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Abstract 

Alternative reproductive tactics (ARTs), phenomena in which individuals within one sex 
adopt different tactics for accessing mates or raising offspring, are commonly observed in all 
major taxa. In order to study the ecological conditions for the emergence of ARTs, we 
developed an embodied evolution framework incorporating ecological features, such as body 
size and energy maintenance, where male and female robotic agents naturally face both 
intersexual and intrasexual interactions for survival and reproduction. Each agent has a 
decision neural network with extrinsic and intrinsic sensory inputs to choose one of four 
basic behaviors: mating, foraging, approaching and waiting. The reproductive success 
depends on the body size and the energy level of both male and female upon mating and it is 
assumed that only female carries the reproduction cost, as in nature the cost of male’s sperm 
production is negligible relative to that of female’s eggs. We performed simulation 
experiments in environments with different conditions (food density, reproductive cost, and 
male-female ratio) and found ARTs emerged both in males and females. Males evolved three 
kinds of alternative tactics - fixed genetically distinct ARTs (dominant and sneaker males that 
differ in body size and the tactic for getting access to female), conditionally flexible ARTs 
(individuals change tactics according to body size), and mixed ARTs (combination of 
genetically fixed and conditionally flexible ARTs). Females evolved to have two genetically 
distinct ARTs (quality oriented female, QoF, and number oriented female, NoF), where they 
increase fitness either by offspring quality or quantity. Analysis of the results confirms the 
experimental notions that male genetically fixed ARTs are strongly affected by intensity of 
sexual selection, male conditionally flexible ARTs are significantly affected by competition 
level, and female ARTs are mainly affected by food density. Analysis of ESS shows male 
ARTs are evolutionary stable with negative frequency dependent selection and female ARTs 
are evolutionary stable with both frequency and density dependent selection. To our 
knowledge, this study is the first to show the emergence of ARTs in both male and female 
from initially continuous characteristics in a simulated embodied evolution framework. The 
evolved ARTs are quite similar to the ARTs found in nature and provide insights about how 
interactions between the sexes are affected by and affect the evolution of ARTs within each 
sex. This framework is flexible enough to further analyze species of different sexual 
mechanisms (hermaphrodite, androdioecious, gynodioecious, etc.) and can be used as an 
important tool to understand the ecology of social interaction.	
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Chapter 1  

Introduction 
 

Alternative Reproductive Tactics (ARTs), meaning individuals of one sex having 

consistent variation in reproductive behavior, such as territorial-parasitic, paternal-sneaker, 

satellite-calling, is observed in all major taxa including mammals, amphibians, insects and 

particularly in fishes [1]. Animals may evolve genetically discrete alternative reproductive 

tactics (ART) or, they may change tactics according to physical and environmental 

conditions [1,2].  ARTs are observed and investigated both in male and female, although 

male ARTs are more common. Male ARTs are often seen as investor and exploiter tactics 

[2,3], and female ARTs are often distinguished according to their mating frequency and 

investment in eggs [24]. Studying this consistent variation of reproductive tactics in male 

or female provides the opportunity to investigate the emergence and maintenance of 

phenotypic variation [1,2], which is one of the fundamental questions in evolutionary 

biology.  

 

Researcher developed different biological [3,4] and mathematical [60,61] models 

to study the emergence of ARTs. Existing theoretical frameworks of Alternative 

reproductive tactics (mainly modeled by abstract mathematical models [60] or individual 

based simulation [42]) usually assume that there already exist two or three distinct 

phenotypes (with different tactic) and make prediction about the expected frequencies of 

different tactics in different situation. Also in these models agents have low embodiment 

with environment and important aspects of real life features between agents, such as 

occupied body space of the agents, sensory information about the environment, physical 

interaction with other agents, are not take into account.  By contrast, how distinct types 

emerge from initially continuous variation of characteristics through evolution is a 

conceptually different question, which has been ignored by theoretical studies of ARTs, as 
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they usually focus on how already present variations of reproductive behavior are 

maintained.   

 

In this study, I develop an embodied evolution framework incorporating biological 

features (vision, physical interaction, energy maintenance, growth, mortality, reproductive 

cost, etc.) where male and female agents naturally face both intrasexual and intersexual 

interactions for survival and reproduction. Each agent has a decision neural network with 

intrinsic and extrinsic sensory inputs to choose one of four basic behaviors: foraging, 

mating, approaching, and waiting. As larger males have larger testes [48], which leads to 

higher reproductive success than smaller males [49], and larger females have higher 

fertility and fecundity [45,46], the reproductive success is assumed to depend on the body 

size and the energy level of both male and female upon mating. Females are assumed to 

bear the main cost for producing offspring, from her current energy level, as investing for 

sperms is negligible than the energy investment of eggs [31] and in most animals females 

have to bear and provide nutrition to the egg or offspring until they give birth or lay eggs 

[45]. I use this model to investigate whether and what types of male and female ARTs 

evolve from initially homogeneous populations. 

 

Structure of the thesis: 
The remainder of the thesis is structured in the following way- 

  In Chapter 2, the theory and the related approaches to understand the underlying 

dynamics of ARTs are reviewed, with an introduction to the research that inspired the 

development of the embodied evolution model of ARTs. 

  In Chapter 3, the proposed embodied evolution model is explained along with the 

parameters and assumptions, which introduces both natural selection and sexual selection 

in the model. 

 Chapter 4, 5 and 6 are the main result chapters. Chapter 4 explains the evolved 

male and female ARTs emerged in 450 populations with their evolved behavior. Chapter 5 

provides the analysis of the male and female ARTs evolved in different environmental 

conditions (food density, reproductive cost, male density/competition level) and explains 

the effect of the conditions on the emergence of ATRs. In chapter 6, we did additional 

experiments to test the evolutionary stability (ESS) of male and female. Along with the 

ESS of male and female ARTs, the difference of evolved male and female ESS are also 

discussed. 
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  Chapter 7 provides an overreaching discussion on the embodied evolution model 

and the results discussed in chapter 4,5 and 6, along with limitations and future direction. 

The whole work is wrapped up with key points with a conclusion and summery in chapter 

8. 
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Chapter 2  

Fundamentals and Related Work 
This chapter introduces the fundamentals of the alternative reproductive tactics (ARTs), 

related works, existing models and discuss literature, which supports the assumption and 

inspiration for studying alternative reproductive tactics (ARTs) in embodied evolution 

framework.  

2.1 Alternative Reproductive Tactics (ARTs) 
Animals show peculiar and wonderful behaviors to meet their demand for 

surviving and reproduction. Individuals often compete with each other for limited foods 

and mates, to cope with direct and indirect costs and benefits of mating, which result in 

complex and interesting reproductive behaviors [1]. These reproductive behaviors, such as 

territorial protection, sneaking, displaying or other various approaches to obtaining a mate, 

are called ‘Tactics’ and the genetically based decision rules to maintain these Tactics is 

referred as ‘Strategy’ [16]. Alternative reproductive tactics (ARTs) evolve when 

individuals of same sex respond in two or more different ways to increase their 

reproductive fitness, which may occur in the forms of alternative body phenotypes and 

mating behaviors [2,3]. It is common across all major taxa, including, mammals (e.g. 

meerkat, Suricata suricatta; [5]), amphibians (e.g strawberry poison frog, Oophaga 

pumilio; [6]), insects (e.g. dung beetles, Onthophagus acuminatus; [7]), and particularly 

very common in fishes (e.g. bluegill sunfish, Lepomis macrochirus; [8] [9]). In dioecious 

systems (systems that contains two kind of sexually different individuals such as male and 

female), mainly two types of male reproductive tactics are seen (Table 2.1). One is the 

investor tactic where individual investing (e.g. defense, courtship, nest building, calling 

etc.) more on competition to get access to female. And the second one is the exploiter 

tactic (sneaking, non-calling, intercepting, etc.) where individuals exploit the investment of 

the investor tactic [4].  
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Table 2.1 Example of ARTs in animals 

 

Females produce relatively few, highly nutritious gametes, whereas males produce 

more abundant, smaller, motile gametes. Because only a single gamete of each type is 

required to produce an offspring, there will be an excess of male gametes that will not 

fertilize any eggs. Therefore, males have to compete to access female and the alternative 

reproductive tactics are more common in males [3]. But females can have direct and 

indirect cost and benefit of mating and can also compete if access to high quality mates is 

limited. Female ARTs arise, for example, with differences in quantity of mates [20,21], as 

a result of mate conflict and coercion [22,23], differences in their investment for eggs or 

fecundity [24,25,26]. However, the key factors of mating strategy in female are their 

choice for offspring quality and the number of mates [27,110]. 

 

Species Investor tactic Exploiter tactic 

Amphibians 

Example: strawberry 

poison frog [6] 

Calling: Call for female and 
had larger body size to court 

female. 

Non-calling/intercepting: 
small in size and intercepts 

females who comes to mate 

with calling males. 

Mammals 

Example: waterbuck and 

kob [4] 

Bourgeois/Territorial:  

Larger size and defends 

against other males to access 

female in it’s territory.  

Satellite/Sneaker: Smaller 

size and sneak to access 

female who comes to mate 

with larger male’s territory. 

Insects 

Example: Dung beetles 

[7] 

Guarder/fighter: Larger in 

size and has weapon (such 

as horn) to guard female and 

fight with other males who 

tries to access female. 

Satellite/Sneaker: Smaller in 

size, has no weapon and 

encounter female by 

sneaking guarder male’s 

territory. 

Fish 

Example: bluegill 

sunfish [8] 

Parental/nest builder: Larger 
in size and build nest to 

attract female for 

fertilization. 

Sneaker: Sneak fertilization 
of large parental males. 
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When multiple reproductive tactics emerge in a population, and individuals decide 

to apply one tactic throughout their lifetime, it is referred as ‘fixed ART’ [3,4]. For 

example, Woodhouse’s toads (Bufo woodhousii) males have satellite and calling tactic, 

where large adult males always apply the calling tactic and small adult male always apply 

the satellite tactic [17]. But if individuals switch between tactics according to certain 

conditions or thresholds, then it is referred as ‘flexible or conditional ART’ [3,4]. For 

example, male rubyspot damselflies (Hetaerina americana) have territorial and non-

territorial tactics, where they switch between tactics according to their physiological 

difference in energetic quality [18]. Interestingly, males of some species can execute more 

than two different ART, where ‘fixed’ and ‘flexible’ ART can coexist. For example, in 

cicilid Lamprologus callipterus, three tactics co-occur: ‘fixed’ parasitic tactic, ‘fixed’ 

bourgeois tactic, and a conditional or flexible tactic where male switch between parasitic 

and bourgeois tactics [19]. The stable coexistence of alternative reproductive tactic is 

maintained by frequency dependent, condition dependent, status dependent or density 

dependent selection, where the average fitness of different tactics converges to an 

equilibrium, that is evolutionarily stable, at a certain frequency (for genetically 

polymorphic alternative behaviors) or some switch point (for condition or status dependent 

behaviors) [2,3,16].   

2.2 Alternative Reproductive Tactics and 
Interaction Between Sexes 

In general, Male and female mating behavior pattern is shaped by natural selection 

and sexual selection [28]. Natural selection operates on individual survival and fecundity, 

where sexual selection is a complex interplay between and within sex, which provokes 

differential mating success [29]. Sexual conflict between sexes arises when fitness of one 

sex reduced by the behavior of opposite sex and conflict between sexes can increase with 

the intensity of sexual selection [30]. As a result, male and female fitness and their pattern 

of evolved reproductive behavior affected simultaneously by interactions within sexes and 

between the sexes. For example, males produce small gametes with very little energy and 

female produce finite number of gametes each of which requires high energy [31]. As a 

result, male compete to get more access to females or their eggs [32] and females become 

choosy in mate selection to get the highest benefit by mating with the best quality male 

[33]. The intensity of female choosiness affects the successful mating probability and 

degree of competition in males. Also, female choosiness will create a conflict between 
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sexes, as female will try to avoid mating with low quality males. In consequence, female 

mate choice and mating strategy will simultaneously affect the benefits and costs of male 

competition and thus male mating strategies. In the same time, the outcome of completion 

among males or the mating strategy determines the costs and benefits of female mate 

choice and re-mating frequency, thus the mating strategy of females [23]. Therefore, male 

and female ARTs should vary significantly with different intensity of sexual selection and 

sexual conflict. This concept is nicely pictured by Alanzo [23] in the Figure 2.1 below- 

 

 

	
	

Figure 2.1 Interaction between sexes affects the reproductive behavior of each sex. 

	

2.3 Models of Alternative Reproductive 
Tactics (ARTs) 
Mitri et. all [43] classified the modeling approaches for understanding social behavior over 

a scale of ‘situatedness’, which they define as “the extent to which individuals are 

embedded in an environment that can be sensed and modified by those individuals”. They 

explained it as situatedness spectrum by Figure 2.2 [43], where abstract mathematical 

model has the lowest situatedness and living organism has the highest situatedness. 

Observing evolution in living organism is very rarely possible. Although we can do 

fieldwork and laboratory experiment with living organism, manipulating the behavior of 
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each individual to analyze the response of remaining group members is almost impossible. 

Also, we can’t test parameters for thousands of generations in a systematic way. We can’t 

infer how different evolutionary parameters exactly interact and manipulate observed 

behavior, because we can’t access and infer individual’s decision making process through 

evolutionary generations. Therefore, although we can have broad outline of the evolution 

of the alternative reproductive tactics from field and laboratory experiments with living 

organism, to predict complex interactions between individual physiological conditions, 

prevailing environmental conditions, time constraints, and factors leading to frequency or 

density dependent selection within a population, researchers worked with different 

modeling approaches. In this part, I will review modeling approaches to study alternative 

reproductive tactics according to situatedness (Figure 2.2) and what new approaches now 

we should focus on to reveal more novel aspects of ARTs. 

 

	

	

	

	

	

	

	

 

Figure 2.2  Social behavior study approaches on the scale of situatedness [43]. 

2.3.1 Abstract Mathematical Models 
 

Researchers tried to understand the aspects of alternative reproductive tactics using 

different mathematical models such as dynamic games and game theoretic approaches. 

Most of them focus on male mating tactics. Earlier in 1995, Lucas et al. [60] took a 

dynamic game approach to evaluate how three male alternative mating tactics: satellite, 

call, or leave, differ in their mating success in density and frequency dependent conditions 

with six major predictions. Later with flexible caller/satellite dynamic game model, they 

showed that female arrival rate is a very important factor to shape the mating tactics in 

different conditions [61]. Skubic et al. [62] focused on the male parasitic tactic in a 

dynamic game model of cooperative breeder and explored the parameters under which a 
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helper male parasitizes reproduction. From the model they found that “expulsion risk” 

might be the most important factor to regulate the parasitic behavior.  

Although researchers started with modeling mostly male tactics, soon interaction 

between sexes came into focus. Henson and Warner first proposed a new approach [63] in 

fish alternative reproductive tactics with intersexual dynamics. They discovered that 

female alternative reproductive tactics exist and interaction between male and female can 

influence each other. They described the importance of considering female behavior and 

building a new model including intersexual interaction to get precise understanding about 

male and female reproductive tactics. Focusing on this intersexual interaction, Alonzo and 

Warner [65] studied a dynamic game model and field experiment data of Mediterranean 

wrasse mating behavior. They found that there is a sexual conflict with females and 

sneaker males, where female interaction and conflict with sneaker males play important 

roles. They also built a multiplayer dynamic game model to formalize how female choice 

can influence male alternative reproductive tactic. They discussed about six biological 

scenarios, each containing two types of male mating tactics, where males interact with 

each other in a frequency dependent or condition dependent manner. They concluded that 

female choice could significantly change male reproductive tactics in different situations 

[64]. Later Alonzo took a game theoretic approach [66] and predicted that interaction 

between the sexes can alter prediction of mating theory. Rather than any specific species 

and phenotypic difference in male or female population, she modeled male and female 

fitness affected by the abundance of resource in a site and concluded that without 

simultaneously considering the effect of resource and interaction within and between sexes 

on fitness, one can come to false conclusion about the pattern of selection among sites. 

Female alternative tactics also gained importance, but far later than male ART 

studies. Luttbarg [67] modeled female mate assessment behavior by a dynamic game 

model. He tried to formalize female’s accurate or inaccurate assessment and different 

assessment cost to predict male quality and showed that female choice and assessment 

behavior could significantly shape male alternative behavior in different situations. More 

recently, Brenan et al. [68] used a game theoretic model and assessed female mate choice 

alternatives. They explicitly consider two reproductive tactics of females: direct 

assessment of male quality and copying the choice of other females. They postulated that 

female alternative behavior may get affected by male quality and female assessment error 

and tested female reproductive tactics in different situations.  

Although these abstract mathematical models can provide powerful predictions, 

they have some major limitations. For example, usually they model the populations as a 
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whole, and also neglect or strongly simplify local interactions among individual agents, 

their spatial environment, their phenotypic plasticity, and life-cycle dynamics. [43].  

2.3.2 Agent based Models 
To deal with the above limitations of abstract mathematical models, researchers developed 

agent-based models [69], which are also called individual-based models (IBMs), where 

‘agents’ are modeled individually to understand social behaviors. Agent based models 

allow one to consider individual properties such as age or size along with their possible 

interaction with each other. ART researchers also lead to develop agent based model to 

include these individual based properties and make more realistic prediction about 

reproductive tactic.  

Earlier Rowell et al. generate an Individual based simulation model of field cricket having 

calling (invest energy to call female) and satellite (sneaking female who comes to mate 

with calling male) alternative reproductive tactic. With the model they suggest that 

population density and sex ratio changes during the breeding season are important factors 

determining mating success of calling and satellite males [70]. Walker and Cade [71] 

modified this model to explore calling and satellite male fitness when parasitoid flies are 

present in the environment and found that risk of parasitism strongly influences the 

coexistence of alternative reproductive tactic. Recently, influenced by these previous 

studies, John et al. [72] modeled caller and satellite field cricket behavior in Individual 

based simulation with varied population density, sex ratio and female behavior and 

showed how parasitoid pressure can shape satellite and calling behavior in males.  

Along with male reproductive tactics, recently researchers started to model female 

reproductive tactic with agent based model. Bleu et al. [27] studied female’s reproductive 

tactic according to mating cost, population density, and sex ratio. They used an individual 

based simulation where female had to choose male according to their acceptance 

threshold, which they evolved in generations. Females have to face the tradeoff: if they 

choose high acceptance threshold for males, then there is a high chance to be unmated. 

Instead; if they choose low threshold, then they can mate more but have to mate low 

quality males and take more mating cost. Their study shows most of the females in the 

population converge to a threshold and having high or low threshold than the common 

threshold is not beneficial. Also, they checked how female’s common acceptance 

threshold sensitively changes with population density, sex ratio, and mating cost.   

Most recently, Engqvist and Taborsky [42] studied male alternative reproductive 

tactic in individual based simulation in a novel aspect. Rather than assuming distinct 
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phenotypic variation in the model, they aim to predict the ecological and social conditions 

to evolve ART in males. For that, they modeled a territorial competition scenario with 

indeterminate growth, where growth rate and size dependent sperm investment were 

evolving variables. They tried to clarify the factors for the evolution of genetic and 

conditional reproductive tactics in the converged population. Their result showed that two 

or three fixed or conditional tactics could emerge in males according to their investment in 

growth and sperm. But in this agent based model, they did not include female interaction 

with male and the reproduction was asexual. As intersexual interaction is an important 

factor, to have complete scenario, it is necessary to build a model including female agents 

where male and female ARTs can evolve together. 

In an actual system of living organism with highest ‘situatedness’ (Figure 2.2), each 

individual is fully embedded with environment, and make complex interaction with 

environment to take decision about their own behavior. Although agent based models 

considers individual property, it deprives important aspects of social behavior as 

individuals do not interact with environment with their perceptual and physiological 

information and have less embedded with environment.  

2.3.3 Robotic agent Models 
To bridge this gap, recently robot models are introduced as a new tool to study social 

behavior, and it has quickly gained importance in this research area. A robot is defined as a 

machine that can physically interact with it’s environment and performs some sequence of 

behaviors, either autonomously or by remote control [73]. There are mainly two types of 

robot modeling approach, simulated robot and physical robot. 

Simulated Robot model: The computer simulations of physical robots along with its 

interacting environment is defined as simulated robots, and become attractive tool for 

modeling because [43]- 

a) As simulated robot model mimics physical robot along with its physical 

environment and considers perceptual, spatial, and resource related constraints. 

Therefore, it plays a role as the intermediate level on the situatedness scale (Fig. 

2.2) between IBMs and physical robots’ experiments.  

b) Rather than conventional agent based model [42,27] simulated robots have three 

characteristics explained in [43]: “ (i) they have an extended body (i.e. they occupy 

space in the world) rather than being a point; (ii) they gather information about the 

environment through sensors that are morphologically located and limited in range 

and accuracy rather than having an ideal perceptual system that can access global 
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and perfect information; and (iii) they move in an extended space with finite 

distances and resources rather than in mathematical spaces which often have no 

boundaries and/or infinite resources. All these factors can significantly affect the 

outcome of social behaviors that imply physical and perceptual interactions within 

a confined space.” 

c)  In terms of modeling social behavior, increasing model situatedness also reduces 

the risk of ignoring valuable properties of physical environment. For example, 

Mitri et al. [74] studied evolutionary emergence of communication in a group of 

simulated robots and found that, when foraging robots clusters around the food 

source, it becomes inadvertent information of food location for other robots 

d) We can model robot brain or controller using neural network, where robot take 

perceptual information as input, decide own behavior, and interact with and adapt 

to the environment as an autonomous agent. Therefore, they can be used to build 

autonomous artificial organism model (described more in later part). 

e) Using physics-based robotic simulations, numerous experiments can be performed 

with a large number of individuals in limited time frame, which is a significant 

advantage over using physical robots. 

 

Physical Robot model: Along with the advantages of simulated robots (a-d), physical 

robot model includes the law of physics for free. Therefore, 

a) It has highest ‘situatedness’ (Figure 2.2) and it became a very important tool for 

modeling social behavior when physical properties of the environment have 

significant effect on social interaction [43]. For example, Jeanson et al. [74] used 

IBM and Garnier et al. [75] used physical robot model to mimic the behavior of 

cockroaches. It was found that physical robot models match better with empirical 

data as Jeanson et al. [74] in IBM did not include the physical property of hiding 

behind each other in the simulated software agents.  

b) Physical interaction between individuals in a robotic system can influence their 

movement relative to each other, which is very rarely taken into account in agent 

based models. Krieger, Billeter & Keller [93] demonstrated that the role of physical 

interaction between individuals is an important issue. They studied a group of 

small ant like robots programmed to collet scattered object and found that larger 

group has low foraging efficiency, as there was high interference in robots. 

c) Moreover, physical robot model includes the effect of friction, body shape or robot 

morphology, which has been found very crucial for collective behavior [76]. 
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Problems of using Physical robots: 

Although Robot models are attractive over other agent based models, it is possible to face 

some difficult constraints. Setting up and experimenting with physical robots usually need 

quite longer time. They often need expensive hardware and if the robots break, it can take 

a long time and much cost to fix. Also, physical robots might not directly capture some 

aspects of living organism, such as changing weight according to food consumption or 

age, the physical change of the living organism in their development stage of life. To 

overcome these limitations, researcher prefers to use simulated robot model initially for 

their study. 

2.3.3.1 Evolutionary Robotics (ER) 
Evolutionary robotics is a framework where simulated or physical robots as autonomous 

artificial organism evolves their own behaviors by interacting with the environment [77]. It 

has become popular because of high situatedness in the environments [79,83,99]. The 

general concept of evolutionary robotics follows the famous theory of ‘Natural selection’ 

is very nicely explained by Floreano et al. [77] as follows. A population of distinct 

genomes is generated, where each of them contains the parameters defining the controller 

or morphology of a robot.  Each genome contains stream of characters that can be 

translated as phenotype resembling different level of biological realism. When artificial 

neural network is used to determine robotic agents’ behavior, the genome contains the 

synaptic connection weights of the neural network. The input of the neural network is the 

robot’s sensory information and the output is the motor control of the robot. Each robotic 

agent has different genome having different synaptic weights for the network synaptic 

connection. Thus each robotic agent has different neural network in a population. 

Therefore, when each individual faces sensory-motor interaction with environment, they 

behave differently. The robot’s fitness is then calculated from these behavioral differences 

such as how good the robot can avoid obstacle or how fast it can reach to a destination. At 

beginning, all robotic agents contain random values in their genes and show totally random 

behavior. According to Darwinian selection the genomes of the robots having highest 

fitness is then selected to generate next robot generation. To create new generation 

recombination and random mutation is applied on the selected genomes. Then this process 

is repeated over generations until stable behavioral scheme is achieved. 

Both physical robots and simulated robots might be used to perform an evolutionary 

robotics experiment. Using simulated robots, physics based simulator allows to perform 

evolution in larger number of robots in limited time and later the resulted behaviors can be 
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implemented in physical robots incorporating the evolved genome to test if the same 

behaviors are observed.  

2.3.3.2 Embodied Evolution (EE)  
Embodied evolution (EE) is a distributed and on-line version of ER, where a large number 

of robots interacts with each other in an environment and perform some task. Robots 

exchange their genetic information by mating (physically contacting with each other) and 

produce offspring for the next generation. The probability of producing offspring, i.e. their 

fitness, depends on their performance of the specified task in the environment. Therefore, 

the autonomous, asynchronous and distributed property of biological evolution is 

resembled by EE. This methodology of ER was introduced by Watson, Ficici, and Pollak 

[99,100]. Although the embodied evolution framework outperformed ER in some studies 

of surveillance and self-localization [101,102], it should be interesting in the study of 

evolutionary biology because of its more biologically plausible property. In the next 

section, I review the evolutionary biology studies using ER and EE models. 

2.3.3.3 Robotic agent models (ER and EE) in 
evolutionary biology 
To understand the general principle of evolutionary biology, scientists construct 

mathematical and simulation models. Although mathematical modeling and simulation 

provide deep insights into evolutionary questions, sometimes they meet their limit for 

simplification of different aspects, which is required to construct the model. To bridge this 

gap between real biological systems and models in explaining reasons for evolved 

behaviors is very challenging, because observing evolution in real time is extremely 

difficult and rarely possible. Although we can find a rare example of Weiser et al. [52] 

who did in-vitro bacterial evolution experiment for 25 years, their limit is clear, as it is not 

possible to experimentally observe the generations of slow evolution of species in real 

time. Therefore, it becomes a huge challenge to study evolution under realistic 

assumptions and realistic time frame [78]. To deal with this challenge, recently 

evolutionary robotics gained traction to model evolution with embodied agents that 

interacts with real environment. With highest situatedness, robot models act as artificial 

animals and it is possible to study from their interaction with environment, how particular 

behavior that we observe in nature has evolved by changing different parameter settings 

with high degree of freedom. Moreover, robot evolution has several advantages over 
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biological studies, such as computing huge generations of robot controllers in a short time 

frame, easily replicating and repeating the experiment with multiple parameter settings in 

different environmental conditions. These features not only provide platforms for better 

quantitative testing, but also help in analyzing robustness and stability, when agents have 

complex realistic physical interaction with the environment and other agents. 

Within the last decade, evolutionary robotics has been used to study a number of 

key issues in evolutionary biology [59]. Floreano and Keller with different co-authors [79-

82] investigated different evolutionary phenomenon using robot evolution model. For 

example, the reliability and emergence of communication, Hamilton's rule for altruism 

[83], and social insect’s division of labor influenced by genetic architecture or mating 

frequency [84]. Evolution of cooperation and altruism was also studied by Montanier and 

Bredeche [85,86,103], Waibel et al. [87] and Solomon et al [88] using robot models. Robot 

evolution models are used to understand evolved morphological complexity [89,90], 

collective swarming behavior [91]. Most of these robot evolution studies were first done 

by simulated robots and then the result was investigated with physical robot for further 

understanding. Embodied Evolution models also gained traction in biologically motivated 

studies. One of the examples is the study of Long et al [104] who evolved swimming fish 

robot to investigate the evolution of vertebrates. They did their experiment with physical 

robot model in real time and provided an example that embodied evolution can be an 

important tool to investigate extinct and living species. Most recently, ‘Robot baby 

Project’ by Eiben et al [104] gained attention to researchers. They demonstrated real robot 

reproduction for the first time through embodied evolution. This ‘proof of concept’ study 

can work as a basis for developing future intelligent robots, which will evolve both 

functionally and morphologically. 

Although robot evolution models are increasingly used to study evolving 

behaviors, in terms of investigating alternative reproductive behavior, it has been very 

limited. One related study was done by Da Rold et al. [92], who co-evolved a population 

of male and female robots in a simulated environment, where they eat food to live and 

reproduce by touching the opposite sex. The only difference between male and female 

robot was, the female robot is nonproductive for some time period. Also, the sexual 

dynamics was not incorporated into the evolutionary algorithm and their reproduced 

offspring were not generated by genetic exchange (crossover and mutation). Instead, males 

and females evolved separately, where the fitness function was based on the number of 

matings, although individual’s evolution depends on the interaction between the two types 

of robots. There they investigated variation in mating success and some behavioral 
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difference between male and female if males do not have parental certainty. Although this 

study revealed some behavioral differences in male and female, there was no sexual 

reproduction and they did not find any discrete phenotypic variation in male or female.  

Most recently, Elfwing et al. [59] investigated alternative reproductive tactics in a robot 

evolution model. He used embodied evolution technique, which is more biologically 

plausible as the robots reproduce offspring by mating, that is, a pairwise exchange of 

genotypes. The robots were hermaphrodites as they send and receive genotype with each 

other, that is play both male and female functions. In the study they found two types of 

genetically different phenotypes in their hermaphrodite robot population, who have 

different reproductive tactics named foragers and trackers. Trackers follow other agents for 

courtship by choosing mating module even when their energy level is low. Foragers mate 

only when they are fully charged, when the probability of successful reproduction is 

higher. In this study agents choose their behaviors according to their energy level and 

sensory information. Although this study was very simplified according to biological 

viewpoint (size, age, reproductive cost etc. were not included), this study gives light on the 

way in which alternative reproductive tactics can be studied with robotic model. If we can 

evolve alternative reproductive tactics in such a realistic artificial system, we can gain 

novel aspect of evolution from that. 

2.4 Important properties in modeling the full 
picture of ARTs 
In pervious sections, I reviewed the biological aspects and the models used to investigate 

the emergence of ARTs. From the investigation done in these studies, it become prominent 

that to explain the whole picture of ARTs in a model, three important properties should be 

included [2,3,16,98] – 

1. Intersexual and intrasexual Interaction:  Male and female evolve together in 

nature. Therefore, to understand how ARTs emerge, there should be male and 

female evolving together with intrasexual and intersexual interactions [23,2]. 

There should be the effects of both natural selection and sexual selection in the 

model.  

2. Emergence from initially continuous characteristics: The existing theoretical 

studies [39,16] that attempted to model genetic architecture and coexistence 

[40,41] of ARTs assumed that two or three distinct phenotypes were already 

present in male or female. In contrast, to investigate the emergence of ARTs, 
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evolutionary emergence of distinct types in male and/or female, from initially 

continuous variation of characteristics should happen. That has not been addressed 

by the previous theoretical studies of ARTs, as they usually focused on the 

maintenance of already present variations [37,38,39].  

3. High level of situatedness: Real animals in biological scenario have the highest 

situatedness. Therefore, to investigate the real picture of ARTs, we should make 

our model as highly situated as possible to capture more realistic feature, such as 

• Having a body shape, which actually occupies space according to its size 

rather than being a point.  

• Having local sensors with limited ranges, rather than perceptual view 

containing global information. 

• Moving in a space with finite dimensions and limited energy resources, 

rather than in mathematical spaces with arbitrary scaling.  

Each of these factors can significantly affect the interaction between agents as 

well as their behavior with each other. 

2.5 Research Plan 
In this chapter, I reviewed the fundamentals of ARTs and discussed the 

computational models relevant for studying ARTs. From the related literature, I pointed 

out the three important properties needed to investigate the full picture of ARTs. On this 

basis, I construct an original approach with the highest level of ‘situatedness’ (embodiment 

with environment like real organism) to model general situations where male and female 

agents satisfy basic constraints of life (finding food and mate) and interact in different 

reproductive condition, to produce alternative reproductive behavior from continuous 

characteristics in different environmental situation. For this purpose, I perform artificial 

evolution experiments with a colony of simulated robots using embodied evolution 

framework, where robots exchange genotypes physically to reproduce offspring and 

decide their behavior using their sensory and internal information while interacting with 

the environment. I apply this model to unravel and analyze under which ecological and 

social condition (competitive circumstances) two or more reproductive tactics 

spontaneously evolve, while agents face both intrasexual and intersexual interaction. The 

model does not make specific assumptions about whether reproductive tactics are 

frequency dependent (tactic’s fitness depends on it’s frequency in the population) or 

condition dependent (tactic’s fitness depends on individual’s conditions, such as size and 
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age). Instead, these attributes will evolve and give conclusions about which behavioral 

choice is likely to emerge in which situation.  In chapter 3, the embodied evolution model 

is explained with the description of underlying assumptions and parameters. The evolved 

male and female ARTs in different environmental condition are illustrated in chapter 4,5 

and 6. 
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Chapter 3  

Survival and Reproduction Model 
In this chapter, I construct an embodied evolution model incorporating the three key 

properties identified in the previous chapter (section 2.4) for investigating the emergence 

of ARTs, namely, intersexual and intrasexual interactions, emergence from continuum, 

and situatedness. 

3.1 Basic model Assumption 
We consider a general situation where male and female robotic agents satisfy the 

fundamental constraints of life, namely survive and reproduction, and interact in different 

ecological condition to produce offspring. The simulation environment is designed for 

smart phone robots being developed by my colleagues at Neural Computation Unit 

(Figure 3.1) [95]. Each robotic agent has two wheels, a camera, accelerometer, and other 

sensors. 

 

 

Figure 3.1 Smartphone Robots [95]. 
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Male and Female robots use different body colors to distinguish each other. Each robot has 

a restricted visual area in the front and can measure the angle and distance to the nearest 

energy source, male and female agents. In this chapter, I explain the basic assumptions of 

the model and the design of the embodied evolution experiment. 

3.1.1 Body Size and Growth 
The body size is often highly correlated with reproductive success [44]. Large males can 

invest more for reproduction, such as building nest, winning territory or competition, 

giving protection to offspring from predators [4, 20,39], and can produce more sperm 

required for larger ejaculates, which has been found more advantageous when sperm 

competition occurs [48,49]. Females also benefit from larger body size, as they can 

produce high quality or high quantity of eggs or can invest high energy in reproduction 

[45,46]. Some species (birds, mammals, insect) have determinate growth that is they grow 

to a fixed size when they get mature, and some species (fish, reptile etc) have 

indeterminate growth, that is, they continue to grow throughout their life. As alternative 

reproductive tactics are more common in species with indeterminate growth, I adopt an 

indeterminate growth model. Usually the body growth rate is highest during early life 

stages, and reduces with increasing size and age [47]. To capture this, I use Van 

Bertalanffy growth equation [47], where the rate of change in size S is described as 

𝑆̇(𝑡) = 𝐾(𝐿 − 𝑆(𝑡))		… (𝑖) 

where 

L: asymptotic body size when growth is zero. 

K: growth rate. 

S(t): current body size. 

 

Individual’s growth depends on the stored energy level. Therefore, I take the agent’s 

stored energy level E(t) over some threshold E0 as  

𝐸./00(𝑡) = 1𝐸
(𝑡) − 𝐸2, 𝐸(𝑡) ≥ 𝐸2

0, 𝐸(𝑡) < 𝐸2
 

 

and assume that the growth rate K depends on Ediff as 

𝐾 = 	𝛼	𝐸./00 		… (𝑖𝑖)  
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Thus the change of body size,	𝑆̇(𝑡) is (from equation i & ii)- 

𝑆̇(𝑡) = 	𝛼	𝐸./00(𝑡)(𝐿 − 𝑆(𝑡))	… (𝑖𝑖𝑖) 

Maternal phenotype significantly affects offspring quality [45,46]. Females with 

larger size can produce larger offspring and also female’s health condition (nutrition and 

energy intake) affects offspring’s nutrition during birth. Therefore, I assume that agent’s 

initial size and energy depends on the maternal condition (size and energy) upon 

reproduction:  

Initial size, S(0) = Maternal size ×0.2, or the minimal value S(0)=10 

Initial Energy, E(0) = Maternal energy×0.2  

3.1.2 Mortality 

Mortality of an agent depends on both its energy level and body size. Agents gain 50 units 

energy by obtaining a food. When an agent’s energy level becomes zero, it dies. Larger 

body size needs higher energy cost for maintenance. Also, several studies [106,107,108] 

demonstrate that high growth rate incurs high energy cost in addition to maintenance of the 

body. In our model, each time step, agent’s energy cost incorporates costs for both growth 

and body maintenance as- 

Energy cost, 𝐸𝐶(𝑡) = 𝛽 × ;𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑠𝑖𝑧𝑒	𝑆(𝑡) + 𝑔𝑟𝑜𝑤𝑡ℎ	𝑟𝑎𝑡𝑒	𝐾(𝑡)I… (𝑖𝑣)        

  Bigger individuals have low mortality rate and smaller individuals have higher 

mortality rate for different environmental reasons, such as predation [55-57]. Therefore the 

mortality of each agent is modeled as [58,95]- 

 𝑀(𝑆) = 𝑀/ + 𝑀.𝑒
L( MMN

) … (𝑣) 

where,  

𝑀(𝑆): mortality with body size S. 

𝑀/  : size-independent mortality. 
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𝑀.: mortality change with body size 

S0 = the body size, at which size-dependent mortality drops to 1/e = 36.8% relative to that 

with the body size S = 0. 

3.1.3 Intersexual Interaction  

The intersexual interaction is modeled with a joint reproductive condition and the 

reproduction cost of male and female.  

Reproductive condition: Reproductive condition is the probability of fertilization success 

and having offspring in next generation depending on the state of the male and female. 

Larger males can invest more for mating (courting female, building nest etc) and have high 

competitive ability to get access to female [4]. Moreover, usually larger males have larger 

testes [48] and males with larger testes have been documented to have higher ejaculate rate 

to achieve higher reproductive success rates than males with smaller testes [49]. Male’s 

health condition and energy level is also important for successful reproduction as at low 

energy and nutrition males tend to produce less sperm and invest less in reproduction [50]. 

Therefore, the reproductive condition for a male is designed as 

𝑹𝑴 = 𝑹𝑴𝑺
𝑺𝑴
𝑺𝑴𝒂𝒙

+ 𝑹𝑴𝑬
𝑬𝑴
𝑬𝑴𝒂𝒙

	… (𝒗𝒊)         

𝑊ℎ𝑒𝑟𝑒, 𝑅YZ + 𝑅Y[ = 1  

𝐸Y = 𝑀𝑎𝑙𝑒	𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑒𝑛𝑒𝑟𝑔𝑦  

𝐸Y_` = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚	𝑒𝑛𝑒𝑟𝑔𝑦  

𝑆Y = 𝑀𝑎𝑙𝑒	𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑠𝑖𝑧𝑒  

𝑆Y_` = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚	𝑠𝑖𝑧𝑒  

 

For females, health condition, which generally depends on the internal energy 

level, is a very important factor for successful reproduction, because most commonly they 

have to produce costly eggs [31] and bear the main reproduction cost (producing eggs or 

offspring). Size is also important for female reproductive success as large size females 

have high fertility and fecundity [45,46]. Moreover, females having large size have high 

probability of having offspring in next generation, as they can invest more on offspring 
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such as protecting offspring from predators. Therefore, the reproductive condition for 

female is modeled including the effect of size and health condition- 

𝑹𝑭 = 𝑹𝑭𝑺
𝑺𝑭
𝑺𝑴𝒂𝒙

+ 𝑹𝑭𝑬 	
𝑬𝑭
𝑬𝑴𝒂𝒙

									… (𝑣𝑖𝑖)	 

𝑊ℎ𝑒𝑟𝑒, 𝑅dZ + 𝑅d[ = 1  

𝐸d = 𝐹𝑒𝑚𝑎𝑙𝑒	𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑒𝑛𝑒𝑟𝑔𝑦  

𝐸Y_` = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚	𝑒𝑛𝑒𝑟𝑔𝑦  

𝑆d = 𝐹𝑒𝑚𝑎𝑙𝑒	𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑆𝑖𝑧𝑒  

𝑆Y_` = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚	𝑠𝑖𝑧𝑒  

 

When a male and a female mate, the probability of reproductive success of having 

offspring is dependent on the reproductive conditions for both male and female as 

𝑹𝑷 =
𝑹𝑴 + 𝑹𝑭

𝟐 																																																																																						 

							=
(𝑹𝑴𝑺

𝑺𝑴
𝑺𝑴𝒂𝒙

+ 𝑹𝑴𝑬
𝑬𝑴
𝑬𝑴𝒂𝒙

) + (𝑹𝑭𝑺
𝑺𝑭
𝑺𝑴𝒂𝒙

+ 𝑹𝑭𝑬 	
𝑬𝑭
𝑬𝑴𝒂𝒙

			)

𝟐 		… (𝑣𝑖𝑖𝑖)			

 

Reproductive cost: Males produce small gametes with very little energy and females 

produce limited numbers of gametes, each of which requires high energy. Investing for 

sperms is much cheaper and sometimes negligible than the energy investment of eggs [31]. 

Moreover, female have to bear and provide nutrition to the egg or offspring until it gives 

birth or lay eggs and offspring quality depends on maternal phenotype [45]. Therefore, we 

assume asymmetric reproductive cost in male and female. When male mates with female 

and if the reproductive condition is satisfied, the female have to bore the main cost CR for 

producing offspring, from her current energy level. This asymmetric cost is very important 

for intersexual interaction. Because, when this cost is high, the number of matings during a 

female’s lifetime is limited, which can increase the intensity of sexual selection and the 

conflict between sexes.  
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3.2 Robot Controller  
 

The male and female robot controller consists of a two-layered control architecture, based 

on the framework in Figure 3.1, proposed by Stefan Elfwing et al. [94]. The top layer is a 

linear feed forward neural network which uses 𝑁`	dimensional input representing the 

environment and the agent’s own state and decides to select from 𝑁i behavioral modules 

according to argmax(𝑊𝒙) , where 𝑊  is the neural network weight matrix (size of 

𝑁i × 𝑁`) and 𝒙	is the current state input vector (size of 𝑁` 	× 1). The selected module 

controls the basic behaviors of the agents, namely, foraging, mating, approaching, and 

waiting. I consider that the agents already have learned to execute the basic behaviors and 

that evolution of the weights 𝑊 affects how to select the appropriate basic behaviors under 

different situations [94].  

 

Figure 3.2: Basic Two-layer robot control architecture. 

                           

The behavioral modules and the top layer input of male and female robot controller is 

described below. 

Behavioral modules: The robots can execute four basic hand-coded behaviors as 

follows. 

	
	

State Input 
 
x1,x2,……..xn 
  

	
Σi(W2iXi) 
 
Foraging 
  
 

	

 

Σi(W3iXi) 
  
Approaching 
 

	
Σi(W4iXi) 
 
 Waiting 
  

	
Σi(W1iXi) 
 
Mating 
  

    W11W12……….WNmNx 
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Foraging: Find food (battery or energy source) in the environment. The agent takes the 

information of nearest food source, approaches to it, and consumes it to increase stored 

energy. 

 

Mating: If a mating partner is visible within certain angle and distance, try to mate to 

produce offspring. The male robots can exchange genotype with only female robot and 

female robots can exchange genotypes only with male robots. Mating has three states: 

premating, mating, and postmating states. At first, an agent is in premating state. If it finds 

mate within a certain angle and distance, it can enter into the mating state. If the mating is 

successful with the probability defined by the reproductive condition (𝑣𝑖𝑖𝑖), the agent 

enters into postmating state and cannot choose mating module for some time period. 

Otherwise it returns to premating state. After the postmating time period, it enters into 

premating state and mate again or choose another behavior.  

 

 
                  Figure 3.3 Changing of mating state of an agent acting mating module. 

 

Approaching: approach toward the nearest agent and push it upon contact. With this 

module agents can interrupt each other in mating and food finding by pushing away from 

food or mate. The pushing ability depends on the size of the body. 
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Waiting:  Stay at the current position. Waiting also cost energy depending on the agent’s 

size. 

 

Neural network controller: The input state of the top layer neural network for male 

and female robot is given bellow. The distance to the objects are normalized by the 

maximum range of vision. 

x1: Constant bias of 1; 

x2: Gender: male=1, female=0 ; 

x3: Mate state: 1 if in premating state, otherwise 0; 

x4: Normalized energy level E(t)/EMax ; 

x5: Normalized body size S(t)/ SMax ; 

x6: Normalized age t/tlife; 

x7: Normalized size of the closest male,-1 if no male visible; 

x8: Normalized distance to the closest male face,-1 if no male face visible;  

x9: Normalized distance to the closest male back, -1 if no male back visible; 

x10: Normalized distance to the closest female face, -1 if no female face visible;  

x11: Normalized distance to the closest female back, -1 if no female back visible;  

x12: Normalized distance to the closest food, -1 if no food visible; 

The same inputs, such as x7 to x9 for the vision of a male, can be used differently by 

males for intrasexual competition and by females for the choice of mating partner. 
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3.3 Simulation Environment 
The simulation environment is a 15 m × 15 m rectangular environment with some 

number of food tokens (energy sources). Agents can detect another agent or food within a 

view angle (-90°, 90°) and distance 250 cm. The face of an agent is detected if it is seen 

within (-75°, 75°) from its front and otherwise its back is visible. A pair of agents can mate 

if they align their faces within the mating angle (-90°, 90°) and the mating distance 20 cm.  

Male and female agents have different colors and they can detect each other by the color. 

The agents can physically interact with each other, which depends on their body size. 

However, occlusion is not considered. Each generation starts with random positions of the 

foods and agents in the environment. The total number of foods in the environment is fixed 

and do not change during simulation experiment. Whenever an agent consumes a food 

token, the food token disappears from its current position and appears in another random 

position in the environment. The parameters and variables used in the model are given 

below. 

Table 3.1List of simulation parameters 

Parameter Description Value 

L Asymptotic body size Evolving; 

α Growth rate parameter Evolving; 

S Current Size Change with 
time. 

SMax Maximum asymptotic Size 300 cm 

S0 The size at which the size-dependent 
component of mortality drops to 1/e = 
36.8%, relative to its value at size s = 0 

≥ 10 cm 

𝑀/ Mortality rate of very large individual 1×10-4 

𝑀. Mortality rate change with size 1×10-5 

Eo Energy Threshold for growth 40 unit 

EMax Maximum Energy 300 unit 

β Energy cost parameter 0.001 

tlife Maximum Lifetime 5000 time 
steps. 

CR Reproduction cost (regulates the 
intensity of sexual selection and sexual 

conflict) 

8- 35 energy 
unit. 

RMS, RME, RFS, RFE Parameters of reproduction condition 0.5,0.5,0.5,0.5 
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3.4 Embodied Evolution Experiment 

 Each experiment starts with 50 male and 50 female robotic agents. The robotic agents 

have two layered neural network controller and the genotype consists of 50 real valued 

genes: 

• G(1:48) : The weights of neural network controller. 

• G(49) : Growth rate parameter (α). 

• G(50) : Asymptotic size (L). 

The first 48 genes are the neural network weights, by which the agent take decision which 

module to choose according to its own sex, energy level, body size, age, and sensory 

inputs. The next two genes are the growth strategy genes and it affects the input of the 

neural network containing size information. The sex gene is binary and has value 1 or 0 

representing male or female. The initial values of other genes and neural network weights 

are drawn from a Gaussian distribution with zero mean and standard deviation of 0.1. 

The first generation starts with fifty male and fifty female robots. Each agent starts with 

some initial energy, size and limited lifetime. In their limited lifetime they have to find 

food to live and find mate for reproduction. Each time step of their lifetime, they loose 

some energy depending on their body size and growth according to (𝑖𝑣). The agents can 

gain energy by consuming food, but there is a maximum energy storage threshold, after 

which even if they consume food, the stored energy does not increase. When agent is in 

premating state and find a mate (within mating angle and distance) they reproduce 

according to reproductive condition, where female bears the cost of reproduction CR, and 

they produce two offspring (one male and one female). The chromosomes of the 

offspring’s are generated from parent’s chromosomes by (one-point) crossover and 

mutation with probability of 0.001.The offspring’s initial size and energy in the next 

generation is determined by the female’s size and energy during reproduction time 

resembling biological scenario, as maternal phenotype affect offspring quality [45]. When 

two agents initiate mating they cannot choose other module until they finish mating. After 

finishing mating, agents turn to post mating state, when they cannot mate for some time. 

After that they again return to premating state. Agents die either when the lifetime is 
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finished or their energy level become zero or when size dependent mortality condition 

satisfies. When one generation finishes, rather than taking any explicit fitness function, we 

take randomly 50 male and 50 female from the offspring to start new generation. As the 

probability of offspring reproduction depends solely on robotic male and female agent’s 

competing and investing (with size and energy) ability at the mating occasion, the males 

and females having higher reproductive success has the probability that their offspring 

inheriting their characteristics has higher chance to survive in the next generation.  

3.4 Summary 
In this chapter, an embodied evolution model is constructed with intrasexual and 

intersexual interaction where male and female agents physically meet with each other and 

exchange genotype to produce offspring for next generation. There are no pre-defined 

ARTs in the agents (male and female) and they evolve from initially continuous 

characteristics until convergence. This model displays the three main properties 

((emergence from initially continuous characteristics, intersexual and intrasexual 

interaction, high situatedness with environment)) needed (2.4) to model a full picture of 

ARTs illustrated in chapter 2.  
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Chapter 4  

Emerged Male and Female ARTs 
 

This chapter reports the result of simulation experiments using the embodied evolution 

framework described in the previous chapter, which incorporates biological features 

(vision, body growth, mortality, sex, reproductive cost, limited resource, etc.), where male 

and female robotic agents naturally face both intersexual and intrasexual interactions for 

survival and reproduction. Each simulation experiment was run for 700 generations with 

the population size of 100 agents, where each agent had 5000 time step lifetime. I varied 

three environmental conditions: food density, reproductive cost and competition level 

(male-female ratio), to test their effects on the emergence of ARTs. Figure 4.1 is an 

example of the evolution of the number of offsprings produced over 700 generations with 

food density 100, reproductive cost 8 unit, and male-female ratio 50:50. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 The evolution of the number of offsprings in an 
experiment for 700 generations with food density 100, reproductive 
cost 8 unit, and male-female ratio 50:50. 
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For each environmental variable, I considered 6 different points and for each point 

I repeated 25 simulation experiments. Therefore, for each environmental condition there 

were 150 total simulated environments. For three environmental conditions, there were 

total 450 simulated environments. In the following sections, I describe the male and 

female ARTs found in these 450 simulated environments. 

4.1 Male ARTs 
	 Among 450 simulations, male ARTs evolved in 114 simulations. There are three 

kinds of male ARTs found, which are also closely similar to the ARTs found in nature 

[2,16,10].  
 
Genetically fixed ARTs: Two types of genetically distinct phenotypes with different 

tactics emerged in males, dominants and sneakers, that differ in getting access to females. 

Dominant males increase fitness by maintaining larger body size and being more attractive 

to female, whereas sneaker males increase fitness following and sneaking females when 

they come to mate with a dominant male. 

 

Conditional/flexible ARTs: Males evolved to change mating tactics (behaving as 

dominant or sneaker) according to their body size. 

  

Mixed ARTs: Males of the population evolved to have both fixed and flexible tactics. 

 

In the next section, for each kind of male ARTs, I explain in detail one of the best 

examples evolved in the simulation environments and describe their properties.  

4.1.1 Genetically fixed ARTs 
Among the 450 simulations in different environments, distinct phenotypes in male 

emerged in 57 populations. Figure 4.2 shows one of the populations with highest fitness 

(with evolutionary condition: food density 100, reproductive cost 8, male-female ratio 

50:50) where male genetically distinct phenotype evolved. A snapshot of the environment 

(Figure 4.2 C) illustrates that there were very large and small males in this population. 

The male growth curves (Figure 4.2 A) show that there was a clearly bimodal distribution 

in male phenotypes with distinct asymptotic body sizes and growth rates.  
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Figure 4.2(A) Growth curve of males in a population where, male ART emerged (black 

dots denote successful reproduction of offspring) (B) Female growth curve in the 

population where Male ARTs evolve. (C) Emerged Dominant males (large green), 

Sneaker males (small green) and Females (pink). (i) Sneaker males flock around a 

Dominant. (ii) One Female came to a Dominant male, which is an opportunity for 

sneaker males to mate. (D) Dominant and Sneaker males’ average behavior choice in 

their lifetime. 

(i)	

(ii)	

A	 B	

C	 D	
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Dominant	A	 Sneaker	B	

Figure 4.3 Kruskal-Walis test (box plot visualization) of behavioral module choice of 

dominant (A) and Sneaker (B) males. 

I define the phenotype with the body size larger than 150 cm (for this population) as a 

dominant male and the phenotype with the body size under 25 cm (for this population) at 

the end of the lifetime as a sneaker male. 

This type of dominant-sneaker male ARTs are ‘fixed’, which means the dominant and 

sneaker males never change their behavior throughout their lifetime. Figure 4.2 D shows 

the average choices of behavioral modules by dominant and sneaker males throughout 

their lifetime.  

 

 

 

 

 

 

 

 

 

 

 

 

To test if the mean of the lifetime invested for each module are significantly different, 

dominant and sneaker males’ module choice information of last 10 generation is taken, and 

Kruskal-Wallis statistical test is performed (as the data are not normally distributed). 

Figure 4.3 shows the Kruskal-Wallis test box plot. It is found that-  

 

• For dominant males (Figure 4.3A), the null hypothesis that the choices of behavioral 

module come from the same distribution was rejected at 1% significance level. It is 

statistically significant that dominant males invested longest time in foraging module. 

 

• For sneaker males (Figure 4.3B), the null hypothesis that the choices of behavioral 

module come from the same distribution was rejected at 1% significance level. It is 

significant that sneaker males invested longest time in approaching module. 

The results confirm that dominant males spent longest time for foraging and 

maintain larger body size, which is important to win competition for getting access to 

female, and that sneaker males spent most of their time for approaching to follow 

dominant males or females [2,16].  
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Analysis of Behavior and Genotype 
To investigate the interactions of male and female behaviors, we took the highest fitness  

population with distinct male ARTs and analyzed their behaviors of dominant and sneaker 

males in specific situations with a female, summarized in Figure 4.4. 

 

• When only female face visible: While dominant males initiate mating or look for food 

depending on energy, Sneaker males always approach towards female. 

• When only female back visible: While dominant males always forage for food, sneaker 

males always initiate mating. 

• Female face visible in mating distance (0.2 meter) when food visible: While dominant 

males initiate mating or approaching depending on own energy, sneaker males always 

approach towards male or female.  

• Female back visible in mating distance (0.2 meter) when food visible: While dominant 

males always go for food, sneaker males always initiate mating. 

 

Dominant males choose mating module when female face is visible. When female back 

is visible, they prefer to look for food rather than following female. When a female is 

Dominant Male Behavior 	

Sneaker Male Behavior B	

Figure 4.4 Behavior of Dominant male (A) and Sneaker male (B). 

Red:Mating;Green:Foraging,Blue:Approaching 
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visible along with another male, dominant males choose approaching and mating to push 

away small males to get access to female, as they have large body size.  

 

Sneaker males always tend to mate from female back. A male sees a female’s back 

when the female face angle is greater than 75°. For successful mating, a male have to align 

its face with female face within 90° (Chapter 3, Section 3.3). Therefore to mate from a 

female’s back, a male approach the female within narrow (90-75=15)° angle from the side. 

Sneaker males tend to mate from this narrow angle on the side of a female. 

 

When sneaker males see female face and another male, they choose approaching or 

following module, which leads them to cluster around dominant male and flock together. 

But when sneakers see female back along with another male they initiate mating which 

helps them to sneak females who come to initiate mating module with dominant males. 

This behavior of sneaker male can depend on female behavior.  

 

 

 

 

As female behaviors can depend on the body size of the nearest male, they can behave 

differently with dominant or sneaker males, which can shape alternative behaviors of 

males. To clarify how females interact with dominant or sneaker male, we analyzed how 

females react to them in different situations, as illustrated in Figure 4.5. 

• Male face visible: Always approach towards male of any size.  

• Male back visible: Either wait or approach toward male depending on the body size of 

the closest male. 

• Male face and food visible (0.2 meter): Always approach towards male. 

• Dominant male’s face, food (0.2 meter) and another female visible: Initiate mating or 

approach towards dominant male when it is far. 

  

Figure 4.5 Behavior of females with male ARTs; 

Red:Mating;Blue:Approaching and Gray:Waititng 
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Approaching behaviors of females work differently for dominant and sneaker males. 

When a female collides with a sneaker male, she can push back or chase them away as a 

sneaker male’s size is smaller than the female’s. As dominant males are bigger than 

females, when a female approaches, she stays near the dominant male. This is what 

females do when male face is visible (Figure 4.5 A and C). When male back is visible 

(Figure 4.5 B), females tend to follow larger size males by taking approach behavior. 

When there is a male face and another female visible (Figure 4.5D), females choose to 

approach larger males at a distance and initiate mating when the distance reduces. This 

leads females cluster around dominant males. It is clearly seen that females are preferring 

to mate with dominant males and as a result, sneaker male evolved the behavior to mate 

female from back or sneak when female come near dominant male. 

 

We further analyzed if dominant and sneaker males are clearly genetically different. 

Figure 4.6 shows the histograms of the input weight genes for the four behavioral outputs 

of the males. The genotypes are clearly divided into two groups.  

 

From these analyses of their phenotypes and genotypes, dominant and sneaker male 

are characterized as follows. 

 1) Dominant males have high growth rate (α) and large body size, which incur high 

growth cost (Chapter 3, equation (iv)), and invest more of their time to look for food to 

maintain their large body size. They can get less interruption during mating (win the 

competition to get access to the female) and increase their fitness (chance of getting 

offspring). They prefer mating from female face, as females tends to move towards larger 

males for mating. 

2) Sneaker males have low growth rate (α) and small body size, which incur low 

growth cost, and invest most of their time looking for and following female to mate. As 

they cannot win a competition with a dominant male by approaching a female, they follow 

and flock around a dominant male and, when a female comes near and choose mating, they 

sneak mate with the female. Sneaker males prefer mating from female back as females can 

easily chase away small size sneakers if they try to initiate from the front. 
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4.1.2 Conditional or flexible ARTs 
If Individuals switch between tactics according to certain conditions or growth, 

then it is referred as ‘flexible or conditional ARTs’. In our simulation experiments, among 

the 450 populations evolved in different environments, there were 55 populations where 

males evolved to choose different tactics depending on a condition, which was the body 

size.  

 

Figure 4.7 illustrates one of the populations with highest fitness (with evolutionary 

condition: food density 200, reproductive cost 8, male-female ratio 50:50) where male 

conditional ARTs evolve. Figure 4.7(C) shows the growth curves of the males and it is 

seen that they don't have distinct subtypes like in genetic ARTs. The black circles on the 

Mating Foraging 

Approaching Waiting 

Figure 4.6 Histogram of 12 neural network input weight genes of all four module. 

The tall bars correspond to the sneaker males’ genes and the short bars to the 

dominant males’ genes, showing distinct distribution in genotype. 
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A	
	

B	

C	
	

D	
	

Figure 4.7 (A) Behavior of Conditional ART in males. Red:Mating; Green:Foraging, 

Blue:Approaching. (B) Female behavior when a male is visible. Red:Mating. (C) 

Growth curve of males in a population where, conditional ART emerged (black 

circles denote successful reproduction of offspring). (D) Histogram of 12 neural 

network input genes of mating module. 

growth curves show successful mating, which happened in a wide range of body size. The 

gene histograms for the mating module in Figure 4.7 (D) shows that there were no distinct 

subgroups in genotypes, which was the case for all other genes as well. Therefore, this 

population was genetically undifferentiated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 (A) shows how the males behaved with a female depending on their body 

size: 

• When a female face visible: A male looks for food when it is smaller than 0.15 (45 

cm), but chooses mating when it is larger than 0.15 (45 cm). 

• When a female back visible: A male of any size initiates mating. 
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From these behaviors, it is seen that males mate from female’s back like sneakers 

(illustrated in section 4.1.1) while their body size is smaller than 45 cm. And when males 

grow larger than 0.15 (45 cm), they start mating from female’s face as dominant males 

(illustrated in section 4.1.1). Therefore, the males change their mating tactic according to 

their body size condition and they are defined as conditionally flexible males. Figure 

4.7(B) shows the behavior of females when a male is visible. Females always choose 

mating for males of any size. Although females don't choose males according to quality 

(size), females can easily chase away or avoid small males when they are not interested in 

mating. Also, relatively larger males can move away smaller males to access female. 

Therefore, being sneaker at small size gives male the opportunity to increase fitness by 

mating from back and also avoiding the competition to accessing female.  

	

4.1.3 Mixed ARTs 
When there is a fixed and flexible tactic both seen in the mating behavior, then it is called 

mixed ARTs. Mixed ARTs are rare phenomenon in nature. In our simulation experiments 

of 450 populations in different environments, male mixed ARTs evolved in only two 

populations with low reproductive cost (cost =8,10 unit) and medium (100,150 unit) food 

density 

 

Figure 4.8(A) illustrates the male growth curves for the population with evolutionary 

condition:  food density 100, reproductive cost 8, and male-female ratio 50:50. The males 

A	 B	

Figure 4.8(A) Growth curve of males when mixed tactics evolved. (B) Histogram of 12 

neural network input genes of mating module. 
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with the lowest size and growth rate behave as sneaker males (section 4.1.1).  The males 

with the highest size and growth rate act as conditional males (section 4.1.2), who perform 

mating both when they are small and large (black circles). The males with higher size and 

growth rate than sneaker, but lower size and growth rate than conditional males behave as 

dominant males (section 4.1.1), who perform mating only when they are grown up.  

 

 

Therefore, the population consisted of three ARTs: 
i) Dominant male  

ii) Sneaker male and;  

iii) Conditional male.  

The genotype histogram Figure 4.8(B) shows that the genotypes for mating in the 

mixed ARTs are clearly divided into three groups for input X11 (distance to the female 

back) and X12 (distance to the food), which are relevant for the sneaker tactic. Other genes, 

dominant and conditional males shared the same genotype, showing only two distinct 

genotypes.  

4.2 Female ARTs  
Among the 450 simulations in different environments, distinct phenotypes in 

female emerged in 27 populations. The phenotypes differed in their offspring quality and 

quantity. QoFs (Quality oriented females) produced lower numbers of higher quality 

offspring, whereas NoFs (Number oriented females) produced higher numbers of lower 

quality offspring. This kind of female ARTs are also found in nature [20,21]. Next I 

explain in detail one of the best example of the female ARTs found in the simulation 

environments and describe their properties. 

 

 Figure 4.9 shows one of the populations with the highest fitness where female 

distinct phenotype evolved (with evolutionary condition: food density 100, reproductive 

cost 8, male-female ratio 50:50). The female growth curves (Figure 4.9 A) show that there 

was a clearly bimodal distribution in the female phenotypes with asymptotic body sizes 

and growth rates. Among 50 females, 16 of them were larger than 130cm and 34 of them 

were smaller than 70 cm at the end of their life.  

The male and female growth curves (Figure 4.9 A) and Figure 4.9 B) in the population 

reveals that the initial size of the both males and females had two subgroups. Figure 4.9 C 

illustrates the behaviors of the females. When a male and food are visible, larger females 
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always go for food and smaller females always initiate mating. Figure 4.9 D shows the 

size and the energy level of the offspring at birth, which depended on the size and the 

energy level of the mother at the time of mating (see section 3.1.1), Thus the smaller 

females produce many small size, low energy offspring and larger females produce fewer 

large size, high energy offspring. Figure 4.9 E shows the average (mean) choices of 

behavioral modules by larger (QoF) females and smaller (NoF) females throughout their 

lifetime.  

To test if the mean of the lifetime invested for each module is significantly different, 

QoF and NoF females’ module choices in the last 10 generations were taken and Kruskal-

A	

B	

C	

D	

Figure 4.9 Growth curve of female (A) and male (B) when female ARTs emerge in 

the population. (C) QOF and NOF female behavior when Male face and food visible. 

Red:mating; Green:Foraging. (D) Offsprings’ size and energy of QoF and NoF. 
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Wallis statistical test was performed (as the data were not normally distributed). Figure 

4.10 shows the Kruskal-Wallis test with the box plot. It was found that-  

• For QoF females (Figure 4.10A) - the null hypothesis that the choices of behavioral 

module come from the same distribution was rejected at 1% significance level. The 

QoFs invested significantly longer time in foraging than in mating. 

• For NoF females (Figure 4.10B) - the null hypothesis that the choices of behavioral 

module come from the same distribution was rejected at 1% significance level. The 

NoFs invested significantly longer time in foraging and in mating. 

 

From the findings above, the larger and smaller female phenotypes are 

characterized as follows. 

1) Quality oriented female (QoF): QoFs are large in size, less interested in mating, and 

produce small number of high quality (large and high energy) offspring.  

2) Number oriented female (NoF): NoFs are small in size, highly interested in mating, 

and produce a large number of low quality (small and low energy) offspring.  

 

As the offspring’s initial size and energy depend on the maternal size and energy, 

rather than competing to get access to mate, females can compete in their offspring quality 

and quantity. When male and food are visible, QoFs always choose to forage to produce 

more quality offspring. On the contrary, NoFs always choose to go for mating to produce 

as many offspring as possible.  

 

A	 QoF	 B	 NoF	

Figure 4.10  Kruskal-Walis test (box plot visualization) of behavioral module choice 

of QoF (A) and NoF (B) females. 

E	
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It is also found that QOFs and NOFs are clearly genetically different (Figure 4.11). 

For each behavioral module, the histograms of all genes were clearly divided in two 

groups.  

4.3 Male and Female ART’s fitness curves 
 

Figure 4.12 shows the fitness curves of the populations (with food density 100, 

reproductive cost 8 unit, and male-female ratio 50:50), where male fixed ARTS (4 

populations), male conditional ARTs (6 population), male mixed ARTs (1 population) and 

female ARTs (3 populations) evolved, along with those of the populations (11populations) 

where no ARTs evolved.  

Waiting 

Foraging Mating 

Approaching 

Figure 4.11 Histogram of 12 neural network input genes of four modules. The tall 

bar is the QOF’s genes and the short bar is the dominant NOF’s genes showing 

distinct distribution in genotype. 

	



	

47	

	

 

 

 

 

The population with male fixed ARTs converged to the highest fitness. The 

population with male conditional ARTs had slightly lower fitness than that with male fixed 

ARTs, and the population with male mixed ARTs had much lower fitness than Male fixed 

and conditional ARTs. The population with female ARTs had fitness closer to male 

conditional ARTs. To test if the fitness of the population with male (fixed, conditional) 

ARTs, female ARTs and no ARTs significantly different statistical t-test is performed and it 

is found that- 

• For male fixed ARTs- the null hypothesis that the fitness of population with 

male fixed ARTs and no ARTs came from the same distribution was 

rejected at 5% significance level.  The populations where no ARTs evolved 

had significantly lower fitness than the populations where male fixed ARTs 

evolved.  

• For male conditional ARTs- the null hypothesis that the fitness of 

population with male conditional ARTs and no ARTs came from the same 

distribution was rejected at 5% significance level.  The populations where 

no ARTs evolved had significantly lower fitness than the populations where 

male conditional ARTs evolved. 

Figure 4.12 Fitness curves of the population (with food density 100, 

reproductive cost 8 unit, and male-female ratio 50:50) where male or 

female ART evolved. 
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• For male mixed ARTs- the null hypothesis that the fitness of population 

with male mixed ARTs and no ARTs came from the same distribution was 

not rejected at 5% significance level.  The populations where mixed ARTs 

evolved had lower but not significantly different fitness than the 

populations where no ARTs evolved. 

• For female ARTs- the null hypothesis that the fitness of population with 

female ARTs and no ARTs came from the same distribution was rejected at 

5% significance level.  The populations where no ARTs evolved had 

significantly lower fitness than the populations where female ARTs 

evolved. 

The statistical test shows that, the population where no ARTs evolved had lower fitness 

than the populations where male fixed, male conditional and female ARTs evolved. 

Therefore in this environment, rather than converging to the same tactic, agents evolved to 

choose alternative tactics to gain higher population fitness. The populations where mixed 

male ARTs evolved had lower but not significantly different fitness than the populations 

where no ARTs evolved. The number of mixed ARTs also evolved in negligible number 

(only one time) in the simulation environments. 

4.4 Summary and Main Findings 
In this chapter, the evolution of ARTs are analyzed with representative example 

populations. Male and female ARTs evolved from initially monomorphic populating in an 

embodied simulated robot evolution framework (Chapter 3) with intersexual and 

intrasexual interactions. In the evolved genetically fixed male ARTs, dominant and 

sneaker tactics are quite similar to the tactics observed in males in all major taxa [2,16,10], 

commonly called as investor or dominant and exploiter or sneaker. The conditionally 

flexible males who changed mating tactic according to their body size, which were found 

in the simulation, are also quite common [3,16,9], especially in animals having 

indeterminate growth [2,16]. The mixed ARTs in males [41,8] are rare compared to the 

fixed and flexible tactics in animals. Similarly, mixed ARTs emerged only in a small 

number of populations in our simulation. In the environment shown in Figure 4.12, male 

fixed and conditional ARTs had higher fitness than the populations without ARTs. On the 

other hand, the fitness of male mixed ARTs was lower but not significantly different than 

the no ART populations, which explains why mixed ARTs was found in negligible number 

than other ARTs in our simulation. 
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Female ARTs are much less studied than male ARTs and they usually differ in 

their quantity of mates [20,21], mate conflict or coercion [22,23], and investment for eggs 

or fecundity [24,25,26].	 The evolved female ARTs (QoF and NoF) in the simulation 

environment are also quite similar to those found in nature. One of the best examples could 

be the female of side-blotched lizard, studied by Sinervo et al [110]. Orange throated 

female-produce high quantity offspring and yellow-throated female-produce high quality 

offspring, which are quite similar to NoF and QoF emerged in our simulation.  
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Chapter 5  

The Effect of Environmental 

Conditions on Male and Female ARTs 
In the previous chapter, I have described the evolved genetically distinct, 

conditional and mixed male and female ARTs. This chapter I will discuss how the male 

and female ARTs evolved in different environmental condition. I consider three key 

variables of environmental conditions – food density, reproductive cost, and male-female 

ratio. For each environmental condition, I test 6 levels and for each level I repeat 25 

simulation experiments. Therefore, for each environmental condition, there are 150 total 

simulated environments, where hundred male and female agents evolved for 700 

generations with 5000 time step lifetime. For three environmental conditions there were in 

total 450 simulation environments, where Male ARTs were observed in 112 environments 

(57 genetically distinct ART, 55 Conditional ART and 2 mixed ART) and Female ARTs 

were observed in 27 environments.   

 

To understand the effect of environmental condition I will measure five properties for each 

condition (food density, reproductive cost, and male-female ratio)- 

1. Number of populations where male and female ARTs evolved. 

2. Percentage of population with only Dominant or Sneaker males evolved. 

3. Percentage of population with only QoF or NoF females evolved. 

4. Percentage of population with choosy females. Females are defined choosy if they 

are more interested more to high quality (larger) male than low quality (smaller) 

males. Figure 5.1 gives an example where a male is visible to a choosy female.  

When nearest male has lowest size (10 cm) , female approaches towards male until 

male distance is, Dms=70 cm. When nearest male size is highest(180 cm), female 

approaches toward male until male distance is Dmb=250 cm. Therefore, female 

follows larger male from longer distance, which makes it to go towards or choose 
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larger male more than smaller one.  I define female choosy if, Dms −Dmb  is greater 

than threshold δ=50cm. 

In Figure 5.1, Dms −Dmb=(250-70)=180 cm >δ. So it is defined as choosy.   

 

 

 

 

 

 

 

 

 

 

5. Average lifetime invested by male and female for mating (LIM).	
The next sections I am going to describe in detail the result for each environmental 

condition. 

5.1 Food Density 
 

Male and female has to capture food not only to live but also to maintain body size. To 

understand how food density affects the emergence of male and female ARTs, I took 6 

different food densities with the number of food source (20, 50, 80, 100, 150, 200) in the 

environment while fixing the reproductive cost (8 energy unit) and the male female ratio 

50:50. For each food density, 25 sets of simulation were performed. In total 150 sets of 

simulations, male ARTs were found 49 times (20 fixed ARTs, 29 conditional ARTs) and 

female ARTs 18 times. 

Figure 5.2 illustrates the result of different food density test-  

• Figure 5.2(A): the number of Male and Female ARTs evolved in different food 

density is shown. Male fixed ARTs evolved in 3 to 4 times in 25 experiments with 

all food densities. In contrast, male conditional ARTs increased as food density 

was increased and stayed 7 out of 25 for 100 and higher densities. Female ARTs 

also depended on food density. The number of female ARTs was highest (6 times) 

at low food density and it decreased as food density was increased.  

 

Figure 5.1 Behavior of Choosy 

female. BLUE: approaching 

module; Ash waiting 
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A	 B	

C	 D	

E	

Figure 5.2 Effect of Food Density on Male and Female ARTs. (A)Number of Male fixed 

ARTs (fixed (20) and conditional (29)) and Female ARTs (18) emerged. (B) Percentage of 

Dominant and Sneaker males in the populations (97 out of 150) where male ARTs not 

emerge. (C) Percentage of QoF and NoF female in populations (130 out of 150) where 

female ARTs not emerge. (D) Percentage of population with choosy female emerged out of 

150 population. (E) Lifetime investment for mating (LIM) of male and female. 
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• Figure 5.2(B): The percentage of Dominant and sneaker males when male ARTs 

did not emerge (evolved populations of 97) in different food density environment is 

shown, In the case when male ARTs did not emerge, the proportion of sneaker 

males increased from 40% to 75% as food density was increased.  

• Figure 5.2(C): The percentage of QoF and NoF females in the environments where 

Female ARTs did not emerge (evolved populations of 130). The proportion of 

(evolved populations with) quality oriented females decreased up to food density 

100, but increased as food density was further increased. 

• Figure 5.2(D): The percentage of evolved population consisting choosy female. 

The percentage of choosy female vary around 50% for all food density, which 

illustrates that, the intensity of sexual selection (female’s tendency to choose male 

according to their quality) is about same in all food density. 

• Figure 5.2(E): Average lifetime invested by male and female for mating in the final 

10 generation of 25 repetitions and then averaging the results. Although male 

lifetime investment for mating (LIM) increased with food density, female LIM 

plateaued above food density 100.	

 

Male ARTs 
As females can choose mating partner (with the male quality seen) to increase their 

reproductive success, males always compete with each other to get access to female. The 

dominant and sneaker males (explained in Chapter 4) differ in their tactic of accessing 

female and also in choice by female. With increased food density, percentage of 

populations (Figure 5.2D) evolving choosy female don't vary much. This illustrates, 

female choice according to male quality (size), that is, the intensity of sexual selection is 

about similar in all food density environments. As a result, the number of male fixed ARTs 

evolved is also about similar for all food density. Conditional ARTs increased significantly 

when males’ LIM also reaches to highest which leads to reduce competition for accessing 

female. As male competition to access female decrease, rather than fixed ARTs (extreme 

dominant and sneaker), conditional ARTs get higher success and emergence of conditional 

ARTs increase.  However, the result of Figure 5.2A shows that, male conditional ARTs 

evolved in higher number in higher food density and more sensitive to low competition 

level than low intensity of sexual selection. On the other hand, male fixed ARTs are 

mainly sensitive to the intensity of sexual selection. 
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Female ARTs 
Female ARTs reduced when food density was increased (Figure 5.2A). A potential reason 

is the carrying of reproductive cost by females. As female ARTs (explained in chapter 4) 

evolved as quality oriented (increase offspring quality) or quantity (number) oriented 

(increase offspring number), when food is scarce and not always available, females face 

high trade off to invest in offsprings by either increasing quality (capturing more food) or 

quantity (increased mating). When food density is increased, food becomes always 

available to females and the tradeoff reduces, which may reduce female ARTs.  

With increased food density, females’ lifetime investment in mating (LIM) increase 

(Figure 5.1E) and the proportion of NoF increase (Figure 5.1C). But when food density 

reaches 100, the same as the population density, the lifetime investment for mating doesn’t 

increase any more although food density is increased. When there is more than one food 

per individual available in the environment, females may concentrate on increasing 

offsprings’ quality, which may increase the percentage of QoF. 

5.2 Reproductive Cost 
The assumption in this experiment is that the reproductive cost is the energy incurred by 

females for successful reproduction. To understand how reproductive cost affects the 

emergence of male and female ARTs, I took 6 different levels of reproductive cost (10, 15, 

20, 25, 30, 35) in the environment with fixed food density (100 foods) and male ratio (50 

males). For each level of reproductive cost, 25 sets of simulation were performed, where 

male ARTs were found for 29 times (14 fixed ARTs, 15 conditional ARTs) and female 

ARTs for 5 times in the evolved generation out of 150 simulations in total. 

 Figure 5.3 illustrates the result of different reproductive cost test-  

• Figure 5.3(A): the number of Male and Female ARTs evolved in different 

reproductive cost is shown. Male fixed ARTs evolved in 2 to 3 times in 25 

experiments with all food densities. Male conditional ARTs gradually decreased as 

reproductive cost was increased. Female ARTs also varied with reproductive cost. 

Female ARTs evolved when reproductive cost was low (1 or 2 times in 25 

simulations) but no female ARTs evolved when the reproductive cost was 25 

energy units or more. 
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A	 B	

C	 D	

E	

Figure 5.3  Effect of Reproductive cost on Male and Female ARTs. (A) Number of 

Male fixed ARTs (fixed (14) and conditional (15)) and Female ARTs (5) emerged. (B) 

Percentage of Dominant and Sneaker males in the populations (121 out of 150) where 

male ARTs not emerged. (C) Percentage of QoF and NoF female in populations (145 

out of 150) where female ARTs not emerged. (D) Percentage of populations with 

choosy female emerged out of 150 population. (E) Lifetime investment for mating 

(LIM) of male and female. 
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• Figure 5.3(B): The percentage of dominant and sneaker males when male ARTs 

did not emerge (evolved populations of 121) in different reproductive cost 

environment. For reproductive cost up to 20, percentage of dominant males share 

the majority, but when reproductive cost is over 20, the sneaker males take the 

majority. 

• Figure 5.3(C): The percentage of QoF and NoF females in the environments where  

• Female ARTs did not emerge (evolved populations of 145). The proportion of QoF 

females was lower with the lowest reproductive cost 10, but it stayed at about 90% 

for higher reproductive cost.  

• Figure 5.3(D): The percentage of evolved population consisting choosy female. 

The percentage of choosy female vary around 20% for all reproductive cost, which 

illustrates that, the intensity of sexual selection (female’s tendency to choose male 

according to their quality) is about same in all reproductive cost. 
• 5.3(E): Average LIM for males and females in different reproductive cost 

environment in the final 10 generations. Males’ and Females’ LIM was highest at 

reproductive cost 15 and gradually decreased for reproductive costs.  

 

Male ARTs 
With the increase in the reproductive cost, as the female choice regarding male quality is 

about same (Figure 5.3D), the number of fixed male ARTs evolved also about same 

(Figure 5.3A). With low reproductive cost up to 20, the LIM of female is higher and the 

difference between male and female LIM is relatively low (Figure 5.3E), which leads to 

lower competition in males for accessing female. The lower competition facilitates the 

emergence of conditional ARTs rather than fixed ARTs (extreme dominant and sneaker). 

From this reproductive cost test, it become also prominent that, conditional ARTs are more 

sensitive to competition level.  

The percentage of dominant and sneaker males with low and high reproductive costs 

(Figure 5.3A) also suggests that, as female become more quality oriented and less choosy, 

and take lower LIM, sneaker males’ percentage increases, who invest their lifetime mainly 

following female and either mate with female when female choose to mate or exploit 

female mating whenever female initiate mating with another male. 
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Female ARTs 
The simulation with different reproductive cost reveals interesting aspects of male and 

female behavior, especially for females. Although the reproductive cost increases, 

percentage of choosy females (Figure 5.3 D) do not differ much. Therefore, the intensity 

of sexual selection is also about similar in all reproductive cost. But with the increasing 

reproductive cost, the percentage of QoF became quite higher (Figure 5.3C), as females 

invest more time for foraging (gain high size and energy) to produce high quality 

offsprings and mate few times (Figure 5.3E). Therefore, when the reproductive cost 

increases, rather than choosing high quality partner, females concentrate on improving 

own condition (size and energy) to increase offspring quality. Also, when the reproductive 

cost increases (up to 25 energy unit), (Figure 5.3A), as females are mainly interested to 

produce high quality offsprings , about 90% of the evolved populations contains QoFs 

(Figure 5.3C). As a result, Female ARTs disappear with high reproductive cost. 

5.3 Male female Ratio  
Competition between males increases when the number of males compete to access 

a female increases. To understand how competition between males affects the emergence 

of male and female ARTs, I took 6 different levels of male-female ratio by varying the 

number of males (60, 65, 70, 75, 80, 85) in total 100 agents in the environment with fixed 

reproductive cost (8 energy unit) and food density (100 food). For each competition level, 

I performed 25 simulation experiments where male ARTs were found for 34 times (23 

fixed ARTs, 11 conditional ARTs) and female ARTs for 4 times in the evolved generation 

in the total 150 simulations experiments. 

 Figure 5.4 illustrates the result of different competition level test-  

 

• Figure 5.4(A): the number of Male and Female ARTs evolved in different food 

density is shown. Male fixed ARTs evolved 3 times with lowest competition level 

and gradually increased to 6 times when competition level was increased. Male 

conditional ARTs decrease with competition level increase. Female ARTs also 

decreased with increased competition level. 
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A	 B	

D	
C	

E	

Figure 5.4 Effect of Male-Female ratio (Competition Level) on Male and Female ARTs. 

(A)Number of populations where Male fixed ARTs (fixed (23) and conditional (11)) and 

Female ARTs (4) emerged. (B) Percentage of Dominant and Sneaker males in the 

populations (116 out of 150) where male ARTs not emerge. (C) Percentage of QoF and 

NoF female in populations (146 out of 150) where female ARTs not emerge. (D) 

percentage of population with choosy female emerged out of 150 population. (E) Lifetime 

investment for mating (LIM) of male and female. 
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• Figure 5.4(B): The percentage of Dominant and sneaker males when male ARTs 

don’t emerge (evolved populations of 116) in different competition level 

environment is shown. The percentage of sneaker males was always higher than 

that of dominant males.  

• Figure 5.4(C): The percentage of QoF and NoF females in the environments 

(evolved populations of 146) where Female ARTs not emerged are shown. The 

percentage of QoF’s gradually decreased and NoF’s are gradually increased with 

the increased competition level. 

• Figure 5.4(D): Percentage of choosy female increases significantly from 5% to 

90% when male ratio (competition level) increases. That means when competition 

level increase, populations with choosy females (who choice male according to 

quality) increase significantly. Therefore, the intensity of sexual selection also 

increases. 

• Figure 5.4(E): Average lifetime invested by male and female for mating in 

different male competition level environment is analyzed by taking the final 10 

generations of 25 repetitions for each competition level and then averaging the 

results. Although Male lifetime investment for mating (LIM) increased with 

increased competition level, female LIM slightly decreased. 
 

Male ARTs  
As the sexual selection (percentage of choosy female) gets higher with increased male 

ratio, females can have strong selection of male quality (Figure 5.4D). Also with 

increasing male ratio, males’ competition for accessing females increases. Therefore, the 

evolution of male fixed ARTs increased in higher rate (Figure 5.3A) when male 

competition level increases. Conditional ARTs gradually decrease as competition increases 

and females become choosy to high quality males. The females’ LIM is also reduced with 

increased male density (Figure 5.4E), which leads to increase in the percentage of sneaker 

males in the environment where male ARTs don’t emerge (Figure 5.4B).  

 

Female ARTs 
When the competition level is increased, with higher proportion of males, females can 

observe more males frequently and percentage of choosy female also increases (Figure 

5.4D) significantly (80%), that is the intensity of sexual selection in very high. Rather than 

investing on themselves to increase offspring quality, females increase offspring number 
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(Figure 5.4C) and increase offspring fitness by being choosy to male quality. As a result, 

the percentage of NoF increases (Figure 5.4C) very high (90%) and percentage of QoF 

decreases very low (10%), when competition level (male ratio) increases. 

5.4 Comparison of the frequency of the 
evolved male and female ARTs 

The evolution of different number or total number of male and female ARTs 

depends on the environmental condition chosen for each evolution experiments. For each 

parameter (Food density, Reproductive cost, Male ratio), there are 6 level taken. Therefore 

there are total 18 parameter settings. To compare the frequency of the emergence of male 

and female ARTs, we did two-sided Chi-square test [112] for the 25 experiments of each 

parameter settings and found that, for 11 settings out of 18 settings Male ARTs are 

significantly more frequent (with p value<0.05) than female ARTs shown in Table 5.1 

 

Table 5.1 Statistical (Chi-square) test to compare the frequency of 

the emergence of male and female ARTs. It is found that Male ARTs 

(red marked) are significantly more frequent than female ARTs.  

Food Density P 
Value 

Number 
Of male ARTs (out of 

25) 

Number 
Of female ARTs (out of 

25) 
20 0.7471 7 6 
50 0.7328 6 5 
80 0.0399 8 2 
100 0.0240 10 3 
150 0.0047 9 1 
200 0.0047 9 1 

    
Reproductive 

Cost 
P 

Value 
Number 

Of male ARTs (out of 
25) 

Number 
Of female ARTs (out of 

25) 
10 0.0206 7 1 
15 0.1228 6 2 
20 0.2214 5 2 
25 0.0371 4 0 
30 0.0371 4 0 
35 0.0740 3 0 

    
Male Ratio P Value Number 

Of male ARTs (out of 
25) 

Number 
Of female ARTs (out of 

25) 
60 0.2214 5 2 
65 0.0416 6 1 
70 0.2971 3 1 
75 0.0043 7 0 
80 0.0043 7 0 
90 0.0090 6 0 
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5.5 Discussion 

5.5.1 Main Findings 
 

Here I summarize how different environmental conditions affect male and female ARTs. 

• Male fixed ARTs are strongly affected by female choosiness (percentage of choosy 

female), that is the intensity of sexual selection, and weakly by the competition 

level. With decreasing sexual selection intensity and competition level, male fixed 

ARTs also decrease (Figure 5.4A). 

• Male conditional ARTs are strongly affected by the competition level and weakly 

by the intensity of sexual selection by females (Figure 5.2 A, Figure 5.4A). Male 

conditional ARTs increase with competition level decrease. 

• Female ARTs are strongly affected by food density (Figure 5.2A) and very weakly 

by reproductive cost (Figure 5.3A). When food density is increased, female ARTs 

decrease. When reproductive cost is very high, female ARTs become very low or 

disappear. 

 

5.5.2 Future Work 
 

Investigate variation of multiple environmental conditions: Although we have 

analyzed male and female ARTs in different environmental conditions, for testing each 

environmental condition (food density, reproductive cost, competition level) we fixed 

parameter for other conditions. In future we will test and analyze the variation of two or 

three condition at a time such as- food density by reproductive cost, reproductive cost by 

competition level etc. to get more broader view of environmental condition effect. 

 

Investigate the effect of environmental condition when male and female ARTs 

emerged in same environment:  Male and female ARTs can emerge together in nature, 

although it is very rare. Also, as female ARTs are quite difficult and time consuming to 

find by observation or field works, there might be more female ARTs emerge with male 

ARTs in nature which are still undefined. In our 450 simulation environments, there were 
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few environments where we also found male and female ARTs evolved together. In the 

future we plan to analyze how different environmental conditions affects the evolution of 

simultaneous male and female ARTs. 

 

This chapter provides important insights about how in different environmental conditions 

male and female ARTs evolve in a system incorporating both natural selection and sexual 

selection, which are quite significant information for further investigation of the 

emergence of ARTs found in nature. 
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Chapter 6  

Analysis of the ESS of Male and 

Female ARTs 
  

ARTs observed in nature can be maintained by frequency dependent, density 

dependent or status dependent selection.  Although there is a good amount of research 

done to find evolutionary stable states (ESS) in male ARTs [3,16], analysis of evolutionary 

stability for female ARTs are quite rare. In the previous chapters, I described the male and 

female ARTs evolved and their emergence in different environmental conditions.  In this 

chapter, I analyze if the ARTs evolved in males and females are evolutionary stable and 

how the stability is maintained.   

6.1 Male ARTs 
To investigate the ESS of the evolved male fixed ARTs, I ran additional 

experiments in which the proportions of dominant and sneaker males were varied in 10% 

to 90%. The individuals’ genotypes were taken randomly from the last 30 generations 

(670th-700th) of the highest fitness population with male fixed ARTs under the condition 

of 100 foods, 8 energy unit reproductive cost and male density 50. The experiments were 

repeated 50 times for each proportion of dominant and sneaker males. Figure 6.1 shows 

the average fitness of dominant and sneaker males (average number of offspring) as a 

function of dominant male proportion. It shows that their fitness curves cross at 36% 

dominant male and 64% sneaker male proportion, where they are evolutionary stable. Both 

dominant and sneaker males have negative frequency dependent selection, that is, when 

the proportion of dominant or sneaker male increases, its relative fitness reduces.  
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	 Figure 6.1 Evolutionary Stability (ESS) of Male fixed ARTs. Dominant and 

Sneaker males have negative frequency dependent selection and evolutionary 

stable at the dominant male ratio 36% and sneaker male ratio 64%. 

Figure 6.2 T-test analysis of dominant and sneaker males’ average (mean) fitness 

with 95% confidence interval. The result shows that dominant and sneaker males’ 

average fitness is significantly different with p value<0.0001. 
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To ensure that the mean fitness of dominant and sneaker males are significantly 

different except at the evolutionary stable point, I did statistical t-test on each percentage 

pair of dominant and sneaker male mean fitness data and found that they were significantly 

different with P value<0.001 (Figure 6.2).  

6.2 Female ARTs 
Next, I investigated ESS for female ARTs in experiments similar to that of males 

in which the proportions of QoFs and NoFs were varied from 10% to 90%. The individuals’ 

genotypes were taken randomly from the last 30 generations (670th-700th) of the highest 

fitness population (with condition 100 foods, 8 energy unit reproductive cost and male 

density 50). The experiments were repeated 50 times for each proportion of QoFs and 

NoFs. Figure 6.3 shows the average (mean) fitness of QoF and NoF (average number of 

offspring) as a function of QoF proportion. It shows that their fitness curves cross at 65% 

QoF and 35% NoF proportion, where they are evolutionary stable. Also it shows that, 

QoFs have positive frequency dependent selection and NoFs have negative frequency 

dependent selection. That means, when the proportion of QoF increases, it’s fitness 

increases and when the proportion of NoF increases, it’s fitness decreases.   

 

 

	
	

Figure 6.3 Evolutionary Stability (ESS) of Female ARTs. QoFs have positive 

frequency dependent selection and NoFs have negative frequency dependent selection. 

They are evolutionary stable at the QoF ratio 65% and NoF ratio 35%. 
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To ensure that the mean fitness of QoFs and NoFs are significantly different except 

evolutionary stable point, statistical T-test is performed on each percentage pair of QoFs 

and NoFs mean fitness data and found that they are significantly different with P 

value<0.001 (Figure 6.4).  

 

As in nature density dependent ESS is seen in female ARTs, I have investigated if 

density dependent ESS can be found in the evolved female ARTs. I ran additional 

experiments with the equal proportion of QoFs and NoFs in the population and changed 

the population size from 100 to 500 with the male-female ratio 50:50. The individuals’ 

genotypes were taken randomly from the last 30 generations (670th-700th) of the highest 

fitness population with female ARTs under the condition of 100 foods, 8 energy unit 

reproductive cost, male density 50, and population size 100. The experiment was repeated 

50 times for each population density. Figure 6.5 shows the average fitness of QoFs and 

NoFs as a function of population density. In low population density, when average fitness 

Figure 6.4 T-test analysis of QoFs’ and NoFs’ average (mean) fitness with 95% 

confidence interval. The result shows that QoFs’ and NoFs’ average fitness is 

significantly different with p value<0.0001. 
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was greater than 1 (population was growing), NoFs had higher fitness. In high population 

density, when average fitness was close to or lower than 1 (population was crashing), the 

QoFs had higher fitness. The average fitness of QoF and NoFs crossed at population 

density 370, near the population crash point (total population average fitness drops to 1). 
 

	
	 	 	
 

	
	

 

	 To ensure if the mean fitness of QoFs and sNoFs are significantly different except 

evolutionary stable point, statistical T-test is performed on QoFs and NoFs mean fitness 

data of each population density and it is found that they are significantly different with P 

value<0.001 (Figure 6.6).  

	

Figure 6.5 Evolutionary Stability (ESS) of Female ARTs. QoF and NoF 

females have density dependent selection and evolutionary stable at the 

population density 360, when QoF and NoF ratio is same (50:50). 
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6.3 Discussion 

6.3.1 Main Findings 
   

Males always compete with each other to get access to female and evolved male 

ARTs are alternative ways to access female.  The ESS of male fixed ARTs shows there is 

negative frequency dependent selection found in male genetically distinct alternative 

phenotype (dominant and sneaker). When dominant males increase, the competition 

between dominant males for accessing females becomes more intense, while sneaking 

opportunity for sneaker males increase and their fitness increases. When sneaker males 

increase, they have to face more competition with sneakers males. In the meantime, 

dominant males can increase their fitness and as there are few dominant male, female 

choose them more. Therefore the negative frequency dependent selection is maintained. 

Negative frequency dependent selection in male ARTs are also quite common in many 

Figure 6.6 T-test analysis of QoFs’ and NoFs’ average (mean) fitness with 95% 

confidence interval. The result shows that QoFs’ and NoFs’ average fitness is 

significantly different with p value<0.001. 
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species and investigated by many researchers [2,4,16] through different models and field 

works [4,24].   

   

Female ARTs are evolved to increase either offspring number or offspring quality. 

It is found that female ARTs also maintain frequency dependent selection.	QoFs have 

positive frequency dependent selection and NoFs have negative frequency dependent 

selection. That means, when the proportion of QoF increases, it’s fitness increases and 

when the proportion of NoF increases, it’s fitness decreases. Along with Frequency 

dependent selection, female ARTs also maintain density dependent selection. When 

population density is low, NoFs has high fitness as they produce more offspring, which 

leads to increase the population density. When population density turns to its higher limit, 

the population start crashing and the QOFs has high fitness as high quality offspring leads 

to greater offspring survival at high density. Although investigation of female ESS is 

complex, this kind of ESS is observed in females of some species. One of the best 

examples is females of side-blotched lizard, studied by Sinervo et al [13]. Orange throated 

female-produce high quantity offspring and yellow-throated female-produce high quality 

offspring (which are quite similar to NoF and QoF emerged in our simulation).  In a seven 

years field experiment, Sinervo et al. [110] confirmed that there is density dependent ESS 

maintained in females. 

 

6.3.2 Future Work 
 

Investigate ESS in Male conditional and mixed ARTs:  Conditional ARTs observed in 

nature usually have status dependent selection or evolutionary switch point. As in the 

experiments, I found conditional ARTs and a very few (2) mixed ARTs, my next step 

would be analyzing their ESS. 

Investigate evolution of Male and Female ESS in different environmental conditions: 

Male and female ESS can be quite different and affected differently by different 

environmental conditions (food density, reproductive cost, competition level etc). 

Revealing their mechanisms could add a great value in the study of ART. I will investigate 

how male and female ARTs’ ESS evolve with different environmental conditions.   

Investigate ESS when Male and Female ARTs evolve simultaneously: Male and female 

ARTs can emerge simultaneously [24,110], but it is quite rare phenomenon. In our 

simulation, we also found few population (4 times in 450 simulation) where male and 
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female ARTs evolve simultaneously. It will be very interesting future work to analyze how 

male and female ESSs emerge simultaneously in different environmental condition.  

	

In this chapter, I ran additional simulation experiments with the evolved male and female 

fixed ARTs and analyzed how the ESS of male and female fixed ARTs are maintained. It 

is observed that male ARTs evolved due to negative frequency dependent ESS and female 

ARTs are due to density dependent ESS. Further analysis of ESS in different 

environmental conditions can also provide major understanding in the study of ARTs. 
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Chapter 7  
Discussion 

7.1 Summary of Main Findings 
 

In this thesis, I have developed an embodied evolution framework incorporating ecological 

features, such as body size and energy maintenance, where male and female robotic agents 

interact with each other for survival and reproduction, to investigate how ARTs evolve. 

Unlike existing abstract mathematical [60-68] and agent based models [70-72], the agents 

naturally faced both intersexual and intrasexual interactions and ARTs evolved from 

initially continuous characteristics, which are also quite similar to the ARTs commonly 

found in nature [3,9,16]. This framework has higher situatedness [43] with environment 

than agent-based models [70-72] with robotic agents having finite body size and local 

sensors with limited information and moving in a space with finite dimensions and limited 

resources. By having a real body size and mass, larger agents can easily push away smaller 

agents from potential mate and win competition to access mates. Smaller agents can move 

faster than larger agents and quickly approach towards other agents as their velocity of the 

agents also depends on their size and mass. These influenced dominant and sneaker 

behavior to evolve in the system. Also, the sensors located on particular part of the body 

with limited range open up opportunities for a variety of tactics, such as sneaking from the 

back of an agent. Moreover, as the environment has limited energy resource and the 

agents’ energy expenditure depends on its body size, it is possible to test how population 

density affects the frequency of different tactics. Overall, the evolution of ARTs is affected 

by the physical properties of the environment. Therefore, This kind of natural situation of 

evolution of ARTs from initially continuous characteristics was possible due to the 

embodiment with environment where we can practically see the agents evolved with 

different tactics and it also open the way to evolve unknown ARTs in the system, which 

can be further investigated in natural systems. Without embodied approach it was only 

possible to model genetic architecture and coexistence [40,41] of ARTs assuming that two 

or three distinct phenotypes were already present in male or female.    
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To our best knowledge, there are only two studies of ARTs where ARTs were evolved 

from initially continuous characteristics, done by Leif and Taborsky [42] and Elfwing et 

al. [59]. Leif and Taborsky studied the emergence of ARTs in a male only population in an 

agent-based model, which had lower situatedness than the present robotic model. Elfwing 

et al. evolved ARTs in hermaphrodite robots, which had high situatedness but did not 

include biological aspects such as size, mortality, reproductive cost. Both of the studies 

lacked intersexual interaction, that is, all individuals of the environment had the same 

sexual functionality. Therefore, this study is the first to show the emergence of ARTs in 

both male and female from initially continuous characteristics in a simulated embodied 

evolution framework, where agents face both intersexual and intrasexual interactions. 

 

After analyzing the evolved male and female ARTs, it is found that male ARTs 

evolved for different tactics for accessing females, whereas female ARTs evolved for 

different tactics of investment in offspring. We consider three environmental conditions: 

food density, reproductive cost to affect female sexual selection, and male-female ratio to 

affect male competition level. For each condition, 150 populations are evolved to 

investigate how different environmental conditions affect male and female ARTs. It was 

revealed that- 

• Male fixed ARTs are strongly affected by the intensity of female sexual selection 

and weakly by male competition level.  

• Male conditional ARTs are strongly affected by the competition level and weakly 

by the intensity of females’ sexual selection.  

• Female ARTs are strongly affected by food density and weakly by the reproduction 

cost.  

The intensity of sexual selection is estimated from females’ mate choice, while male 

competition level is controlled by male female ratio in the environment. The males’ quality 

(body size), which affects reproductive success, is visible to females and it is possible to 

analyze how females’ response towards males depend on males’ quality by analyzing the 

network weights of the agents. If a female chooses mating behavior for higher quality 

(larger size) males, we define it as choosy. In the populations where fixed male ARTs 

evolved, females evolved to be choosy. In the populations where conditional males 

evolved, females did not evolve to be choosy. That suggests that the emergence of male 

ARTs depends on how female behavior emerged. Alonzo et al investigated in several 

studies [64-66] how female choice affects the variation of different male tactics and 
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mentioned the necessity of constructing a system where male and female ARTs can evolve 

together from initially continuous population. The embodied evolution model presented in 

this thesis fills that gap and it is found that for different male ARTs female choice also 

evolved differently.  

 

Several biological and theoretical investigations [3,4,16] revealed that emergence of 

male conditional ARTs mainly depends on indeterminate growth and low energy cost 

coefficient (b) for maintaining size (section 3.1.2, (iv)). In this embodied evolution model, 

we found that, although the energy cost coefficient (b) is fixed, emergence of conditional 

ARTs was affected by female lifetime spent for mating (LSM), or competition level in 

males. When females LSM reduces compared to male LSM, males’ competition to access 

females increase, which benefits the males staying dominant (maintaining big size with 

high cost to win competition accessing female) or sneaker (maintain small size with low 

cost and sneak) rather than being conditional. 

Emergence of females ARTs are found strongly sensitive to food density and evolved 

females’ behavior is also affected by male interaction. When female has low reproductive 

cost and meet with males more frequently, they can increase fitness by mating high 

number of high quality males. But, when females’ reproductive cost gets higher and they 

meet with males more frequently, rather than choosing high quality male they tend to 

develop own reproductive condition (size and energy) and increase fitness by producing 

high quality offspring. Although female ARTs are observed in nature [20,21], they are not 

common and not well studied like male ARTs, as investigating female investment in 

offspring and reproduction in biological scenario is time consuming and requires complex 

procedures [23]. This embodied evolution model introduced an original approach in which 

it is quite feasible to study male and female ARTs together in the same system and to 

readily analyze their genotypes, morphological and behavioral phenotypes, and lifetime 

histories. 

 

The simulation environments are fully stochastic and all positions (food and agents) 

are initialized randomly at each generation. In total 450 simulations were done by varying 

three environmental conditions (food density, reproductive cost, male-female ratio) and 

ARTs evolved in total 141 simulations. Male ARTs emerged in total 114 simulations and 

female ARTs evolved in total 27 simulations. Female ARTs emerged much less frequently 

(section 5.4 tested statistical significance) than male ARTs. The potential reason can be 

understood from Chapter 5 (Figure 5.2, Figure 5.3, Figure 5.4) where how the 
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environmental condition affects the emergence of ARTs was investigated. Female ARTs 

were mainly sensitive to food density and evolved in higher numbers when food density 

was less than 80 (Figure 5.2). There were only 50 simulations done with food density less 

than 80, where female ARTs emerged about twice than male fixed, conditional or mixed 

ARTs. In the rest of 400 environments, food density was greater than 80. As a result, the 

number of evolved female ARTs was much lower. Environments with higher sexual 

selection evolved more male fixed ARTs (Figure 5.4) and environments with low 

competition level evolved more male conditional ARTs (Figure 5.3). Therefore, it is 

revealed in Chapter 5 that the numbers and types of male and female ARTs evolved 

depended on the environmental condition the agents are facing during simulation. 

Moreover, from the fitness curves (Figure 4.12), it is seen that the populations where 

ARTs evolve had higher fitness (chapter 5, section 5.4) than the populations where ARTs 

did not evolve. In these environments, evolving to behave with different tactics was more 

beneficial for agents than converging to similar behavior. 

 

Investigating ESS in biological scenario could be significantly complex process 

[24,110]. But we can test ESS of male and feasibly manipulation proportion of phenotype, 

population density each. Here we have also investigated the ESS of male and female and 

found that male fixed ARTs (dominant-sneaker) are maintained by negative frequency 

dependent selection and female ARTs are maintained by both frequency dependent and 

density dependent selection. Male negative frequency dependent ESS and female density 

dependent ESS is also found in nature [8,16,24,110]. Although Male ESS is studied in 

large aspects [8,16], practical experiment of female ESS in very rare [24]. One special 

study was done by Sinervo et al [110] for female size bloched lizard and there they also 

found density dependent ESS in female.  

 

7.2 Challenges and Limitations 
 

Incorporate decentralized, open-ended embodied evolution:  In this embodied 

evolution model, male and female interact physically and select mating partner for 

producing offspring in the next generation, and the next generation population is initiated 

without explicit fitness comparison just by random sampling from male and female 

offspring. To make the evolution process fully decentralized and biologically plausible, the 

offspring should also be placed after birth in same population with parents and let them 
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evolve together. Moreover, by including offspring in the same population with parents, it 

is possible to introduce open ended evolution in the model, that can provide important 

insight to study biological system. 

 

Introduce more biologically plausible genetic algorithm:  The genes of the agents in 

this model is haploid and the genetic algorithm applied in this system is not same as 

biological scenario where diploid male and female genes produce offspring through gene 

exchange. Although this kind of genetic algorithm is presently applied to study biological 

system [77-84], the model will be more realistic if it is possible to apply more biologically 

plausible genetic algorithm.  

 

Investigate cross over and mutation rate: Each agent had 50 genes and the crossover 

and mutation rate was 0.001. Therefore in 700 generations of population size 100, there 

were only about 70 times offspring born with a mixture of parents’ genomes. Although the 

rate is low, meaningful ARTs evolved in the system, which is consistent with realistic 

scenario found in nature. But investigating the model with higher crossover and mutation 

rate can provide more interesting solution and evolve more unique ARTs in the system 

 

Constraints to test the results in physical robots: In this embodied evolution model, 

agents are simulated robots. But there is a difficulty in testing the results with physical 

robots, as they have some constraints, such as they don’t grow. However, it should be 

possible to test final evolution result by compromising some aspects, such as fixing body 

size of the agents according to evolved end size. 

 

7.3 Future Directions 
 

Incorporate male mate choice:  In the simulation environment, we considered the 

general situation in which ARTs are found [3,4], where male quality is visible to female 

and female can measure male quality (input x7, section 3.2). However, in some species, 

female quality is also visible to male and it is still a puzzle to understand how it affects 

male mate choice and emergence of ARTs in male and female [64]. As this framework is 

quite flexible to include new properties for evolution, it can give promising insight by 

including female body size in the control network input and testing how male and female 
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ARTs evolve in different environmental conditions. Comparing the result with current 

result may introduce novel aspects in the study of ARTs.  

 

Analyze female behavior where male conditional ARTs emerge:  When male 

conditional ARTs evolve female evolve to relax their choice on male size. Although 

females don't choose males according to quality (size), females can easily chase away or 

avoid small males when they are not interested in mating. Also, relatively larger males can 

move away smaller males to access female. However, to understand male female 

interaction in conditional case, doing further investigation will be interesting to reveal 

more clear aspect of their behavior. It is possible to do create and test different scenario 

along with input of male female agents where conditional ARTs emerge.   

 

Incorporate determinate growth: In the simulation environment, we considered 

indeterminate growth as ARTs are more commonly found with animals having 

indeterminate growth [3,4,16]. As the model is quite flexible, in future we can also test 

simulation with agents with determinate growth and compare the results of emerged 

ARTs. 

 

 Investigate combination of environmental conditions: We evolved the male and female 

in three environmental conditions (food density, reproductive cost and male-female ratio). 

To get broader aspect of the environmental condition, it will be interesting to evolve and 

investigate ARTs (male and female) in combination of environmental conditions (such as 

food density× reproductive cost, reproductive cost × male-female ratio). 

 

Investigate when both Male and Female ARTs evolve simultaneously: Male and 

female ATRs can emerge simultaneously [24,110], but it is quite rare phenomenon. In our 

simulation, we found few populations (4 in 450 simulations) where male and female ARTs 

evolved simultaneously. It will be very interesting future work to analyze how male and 

female ARTs evolve and interact simultaneously in different environmental conditions.  

 

Investigate ESS of conditional ARTs: Although we investigated ESS for genetically 

distinct ARTs, conditional ARTs also has ESS called evolutionary switch point. It will be 

interesting to investigate ESS of conditional ARTs along with the affect of environmental 

condition in male and female ESS. 
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Extend the model to investigate other reproductive systems: Along with dioecious 

(male and female) animal, hermaphrodites (can play both male and female function) also 

evolve alternative reproductive behavior by allocating sexual function differently to 

increase reproductive fitness, mostly depending on their physical (age, size) conditions and 

environmental conditions [3,4]. Moreover, more complex androdioecious (males and 

hermaphrodites) and gynodioecious (females and hermaphrodites) systems are also found 

in nature where individuals evolve to play different sexual functions (male, female or 

hermaphrodite). In a broad sense this scenario is closely related with alternative 

reproductive behavior, as individuals evolved to play different sexual functions as 

alternative reproductive behavior [4]. This embodied evolution framework is flexible 

enough to further analyze species of different sexual mechanisms (hermaphrodite, 

androdioecious, gynodioecious, etc.). 

Extend the model to study social and multi-agent role allocation: Moreover, in addition 

to biological studies, this study can help build ideas about role emergence in multi-agent 

systems and social systems. Here the emerged alternative reproductive tactics are evolved 

as optimal role for a system. So, this line of research can also give deeper insight about 

understanding how social role emerges from group interaction or what optimal roles would 

be appropriate in some multi-agent systems, where multiple groups interact and negotiate 

to complete a task in an optimal way.  

 

Test the results in physical robots: In this embodied evolution framework, agents were 

simulated robots and all the experiments were done in simulated robot environments. We 

had also planned to test the result in real smartphone robots (Figure 3.1). The robots can be 

3D printed or painted in different colors to be recognized as male or female. Another way 

is to show the color blob in smartphone screen to show its gender. Robots can transfer 

genotype by blue tooth communication, or when they are in a short distance, they can 

show their genome interpreted as QR code to other robot. As real robots do not grow, our 

plan is to test the final generation result with their evolved end body size. It is possible to 

add parts to the smartphone robot base for changing its body size. Even though we do not 

currently have 100 mobile robots available, the most convenient way is to use embodied 

evolution method of Stefan Elfwing [94], where he successfully did embodied evolution 

experiments with a population of 80 virtual agents using 4 physical Cyber Rodent robots. 

Unlike simulation environment, testing with real robots provides actual physical 

environment including occlusion, real physical interaction along with more realistic input 
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information in the neural network controller, which can potentially give us more 

interesting and realistic results such as hiding behind other agent for sneaking, courting 

female by blocking another potential partner from female’s sight etc. 
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Chapter 8  

Conclusion 
In this thesis, I developed an embodied evolution framework with simulated 

robotic agents incorporating ecological features, such as body size and energy 

maintenance, where male and female robotic agents naturally face both intersexual and 

intrasexual interactions for survival and reproduction. To clarify the important properties 

for understanding full picture of ARTs, first I performed an overview of alternative 

reproductive tactics (ARTs) and exiting models of ARTs in terms of situatedness, that is 

embodiment with the environment. Then I constructed the original embodied evolution 

framework including the properties (emergence from initially continuous characteristics, 

intersexual and intrasexual interaction, high situatedness with environment). In simulation 

experiments, different forms of male and female ARTs evolved and I clarified distinct 

morphological and behavioral phenotypes and genotypes associated with those ARTs. The 

effects of environmental conditions (food density, reproductive cost, male-female ratio) on 

the emergence of male and female ARTs were investigated which reveals that- male fixed 

ARTs are sensitive to sexual selection, male conditional ARTs are sensitive to competition 

level and female ARTs are sensitive to food density. Finally, ESS of male and female 

ARTs was analyzed to show that male ESS is negatively frequency dependent and female 

ESS is both frequency and density dependent. This study of ARTs through this embodied 

evolution framework does not only contribute in the field of ARTs with novel aspects but 

can also be used as an important tool to understand the concept of role emergence in multi-

agent systems or social behavior. 

 

 

 

Parts of this work has been published in “Artificial Life and Robotics” conference 

[111], where all the model development, simulation and analyses are done by 

FARZANA RAHMAN. 
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