

DIST OKINAWA INSTITUTE OF SCIENCE AND TECHNOLOGY GRADUATE UNIVERSITY 沖縄科学技術大学院大学

Wasabi versus red imported fire ants: preliminary test of repellency of microencapsulated allyl isothiocyanate against Solenopsis invicta (Hymenoptera: Formicidae) using bait traps in Taiwan

Yoshiaki Hashimoto, Masashi Yoshimura,
Rong-Nan Huang
Applied Entomology and Zoology
54
2
193-196
2019-02-27
Springer Nature
This is a post-peer-review, pre-copyedit
version of an article published in Applied
Entomology and Zoology. The final
authenticated version is available online at:
http://dx.doi.org/10.1007/s13355-019-00613-5
author
http://id.nii.ac.jp/1394/00001417/

doi: info:doi/10.1007/s13355-019-00613-5

Click here to view linked References

Wasabi versus red imported fire ants; Preliminary test of repellency of б microencapsulated allyl isothiocyanate against *Solenopsis* invicta Buren (Hymenoptera: Formicidae) using bait traps in Taiwan Yoshiaki HASHIMOTO^{1*}, Masashi YOSHIMURA² and Rong-Nan HUANG³ Shot title: Repellent effect of microencapsulated AITC against S. invicta ¹ Institute of Natural and Environmental Sciences, University of Hyogo /the Museum of Nature and Human Activities, Hyogo, Yayoigaoka 6, Sanda, Japan 669-1546. ² Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, Japan 904-0495. ³ Department of Entomology National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan. *Corresponding author: E-mail: yoshiaki@hitohaku.jp

18 Abstract

19	Sea container has been identified as a major pathway for the unintended entry
20	and spread of alien ant species. In Japan, red imported fire ants, Solenopsis invicta Buren,
21	which are among the most harmful alien ants, were first detected in a shipping container
22	from China in May 2017, and the invasion into Japan via the trade pathway is still
23	continuing. To prevent containers contaminated with S. invicta and its establishment in
24	Japan, control measures, such as repellents, are urgently required. The present study is
25	the first to evaluate repellency of microencapsulated allyl isothiocyanate (AITC) against
26	S. invicta, as a preliminary step to use the innovative equipment for invasive species
27	management in sea containers. In a field in Taiwan heavily infested with S. invicta, a
28	repellent test of microencapsulated AITC using bait traps showed that the equipment
29	completely prevents <i>S. invicta</i> from accessing the bait. Due to its volatility and irritancy,
30	AITC, a safe natural repellant in wasabi (Eutrema japonicum (Miq.) Kiudz), has not been
31	used for pest management in containerized cargo. However, the encapsulation of AITC
32	solves this problem by allowing controlled vapor release. Microencapsulated AITC has

33	considerable potential as an effective measure to stop the spread of S. invicta through
34	global trade.
35	
36	Keywords: red imported fire ant, wasabi, allyl isothiocyanate, microcapsules, botanical
37	repellent
38	

39 INTRODUCTION

40	Sea container transportation has been identified as a major high-risk pathway
41	for the unintended entry and spread of alien ant species (Bertelsmeier et al. 2018; Inoue
42	and Goka 2009; Ward et al. 2006). International trade has reached unprecedented levels,
43	and much of it is moved with sea containers (The world bank 2017). This situation
44	presents an increasing global risk of incursions of alien ant species (Bertelsmeier et al.
45	2017).
46	One of the most harmful of these ants is the red imported fire ant, Solenopsis
47	invicta Buren, which poses serious hazards to agriculture, natural environments, and
48	public health (Lowe et al. 2000; Zhang et al. 2007). S. invicta has also successfully spread
49	in shipped cargo from its native range in South American to the United States, Australia,
50	New Zealand, China, and Taiwan (Ascunce et al. 2011). It is known that controlling
51	introduced populations of <i>S. invicta</i> continuously is costly and its complete eradication is
52	quite difficult. For example, the annual cost of S. invicta management is estimated to be
53	about US\$6 billion in the United States (Drees and Lard 2006; Gutrich et al. 2007). In
54	Japan, S. invicta was discovered in late May 2017 at Amagasaki City and Kobe port,

Hyogo Pref. and the ants have been reported in 37 locations in 14 prefectures as of October 2018. Almost all S. invicta found in Japan entered the country in shipping containers imported from southern China. Although fortunately S. invicta colonization in Japan has not been confirmed, given this situation, there is an urgent need to minimize the risk of S. invicta contamination of containerized cargo. Insect repellents are one of the major methods for preventing S. invicta from infesting stored products and containerized cargo, but the use of synthetic repellents has potential risks due to environmental pollution and health hazards. Especially, chemical treatment may be inappropriate for food, household goods and clothes, due to toxicity. Furthermore, treatment could leave residue in the container itself. In fact, between 10% and 20% of all containers arriving in European ports had harmful concentrations of toxic chemicals (Baur et al. 2015). Accordingly, there has been an effort to find naturally occurring repellants from plants (Hu et al. 2017). Allyl isothiocyanate (AITC), which is extracted from plants such as wasabi (Eutrema japonicum (Miq.) Kiudz), is a well-recognized for strong repellent and activity against various arthropods, nematodes, and microorganisms (Dhingra et al.

71	2004; Park et al. 2000; Wu et al. 2014; Zanada and Ferris 2003). However, because of its
72	strong volatility and irritancy, AITC has not been used as a repellent for invasive species,
73	such as S. invicta, in containerized cargo. Recently, microencapsulation technology and
74	applications of AITC, using spray-drying and polyethylene material, has been established
75	(PATENT No. JP5033232B, WasaP" TM). This technology enables sustained-release of
76	AITC through semi-permeable capsule membranes, which can decrease irritancy by
77	preventing excessive release. Furthermore, the AITC encapsulated in polyethylene
78	composites can be employed as applied as plastic packing-materials, such as plastic wrap,
79	envelope-bags, and cargo cover. Therefore, in the present study, we conducted field
80	studies to evaluate the repellency of AITC against S. invicta, using of polyethylene films
81	containing the microencapsulated AITC.
82	
83	MATERIALS and METHODS
84	Field studies of the repellency of microencapsulated AITC against S. invicta
85	were conducted on October 22, 2018, in a construction site in Banqiao District, New

86 Taipei City, Taiwan (25.034072N, 121.469637E), which was seriously infested with S.

87	invicta (Yang et al. 2009) (Fig.1 A). During the study, field temperatures and relative
88	humidity were 28°C and 65%, which are ideal conditions for <i>S. invicta</i> workers to actively
89	forage (Yue 2014).
90	For test material, we used a polyethylene film with 10 cm \times 10 cm size and
91	0.08 mm thick, containing 6 mg of microencapsulated AITC, which was obtained from
92	PRD Co., Ltd. (Osaka, Japan) (Fig.1 B). The microencapsulated AITC has a humidity-
93	activated release mechanism and its release-rate increases with increasing atmospheric
94	moisture (Ii et al. 2012). Although release kinetics of AITC from the film were not
95	measured in this study, 1 mg of microencapsulated AITC develops a concentration of 250
96	ppm AITC gas in a 1 L enclosed space at 100% humidity (unpublished data).
97	To determine whether microencapsulated AITC can repel S. invicta, we used a
98	bait-trap with a polyethylene film containing microencapsulated AITC on the inside (10
99	traps). The trap was a 50-mL centrifuge tube, with a 5-mm opening at the screw cap for
100	S. invicta to enter and baited with a piece of oil-fried snack made from corn grits (Fig. 1
101	C and D). Oily corn grits have been used as one of the most attractive baits for S. invicta
102	(Lofgren et al. 1975; Williams et al. 2001). In a control experiment, the same bait-trap

103	with an ordinary polyethylene film, which did not include microencapsulated AITC, was
104	used (10 traps). Furthermore, to eliminate concerns that the workers do not avoid the
105	AITC but only cannot smell the bait by AITC gas, we placed a bait outside of trap for 10
106	minutes, and then inserted the bait swarming with S. invicta into a centrifuge tube trap
107	with the microencapsulated AITC film (10 traps). The three bait-traps (Non-AITC, AITC
108	and AITC with ants) were placed about 30 cm from one nest-mound of S. invicta (total
109	10 mounds). The number of foraging S. invicta workers on the inside of the trap was
110	counted 40 minutes after bait placement.
111	
111 112	RESULTS and DISCUSSION
	RESULTS and DISCUSSION The results of this study showed clearly that polyethylene film containing the
112	
112 113	The results of this study showed clearly that polyethylene film containing the
112 113 114	The results of this study showed clearly that polyethylene film containing the microencapsulated AITC can prevent <i>S. invicta</i> from reaching the baits (Fig. 2). In bait
112113114115	The results of this study showed clearly that polyethylene film containing the microencapsulated AITC can prevent <i>S. invicta</i> from reaching the baits (Fig. 2). In bait traps with the ordinary polyethylene film, an average of 157 ± 44.59 individuals of <i>S</i> .
 112 113 114 115 116 	The results of this study showed clearly that polyethylene film containing the microencapsulated AITC can prevent <i>S. invicta</i> from reaching the baits (Fig. 2). In bait traps with the ordinary polyethylene film, an average of 157 ± 44.59 individuals of <i>S. invicta</i> were collected. In contrast, the average number of <i>S. invicta</i> trapping to baits with

119	we found 0 to 3 individuals (average 0.9 ± 0.56), all of which were dead. Furthermore,
120	we could observe that foraging S. invicta avoided entering the tap with the
121	microencapsulated AICT film. We video-recorded that, when an ant's antennae contacted
122	the entrance hole of trap with the film, workers of S. invicta immediately retreated (see
123	Supplementary material for movie).
124	The present study is the first to evaluate repellent potential of AITC against S.
125	invicta and verified that the microencapsulated AITC repels the ants completely. AITC
126	is a natural product considered harmless for human health and environment, and its safety
127	for humans has been demonstrated (European Food Safety Authority 2010). However,
128	due to its strong volatility, the excessive AITC vapor can irritate the human respiratory
129	and eyes. AITC encapsulated in semi-permeable polyethylene composites can control the
130	release rate of vapor, solving this problem. In addition to controlled vapor release,
131	microencapsulated AITC has moisture sensitivity, which increases release rate of AITC
132	accordingly with increasing humidity. Because the regions infested heavily by S. invicta
133	in China are located in the humid subtropical zones, the moisture sensitive property of
134	the microencapsulated AITC could be particularly useful as S. invicta repellent in
	0

135	container cargos arriving from such regions. Considering these properties and the results
136	from this study, microencapsulated AITC has the high potential as an extremely effective
137	measure for stopping the spread of S. invicta through global trade. For the practical
138	application of the microencapsulated AITC as S. invicta repellent, further experiments
139	including the verification of persistence of AITC effect are urgently required in actual
140	containerized cargo.
141	
142	ACKNOWLEDGMENTS
143	We are thankful to Mayuko Suwabe and Masako Ogasawara (Biodiversity and
144	Biocomplexity Unit, OIST) for their valuable assistance in the field experiments. We also
145	extend many thanks to Kazuo Honma (PRD Co., Ltd) and Masamitu Yasosima (Moriya
146	industry) for providing experimental materials. Field experiments could not have been
147	accomplished without their kind assistance. We also thank Steven D. Aird (Division of
148	Faculty Affairs, OIST) for editing the manuscript.
149	
150	CONFLICT OF INTEREST
	10

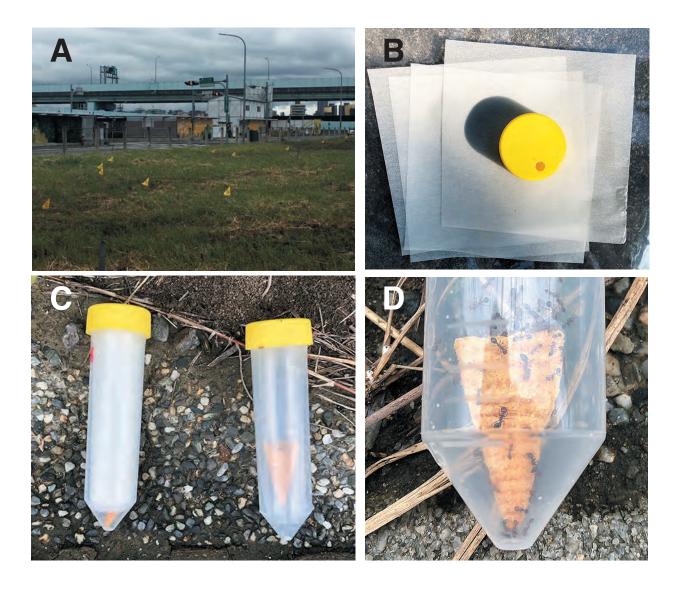
	1
	2
	3
	4
	5
	6
	7
	8
	9
1	0
1	1
1	2
1	3
1	4
1	5
1	6
1	7
1	8
1	9
2	0
2	1
2	2
2	ב ג
2	
2 0	2345678901234567890123456789012345678901234567890
2	с С
2	0 7
2	/
2	8
2	9
3	0
3	Ţ
3	2
3	3
3	4
3	5
3	6
3	7
3	8
3	9
4	0
4	1
4	
4	3
4	4
4	
4	б
4	7
4	8
4	9
5	
555	1
5	2
5	4
5 5	5
5	6
5	7
	8
5	9
6	0
6	1
6	2
	3
6 6	4
6	5

151	Funding: This research received no specific grant from any funding agency.
152	
153	Conflict of interest: The authors declare that they have no conflict of interest.
154	
155	REFERENCES
156	Ascunce MS, Yang CC, Oakey J, Calcaterra L, Wu WJ, Shih CJ, Goudet J, Ross KG,
157	Shoemarker DW (2011) Global invasion history of the fire ant Solenopsis invicta. Science
158	331:1066–1068
159	
160	Baur X, Budnik LT, Zhao Z, Bratveit M, Djurhuus R, Verschoor L, Rubino FM, Colosio
161	C, Jepsen JR (2015) Health risks in international container and bulk cargo transport due
162	to volatile toxic compounds. J Occup Med Toxicol 10:19
163	
164	Bertelsmeier C, Ollier S, Liebhold A, Keller L (2017) Recent human history governs
165	global ant invasion dynamics. Nat Ecol Evol 1:0184
166	
	11

167	Bertelsmeier C, Ollier S, Liebhold AM, Brockerhoff EG, Ward D, Keller L (2018)
168	Recurrent bridgehead effects accelerate global alien ant spread. PNAS 115:5486-5491
169	
170	Dhingra OD, Costa MLN, Silva GJ, Mizubuti ESG (2004) Essential oil of mustard to
171	control <i>Rhizoctonia solani</i> seedling damping off and seedling blight in nursery. Fitopatol
172	Bras 29:683–686
173	
174	Drees BM, Lard CF (2006) Imported fire ant: economic impacts justifying integrated pest
175	management programs. In: Proceedings of the XV Congress of the International Union
176	for the Study of Social Insects, Washington, DC, p. 2006
177	
178	European Food Safety Authority (2010) EFSA panel on food additives and nutrient
179	sources added to food (ANS): scientific opinion on the safety of allyl isothiocyanate for
180	the proposed uses as a food additive. EFSA J 8:1943–1983
181	
	12

182	Gutrich JJ, VanGelder E, Loope L (2007) Potential economic impact of introduction and
183	spread of the red imported fire ant, Solenopsis invicta, in Hawaii. Environ Sci Policy
184	10:685–696
185	
186	Hu W, Zhang N, Chen H, Zhong B, Yang A, Kuang F, Ouyang Z, Chun J (2017)
187	Fumigant activity of sweet orange essential oil fractions against red imported fire ants
188	(Hymenoptera: Formicidae). J Econ Entomol 110:1556-1562
189	
190	Ii S, Takata A, Mizukami Y, Yashiki I (2012) Method for producing humidity-dependent
191	antibacterial powder composition (in Japanese). JP patent 5033232B 2012 Sep 26
192	
193	Inoue MN, Goka K (2009) The invasion of alien ants across continents with special
194	reference to Argentine ants and red imported fire ants. Biodiversity 10:67-71
195	
196	Lofgren CS, Banks WA, Glancey BM (1975) Biology and control of imported fire ants.
197	Annu Rev of Entomol 20:1–30
	13
	10

198	
199	Lowe S, Browne M, Boudjelas S (2000) 100 of the World's Worst Invasive Alien Species.
200	A selection from the Global Invasive Species Database Auckland: IUCN-ISSG, 11 pp,
201	http://www.issg.org/pdf/publications/worst_100/english_100_worst.pdf Accessed 25
202	December 2017
203	
204	Lu Y, Wang L, Zeng L, Xu Y (2012) The effects of temperature on the foraging activity
205	of red imported fire ant workers (Hymenoptera: Formicidae) in south China.
206	Sociobiology 59:573–583
207	
208	Park CM, Taormina PJ, Beuchat LR (2000) Efficacy of allyl isothiocyanate in killing
209	enterohemorrhagic Escherichia coli O157:H7 on alfalfa seeds. Int J Food Microbiol
210	56:13–20
211	
212	The world bank (2017) Statistics of Container Port Traffic (TEU: 20 foot equivalent units).
213	https://data.worldbank.org/indicator/IS.SHP.GOOD.TU Accessed 13 November 2017
	1.4
	14


214	
215	Ward DF, Beggs JR, Clout MN, Harris RJ, O'Conno S (2006) The diversity and origin
216	of exotic ants arriving in New Zealand via human-mediated dispersal. Divers Distrib
217	12:601–609
218	
219	Williams DF, Collins HL, Oi DH (2001) The red imported fire ant (Hymenoptera:
220	Formicidae): An historical perspective of treatment programs and the development of
221	chemical baits for control. Am Entomol 47:146–159
222	
223	Wu H, Liu X, Yu D, Zhang X, Feng J (2014) Effect of allyl isothiocyanate on ultra-
224	structure and the activities of four enzymes in adult Sitophilus zeamais. Pestic Biochem
225	Physiol 109:12–17
226	
227	Yang CCS, Shoemaker DD, Wu JC, Lin YK, Lin CC, Wu WJ, Shih CJ (2009) Successful
228	establishment of the invasive fire ant Solenopsis invicta in Taiwan: insights into
229	interactions of alternate social forms. Divers Distrib 15:709-719
	15

1 2		
3 4 5	230	
6 7 8 9	231	Zanada IA, Ferris H (2003) Sensitivity of Meloidogyne javanica and Tylenchulus
0 1 2	232	semipenetrans to isothiocyanates in laboratory assays. Phytopathology 93:747-750
3 4 5	233	
6 7 8 9	234	Zhang RZ, Li YC, Liu N, Porter SD (2007) An overview of the red imported fire ant
0 1 2	235	(Hymenoptera: Formicidae) in mainland China. Fla Entomol 90:723-731
3 4 5 6	236	
7 8 9	237	Figure Legends
0 1 2 3	238	Fig. 1 Study site and Bait-trap setting: (A) Repellent experiment site of
4 5 6	239	microencapsulated allyl isothiocyanate (AITC) against red imported fire ants (S. invicta)
7 8 9 0	240	at Banqiao District, New Taipei City, Taiwan. S. invicta nests were marked with yellow
1 2 3	241	flags. (B) Polyethylene film containing microencapsulated AITC, and a bait-trap cap with
4 5 6 7	242	a 5-mm diameter opening for S. invicta to enter. (C) Bait traps, made of 50-mL centrifuge
8 9 0	243	tubes, used to test the repellent effect of AITC against S. invicta. The left trap with a
1 2 3 4	244	polyethylene film containing microencapsulated AITC, and the right with an ordinary
5 6 7		
8 9 0 1		
2 3 4		16

polyethylene film. (D) An example of foraging behavior of S. invicta on the bait, which was placed at the bottom of a trap tube. Fig. 2 Effect of microencapsulated allyl isothiocyanate (AITC) on foraging behavior of worker S. invicta: Box plots showing numbers of S. invicta captured by bait traps with an ordinary polyethylene film (Non-AITC), with a microencapsulated AITC film (AITC), and with a microencapsulated AITC film and bait swarmed by the foraging ants together (AITC with Ants), on the insides (N = 10 traps per treatment). Mean numbers of S. invicta captured are labeled on the box. **Supplementary information** Supplementary move: Repellent behavior of S. invicta on bait trap with microencapsulated AITC film. Supplementary movie from the paper "Wasabi versus red imported fire ants; Preliminary test of repellency of microencapsulated allyl isothiocyanate against Solenopsis invicta

1 2		
3 4	260	Buren (Hymenoptera: Formicidae) using bait traps in Taiwan" authored by Yoshiaki
5 6 7 8	261	Hashimoto, Masashi Yoshimura and Rong-Nan Huang, published in XXXXXXX.
9 10 11 12	262	
12 13 14 15		
16 17 18		
19 20 21		
22 23 24		
25 26 27 28		
29 30 31		
32 33 34		
35 36 37		
38 39 40		
41 42 43 44		
45 46 47		
48 49 50		
51 52 53		
54 55 56 57		
57 58 59 60		
61 62 63		18
64 65		

(Fig. 1)

(Fig. 2)

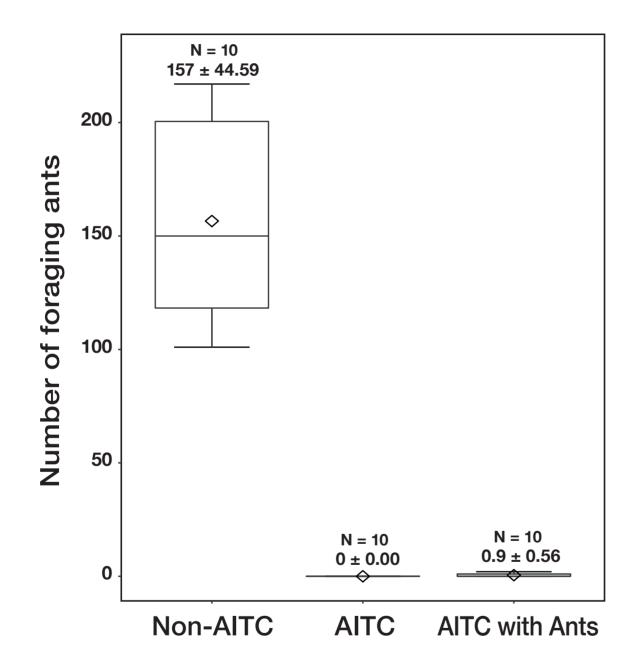


Fig2

Supplementary move

Click here to access/download Supplementary Material supplementary_move.mpg