ≥ 20,
simulations with the FENE-CR model were extremely challenging,
and sometimes, the numerical scheme diverged. In such cases, sim-
ulations were restarted using progressively smaller time steps until
convergence was achieved.

Further details of the time-dependence for Wi ≥ 10 are pro-
vided by the results of transient simulations (see Fig. 8). In Fig. 8(a),

FIG. 5. Normalized fields of the principle stress difference (PSD) in the vicinity of
the cylinder for the Carreau–Yasuda model fluid as the average flow velocity U is
progressively increased through (a)–(c).

the drag force on the cylinder [FD = − ∫ΓC exn : (−PI + τ + ηsγ̇) dΓC,
where ΓC represents the cylinder surface, ex is the unit vector in the
x-direction, and n is the unit normal to the cylinder surface] is plot-
ted as a function of the time from the startup of flow at a few different
Weissenberg numbers. At each imposed Wi, the drag force increases
with time up to a plateau value. Although the plateau in FD appears
quite steady in each case, in fact, for Wi > 10, there are small fluctua-
tions with time. The time dependence at higher values of Wi is more
apparent when considering the streamwise stress τxx in the wake of
the cylinder. This is extracted from the simulations at a point on the
y = 0 axis 5.5 radii downstream of the cylinder centerpoint and plot-
ted as a function of time in Fig. 8(b). For Wi = 20 and Wi = 46, τxx
clearly varies erratically with time. Power spectra of the fluctuations
do not show any characteristic frequencies (data not shown). The
fluctuation in the stress arises due to a small side-to-side motion of
the downstream wake about the y = 0 axis, which does, in fact, cause
a very small time-dependent lateral asymmetry in the flow around
the sides of the cylinder. Similar to prior works,35,39 the degree of
lateral asymmetry I is assessed using a dimensionless parameter that
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FIG. 6. Normalized velocity fields with
superimposed streamlines for the flow of
a viscoelastic fluid with constant shear
viscosity as the average flow velocity and
with Wi being progressively increased
through (a)–(c). The left column shows
simulations performed using the FENE-
CR model, while the right column shows
experimental data obtained using the
test fluid PEO4.

varies between −1 and 1,

I =
u1 − u2

(u1 + u2)
, (15)

where u1 and u2 are the streamwise fluid velocities measured

FIG. 7. Normalized fields of the PSD in the vicinity of the cylinder for the FENE-CR
model fluid with L2 = 5000 as the average flow velocity U and with the Weissenberg
number Wi being progressively increased through (a)–(c).

near the midpoints between the cylinder and the top and bottom
side walls, respectively (note: in simulations, we take exact val-
ues from the nearest mesh nodes: u1 = u∣x∗=0, y∗=5.3846 and u2 =

u∣x∗=0, y∗=−5.3846). By this measure, I = 0 implies a perfectly symmet-
ric flow, while I = ±1 implies that all of the fluid passes on just one
side of the cylinder.

The time-dependence in the lateral asymmetry for the FENE-
CR model fluid at Wi = 46 is shown in Fig. 8(c). Note that the level of
asymmetry is very small; here, |I| ∼ 10−4, whereas values |I| ∼ 1 have
been measured in some experiments.35,39 In addition, in Fig. 8(c),
the asymmetry parameter varies about a value of zero and on a time
average becomes almost completely negligible, as evident from the
images provided in Figs. 6(c) and 7(c).

1. Effect of dumbbell extensibility
We further investigate the effect of the extensibility parame-

ter L2 on the response of the FENE-CR model around the cylinder.
As shown in Fig. 9, higher L2 results in an increase in the drag
force on the cylinder [Fig. 9(a)] and, for a given Wi, an increasingly
long downstream wake [Figs. 9(b)–9(d)]. Since higher L2 implies
increased deformability of the dumbbells, both effects are attributed
to the resulting increase in elastic stress generated in the wake of
the cylinder. However, varying L2 does not qualitatively change
the response of the model and no significant lateral asymmetry is
observed even at the highest extensibility of L2 = 10 000.

C. Shear-thinning and elastic fluid
In this section, we report on the flow of fluids that exhibit both

shear-thinning and elastic rheological responses. The simulations
are performed using the l-PTT constitutive model (Sec. II C), and
experiments are carried out using the PEO8 test fluid (Sec. III B).

Figure 10 provides a comparison between flow velocity fields
obtained from the numerical simulations with the l-PTT model and
from experiments performed with the PEO8 fluid over a range of
imposed Wi. For the simulations, the shear-thinning and elastic-
ity parameters have been set to β = 0.05 and ε = 0.05, respectively.
Clearly, there is good agreement between the experiments and the
simulations, which both show rather symmetric flow fields at lower
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FIG. 8. Time-resolved data obtained from the FENE-CR model with L2 = 5000.
(a) Normalized drag force on the cylinder and (b) normalized streamwise stress
at a location 5 radii downstream of the cylinder as a function of time for various
imposed Weissenberg numbers. (c) Asymmetry parameter I as a function of time
at Wi = 46.

FIG. 9. Effect of the extensibility parameter L2 on the response of the FENE-CR
model. (a) Normalized drag force as a function of the imposed Wi and (b)–(d)
normalized time-averaged velocity fields at Wi = 20 for the various values of L2

indicated.

values ofWi [i.e.,Wi = 1.5 andWi = 8, Figs. 10(a) and 10(b)], but dis-
tinctly asymmetric flow fields (about both y = 0 and x = 0) at the two
higher Wi shown [i.e., Wi = 46 and Wi = 61, Figs. 10(c) and 10(d)].
Experimentally (to date), only shear-thinning viscoelastic fluids have
been observed to develop such laterally asymmetric flow states.35,39

Using the newly developed FEM formulation to reach sufficiently
high Wi,7 the l-PTT model, which incorporates both shear-thinning
and elasticity in the constitutive equation, successfully replicates the
experimentally observed lateral asymmetry. It is important to men-
tion that the example flow fields presented in Fig. 10 have been
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FIG. 10. Normalized velocity fields with
superimposed streamlines for the flow
of a viscoelastic and shear-thinning fluid
as the average flow velocity and hence
Wi are progressively increased through
(a)–(d). The left column shows simula-
tions performed using the l-PTT model,
while the right column shows experimen-
tal data obtained using the PEO8 test
fluid.

selected in order to show consistent sequences of behavior in which
the fluid passes the cylinder preferentially with high velocity on the
side of positive y. However, the selection of this preference is quite
random in both the experiments and the simulations. As will become
evident during the presentation of later numerical results, there is
equal probability that the fluid will flow preferentially around either
side of the cylinder such that the asymmetric state is bistable, and
there also appears to be no dependence of the favored configuration
on the choice of model parameters.

The numerical simulations are used to look in greater detail at
the flow fields and corresponding stress fields around the cylinder
(Fig. 11) as Wi is increased beyond the onset of lateral asymme-
try. We observe that, for lower Wi [e.g., Fig. 11(a)], the laterally
symmetric flow is accompanied by the development of an elas-
tic downstream wake along the y = 0 axis (similar in form to the
wake observed for the non-shear-thinning FENE-CR model, Fig. 7).
However, for Wi ≳ 20 [e.g., Fig. 11(b)], the flow field begins to
exhibit lateral asymmetry, with a higher flow speed at negative y

FIG. 11. Normalized velocity fields in the
vicinity of the cylinder (left) and corre-
sponding normalized values of the PSD
(right) for the l-PTT model fluid with ε
= 0.05, β = 0.05 as the average flow
velocity U and hence the Weissenberg
number Wi are progressively increased
through (a)–(c).
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than at positive y. The asymmetry is also manifested by a distor-
tion in the associated stress field, with the downstream wake being
bent toward positive y. At even higher Wi = 46 [Fig. 11(c)], the lat-
eral asymmetry in the flow and stress fields becomes significantly
stronger.

In Fig. 12, we take the absolute value of I as a function of Wi
in order to compare the asymmetry parameter obtained from the
l-PTT simulations (lines) and the experiments (symbols) with the
PEO8 fluid. Clearly, the numerical curves display a sudden tran-
sition to the asymmetric state, whereas for the experimental data,
the growth of asymmetry with Wi is more gradual. This may be
explained by the polydispersity of the experimental polymer sample.
Such commercially available PEO samples typically have molecular
weight distributions spanning around three orders of magnitude,63

which could be expected to smear the transition (note that the exper-
imental Weissenberg number is calculated based on the single value
of the relaxation time determined via the CaBER measurement, but
in reality, there is a wide spectrum of relaxation times present in the
test fluid due to the molecular weight distribution). We would expect
to obtain a better match to the experimental result by employing a
multi-mode constitutive model in the simulations (see, e.g., Ref. 64).
However, we choose a simple single mode model since it enables
a more precise understanding of the role of the various material
parameters on the instability mechanisms. In any case, Fig. 12 shows
a reasonable agreement between the experiment and the simulations
in terms of both the value of Wic for the onset of asymmetry (Wic
≈ 20–30) and also the maximum plateau value of |I| (around 0.6–
0.7). Figure 12 also serves to demonstrate the numerical mesh con-
vergence (see Table I for details of the various meshes employed in
this study). The results are almost mesh-independent, in terms of

FIG. 12. Comparison between experimental and numerical trends of the asymme-
try parameter I as a function of Wi. The experimental test fluid is PEO8, and the
numerical model is l-PTT with ε = 0.05, β = 0.05. The figure also demonstrates the
numerical mesh convergence and the independence of the result on the inclusion
of inertial terms in the governing equations. The inset shows the normalized value
of τxx as a function of Wi five radii downstream of the cylinder, also demonstrating
mesh convergence.

both the asymmetry parameter and the stress in the downstream
wake of the cylinder (Fig. 12, inset). In Table II, we give exact abso-
lute values of the asymmetry parameter (|I|) estimated using the
three meshes at various values of Wi. Since we reach up to very high
Wi (i.e., relatively high flow velocities, U) in these simulations, we
also confirm that inertia remains negligible by performing numer-
ical simulations in mesh M2 that include the inertial terms in the
momentum equation. As can be seen from Fig. 12, the result is
almost indistinguishable from that under the creeping flow assump-
tion. Mesh M2 was chosen for the majority of the simulations due
to its slightly superior accuracy over mesh M1 but lower compu-
tational cost compared with mesh M3. Note that the reduction in
the stress in the downstream wake for Wi >Wic shown in the inset
of Fig. 12 is due to the deflection of the high stress region away
from the y = 0 axis as the flow develops an increasing level of lateral
asymmetry.

1. Effects of shear-thinning and elasticity parameters
In this subsection, we investigate the influence of varying the

shear-thinning (β) and elasticity (ε) parameters in the l-PTT model.
Figure 13 shows the effect of varying β for a fixed value of

elasticity ε = 0.05. In Fig. 13(a), we show the asymmetry |I| as a func-
tion of Wi for four different β values, and in Fig. 13(b), we show
the corresponding flow velocity fields in the vicinity of the cylinder
at Wi = 25. It is clear that as β is increased (i.e., shear-thinning is
reduced), the onset Wic for asymmetry increases. In addition, for a
given value of Wi, increasing β tends to reduce the magnitude of
the asymmetry. For sufficiently weak shear-thinning (i.e., β = 0.1),
the asymmetric flow state cannot be observed. Increasing the degree
of shear-thinning in the fluid model tends to enhance asymmetric
flows.

In Fig. 14, we show the effect of varying the elasticity of the
l-PTT model for a fixed level of shear-thinning with β = 0.05. Fig-
ure 14(a) shows the asymmetry parameter |I| as a function of Wi
for four different ε values, and Fig. 14(b) shows the correspond-
ing flow velocity fields in the vicinity of the cylinder at Wi = 25.
In this case, it is clear that increasing ε (i.e., reducing the elastic-
ity) results in an increase in the onset Wic for asymmetry and, for a
given Wi, a decrease in the magnitude of I. For very weak elasticity
(i.e., ε = 0.1), the asymmetric flow state is not observed. Increas-
ing the elasticity of the model fluid tends to enhance asymmetric
flows.

In Fig. 15(a), we present a stability diagram for the l-PTT model
in the Wi–β parameter space. Stability boundaries between sym-
metric and asymmetric flow states are marked along contours of
ε. Following lines of constant ε from high to low β (recall lower β
implies stronger shear-thinning), Wic decreases (i.e., shear-thinning

TABLE II. Absolute values of the asymmetry parameter estimated using the various
meshes employed at various values of Wi.

Wi M1 M2 M3 Extrapolated

25 0.2977 0.3070 0.3101 0.3116
50 0.5237 0.5314 0.5330 0.5334
100 0.5777 0.5838 0.5872 0.5915
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FIG. 13. Effect of shear-thinning on the flow asymmetry. (a) |I| as a function of Wi
for the l-PTT model fluid with ε = 0.05 and various values of β. (b) Normalized
flow velocity fields with superimposed streamlines for l-PTT fluids at Wi = 25 with ε
= 0.05 and the indicated value of β.

is destabilizing). As ε is decreased for fixed β (recall lower ε implies
higher elasticity), Wic also decreases (i.e., elasticity is destabiliz-
ing). However, for a given value of Wi, the flow destabilizes at
lower β as ε is increased (or at lower ε as β is increased). Clearly,
there is an interplay between the shear-thinning and the elasticity.
Low levels of shear-thinning can be compensated for by high lev-
els of elasticity, and vice versa, although a certain amount of both
shear-thinning and elasticity is required in order for the asymmet-
ric flow state to be inducible. We collapse all our data from the
l-PTT model onto a single curve in the plot shown by Fig. 15(b).

FIG. 14. Effect of elasticity on the flow asymmetry. (a) I as a function of Wi for
the l-PTT model fluid with β = 0.05 and various values of ε. (b) Normalized flow
velocity fields with superimposed streamlines for l-PTT fluids at Wi = 25 with β
= 0.05 and the indicated value of ε.

Here, for each set of model parameters, we have extracted the val-
ues of U/R and γ̇w,gap and computed the corresponding values for
the extensional viscosity in the cylinder wake ηE ,wake and the shear
viscosity on the side of the cylinder ηside. In Fig. 15(b), these are
plotted against each other in the normalized form and fitted with
the empirical relation ηE,wake = 36.4η0/((ηside/η0)

−0.83
− 1). We

note that this function asymptotes to infinite extensional viscosity
as ηside → η0 (i.e., when there is no shear-thinning), and to zero
extensional viscosity as η0 →∞ (i.e., as the fluid becomes infinitely
shear-thinning).
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FIG. 15. Quantification of the critical conditions for asymmetry onset for the
l-PTT model fluid. (a) Stability diagram in the Wi–β plane, with stability bound-
aries between the symmetric and asymmetric flow states following contours of ε.
(b) Normalized extensional viscosity downstream of the cylinder (ηE ,wake/η0) vs
normalized shear viscosity on the side of the cylinder (ηside/η0) at the onset of flow
asymmetry. The dashed line is an empirical fit through the data points of the form
ηE,wake = 36.4η0/((ηside/η0)

−0.83
− 1).

2. Effects of the blockage ratio
Having identified a suitable fluid model with which to simu-

late the occurrence of the laterally asymmetric flows beyond crit-
ical Weissenberg number conditions, we may gain further insight
into the problem by considering the effects of geometrical changes
through varying the blockage ratio BR. All of the simulations pre-
sented in this subsection are performed using the l-PTT model with
β = ε = 0.05. If the hypothesis regarding the instability mechanism
presented in the Introduction and in previous papers35,39 is cor-
rect, then a variation of BR should modify the onset conditions for
asymmetry. For example, for a fixed Wi > Wic, a manipulation of

BR could be made in order to shift the gap wall shear rate γ̇w,gap

= 12U/W(1 − BR)
2 onto different parts of the flow curve. The a pri-

ori expectation is that asymmetry will only occur if γ̇w,gap lies within
the shear-thinning region of the flow curve, and the fluid is suffi-
ciently elastic. So far, a systematic study of this flow phenomenon
in terms of the geometric parameter space has not been attempted,
and it would be difficult to perform properly by an experimental
approach, due to requiring a large number of different devices with
fabrication challenges.

In Fig. 16(a), we report the effect of varying the blockage ratio
by showing the magnitude of the asymmetry parameter |I| as a func-
tion of Wi for various values of BR. Figure 16(b) shows flow velocity
fields for fixed Wi = 25 at four different values of BR. For increasing
blockage ratios, Fig. 16(a) shows a reduction in Wic. In fact, in all
four BR cases, at Wic, the gap wall shear rate is almost the same at
γ̇w,gap ≈ 100 s−1, which is close to the middle of the shear-thinning
region of the flow curve (see Fig. 2). For a fixed Wi = 25, increas-
ing the blockage ratio in the range shown (0.08 ≤ BR ≤ 0.2) results
in an increase in the magnitude of the lateral flow asymmetry. At
first thought, this may be attributed to the resulting increase in the
shear rate. However, the scenario becomes more complicated if the
blockage ratio is continuously increased to higher values.

In Fig. 17, we track the solution branch by keeping Wi = 30,
β = 0.05, and ε = 0.05 constant and performing pseudo-arc-length
continuation to BR. At low BR ≲ 0.07, the flow is stable in the lat-
erally symmetric state (I = 0), even at this fairly appreciable value
of Wi. As the blockage ratio is increased beyond a critical value
BR ,c ≈ 0.07, the flow undergoes a forward (supercritical) bifurca-
tion, the symmetric state destabilizes, and the asymmetry parameter
becomes non-zero following the bistable asymmetric branch, where
I can be either positive or negative. As BR is further increased, |I|
increases through a maximum, before decreasing and turning back-
ward through a saddle-node bifurcation. The symmetric flow state
restabilizes on a backward (subcritical) pitchfork bifurcation at the
second higher critical blockage ratio BR ,c2 ≈ 0.26.

This interesting resymmetrization of the flow at high BR as elas-
ticity is kept constant is reminiscent of a resymmetrization observed
in earlier experiments with a range of shear-thinning viscoelastic
solutions of hydrolyzed poly(acrylamide) (HPAA).35 In those exper-
iments, the blockage ratio was fixed at BR = 0.1 and the indepen-
dent variation of Wi and γ̇w,gap was not possible since both quan-
tities scale with U. However, several of the HPAA solutions tested
exhibited flow asymmetry over a limited range of Wi > Wic and
recovered the symmetric state at even higher Wi. It was shown that
the recovery of symmetry occurred as γ̇w,gap approached the high
shear rate Newtonian-like plateau of the flow curve. These observa-
tions were interpreted as follows: despite the fact that elastic effects
were increasing due to the incrementing Weissenberg number, the
flow regained symmetry because shear-thinning effects around the
cylinder became too weak to sustain the imbalance.

In Fig. 18(a), we present the results of additional simulations
carried out for smooth variations of BR at four different values of Wi.
At all four values of Wi, the fluid model behaves similarly, exhibiting
both upper and lower critical values of BR. A minor detail worthy
of note is that, for Wi = 15, the pitchfork at BR ,c2 is not subcrit-
ical; the saddle-node bifurcation is absent at this Wi and the flow
is resymmetrized via a second supercritical transition. Despite this
detail, some general trends are evident: as Wi is increased, both
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FIG. 16. Effect of the blockage ratio on the flow asymmetry using the l-PTT model
with β = 0.05 and ε = 0.05. (a) I as a function of Wi for various values of the block-
age ratio BR. (b) Normalized flow velocity fields with superimposed streamlines for
l-PTT fluids at Wi = 25 and the indicated value of BR.

BR ,c and BR ,c2 decrease, the range of BR over which the symmet-
ric flow is unstable tends to increase, and the maximum value of
|I| also increases. Since the shear-thinning and elasticity parame-
ters are fixed at β = 0.05 and ε = 0.05, respectively, a variation of
BR at fixed Wi is equivalent to a simple variation of the shear rate.
The curves shown in Fig. 18 can therefore be interpreted as meaning
that, for each Wi, there is a certain range of shear rates (not too high
and not too low) over which the symmetric flow can become unsta-
ble. According to our a priori stated hypothesis, this range of shear
rates should lie on the shear-thinning portion of the flow curve. We

FIG. 17. Effect of the blockage ratio on the flow asymmetry using the l-PTT model
with β = 0.05 and ε = 0.05 at Wi = 30, depicted as a bifurcation diagram in the
I–BR plane. The insets show the nature of the flow velocity field at particular stable
and unstable points.

computed the lower critical shear rate γ̇w,gap,c and the upper critical
shear rate γ̇w,gap,c2 corresponding to the bifurcation points BR ,c and
BR ,c2 (respectively) shown in Fig. 18(a). The lower and upper critical
shear rates are marked in Fig. 18(b) on the flow curve of the l-PTT
model fluid. Clearly, by this nominal measure of the shear rate, the
lower critical shear rates all coincide at γ̇w,gap,c ≈ 100 s−1, about mid-
way into the shear-thinning region of the flow curve. For all Wi, the
shear rates over which the symmetric flow is unstable all lie on the
most shear-thinning part of the flow curve. The upper critical shear
rate reaches a progressively higher value as the Weissenberg num-
ber is increased. This happens because at higher values of Wi, elas-
tic effects are stronger, and asymmetric flows can be supported for
weaker shear-thinning effects (see Fig. 15). Apparently, regardless of
the value of Wi and BR, as the wall shear rate approaches the high
shear rate viscosity plateau, the flow will necessarily resymmetrize as
shear-thinning effects become negligible.

The observations described above are largely consistent with
the proposed instability mechanism (discussed in the Introduction)
based on an initial random lateral perturbation of the downstream
elastic wake for Wi > 1 causing a small asymmetry in the flow around
the sides of the cylinder that can be reinforced only if γ̇w,gap is in the
shear-thinning regime. However, so far, we have not identified the
nature of the perturbation of the elastic wake that is necessary to
initiate the instability. The fact that the flow loses symmetry for an
almost constant value of γ̇w,gap,c ≈ 100 s−1, regardless of the imposed
Wi, strongly suggests a universal scaling for the onset of instability. A
well-known criterion for the onset of purely elastic (i.e., inertialess)
flow instabilities proposed by McKinley and co-workers considers
the generation of elastic tensile stresses along curving streamlines
and can be expressed as29–31

[
λU
R

τ11

(η0γ̇)
] ≥M2

crit , (16)
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FIG. 18. Effect of the blockage ratio on the flow asymmetry using the l-PTT model
with β = 0.05 and ε = 0.05. (a) Bifurcation diagram in the I–BR plane for various
Wi. (b) Flow curve for the l-PTT fluid, with the lower and upper critical shear rates
marked by stars and circles (respectively), colored according to the imposed Wi in
(a). The inset plot in (b) shows the critical blockage ratio at the onset of asymmetry
BR ,c as a function of 1/Wi, demonstrating the linear trend (dashed line) predicted
by the elastic instability criterion proposed by McKinley et al. (Ref. 29).

where R is the characteristic radius of curvature of the streamline
and τ11 is the tensile stress in the stream direction. When, at some
locality in the flow field, the dimensionless product of parameters on
the left-hand side of Eq. (16) exceeds a critical value M2

crit (which can
depend on the geometrical configuration), then the flow becomes
prone to instability originating from that location. For flows around
a confined cylinder, simple scaling arguments for the value of R near
the downstream stagnation point indicate that instability will arise
for 1/Wic ∼ BR (with linear stability analysis giving M2

crit ≈ 37).29

As shown by the inset of Fig. 18(b), our numerical data for BR ,c
vs 1/Wi follow the predicted linear scaling very well. This suggests
that the initial perturbation to the flow field that drives the onset of

flow asymmetry is due to the accumulation of elastic tensile stress
along the strongly curving streamlines passing near the downstream
stagnation point of the cylinder.

V. SUMMARY AND CONCLUSIONS
We have used a recently developed finite element flow solv-

ing scheme that circumvents the high Weissenberg number problem
in order to simulate 2D inertialess flows of various non-Newtonian
fluid models around circular cylinders, reaching up to high deforma-
tion rates. Our objective in modeling this flow was to better under-
stand how different aspects of fluid rheology (i.e., shear-thinning
and viscoelasticity) affect the manifestation of a lateral flow asym-
metry around the cylinder that has been observed in some recent
experiments.

Using a shear-thinning but inelastic model (a Carreau–Yasuda
generalized Newtonian fluid), we were unable to reproduce the lat-
eral flow asymmetry and the flow around the cylinder remained
both fore-aft and laterally symmetric at all tested flow rates. Comple-
mentary experiments with a shear-thinning and only weakly elastic
xanthan gum solution with a similar rheology to the model also
remained stable and symmetric up to the highest achieved Weis-
senberg number Wi = 30, and the measured flow fields were in good
agreement with the model predictions.

A non-shear-thinning but highly elastic fluid model (the FENE-
CR model) was then employed in order to understand the effect of
elasticity in isolation. The simulation results were compared with
those of experiments performed using an elastic and almost constant
viscosity PEO solution. In this case also, neither the model nor the
experimental fluid showed the onset of the steady lateral flow asym-
metry observed in earlier experimental works. However, in both the
simulations and the experiments, we observed the growth of a strong
elastic wake downstream of the cylinder due to the polymer (or
dumbbell) extension in the region of the stagnation point for Wi ≳ 1.
For higher Weissenberg numbers Wi ≥ 10, the simulations yielded
time dependent solutions (not apparent in the time-averaged exper-
imental results) in which the downstream wake fluctuated weakly
from side to side, resulting in a very small, time-dependent lateral
flow asymmetry. However, the fluctuation was about the symmetric
state, and on a time-average, the flow appeared completely symmet-
ric. We also tested the effect of varying the extensibility parameter in
the FENE-CR model, but with no qualitative change in the behavior.

Finally, we examined the flow of a shear-thinning and elastic
fluid model around the cylinder using the l-PTT model. We com-
pared the flow response of this model with a shear-thinning and
elastic PEO solution of similar rheology. In this case, the model
showed the growth of an elastic wake downstream of the cylinder
for Wi ≳ 1 (similar to the elastic, non-shear-thinning fluid) and the
onset of a steady lateral flow asymmetry above a critical value of
the Weissenberg number Wic ∼ 20. We also observed good agree-
ment between the flow patterns and degrees of flow disparity around
the sides of the cylinder resulting from the experiments and the
simulations.

These results strongly support the notion that both shear-
thinning and elasticity of the fluid are necessary for the flow asym-
metry to occur. Having obtained a model that could reproduce the
experimental observations accurately, we were then able to use the l-
PTT model to systematically vary the strength of the shear-thinning
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and elasticity parameters and to study their effects on the onset
conditions of the asymmetry and its development with increasing
Wi.

For a fixed degree of elasticity ε in the l-PTT model, decreasing
the level of shear-thinning caused an increase in the value of Wic and
a reduction in the degree of flow asymmetry for Wi >Wic. Similarly,
for a fixed value of the shear-thinning β, reducing the elasticity also
caused an increase in Wic and a reduction in the degree of asym-
metry for Wi > Wic. For very low values of either shear-thinning
or elasticity, the onset of asymmetry was completely suppressed.
Our analysis shows that there is a complex interplay between the
shear-thinning and the elasticity of the fluid. A degree of both is
required in order for the instability to occur, but to some extent,
weak shear-thinning can be compensated for by strong elasticity,
and vice versa.

Our final set of simulations using the l-PTT model involved
fixing the values of β and ε while the blockage ratio of the chan-
nel BR was varied. This effectively allowed us to vary only the shear
rate in the channel, and specifically around the sides of the cylin-
der, which we assume is the most relevant region of shearing in the
flow domain. Such a parameter study has not been performed pre-
viously for this flow. For a given Wi, we found the flow remains
stable and symmetric for low values of BR and becomes bistable
and asymmetric as BR is increased beyond a point of supercritical
bifurcation at BR ,c. At BR ,c, the wall shear rate in the gaps either
side of the cylinder is always around γ̇w,gap,c ≈ 100 s−1, close to the
middle of the shear-thinning portion of the flow curve. Our anal-
ysis shows that BR ,c scales linearly with 1/Wi, as expected for the
onset of a purely elastic instability driven by elastic tensile stresses
along the tightly curved streamlines passing close to the downstream
stagnation point. We believe that this elastic instability provides the
initial perturbation that allows the large scale lateral flow asymme-
try to develop (if the fluid is also sufficiently shear-thinning). As
BR is increased beyond BR ,c, the degree of flow asymmetry grows
through a maximum, before symmetry is again recovered at another
bifurcation point at BR ,c2. By computing the shear rate on the sides
of the cylinder corresponding to the second bifurcation point, we
showed that the region of bistable asymmetric flow lies on the most
shear-thinning portion of the flow curve. Due to the increasing
influence of elasticity, the bistable region spans a greater range of
shear rates as Wi is increased but never impinges on the high shear
rate pseudo-Newtonian viscosity plateau where the shear-thinning
vanishes.

Our results help to paint a complete picture of the nature of
this novel flow instability, which may be relevant to understanding a
number of phenomena observed in shear-thinning viscoelastic flows
(e.g., selection of preferred paths through complex geometries such
as porous media). With reference to experiments carried out with
wormlike micellar solutions, in future work, we plan to extend our
numerical study to constitutive models with non-monotonic flow
curves and more complex relaxation dynamics in order to under-
stand how shear-banding and the breaking/reformation of micelles
affect the instability.
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