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Abstract
A theoretical framework of reinforcement learning plays an important role in understanding

action selection in animals. Spiking neural networks provide a theoretically grounded

means to test computational hypotheses on neurally plausible algorithms of reinforcement

learning through numerical simulation. However, most of these models cannot handle ob-

servations which are noisy, or occurred in the past, even though these are inevitable and

constraining features of learning in real environments. This class of problem is formally

known as partially observable reinforcement learning (PORL) problems. It provides a gener-

alization of reinforcement learning to partially observable domains. In addition, observations

in the real world tend to be rich and high-dimensional. In this work, we use a spiking neural

network model to approximate the free energy of a restricted Boltzmann machine and apply

it to the solution of PORL problems with high-dimensional observations. Our spiking net-

work model solves maze tasks with perceptually ambiguous high-dimensional observations

without knowledge of the true environment. An extended model with working memory also

solves history-dependent tasks. The way spiking neural networks handle PORL problems

may provide a glimpse into the underlying laws of neural information processing which can

only be discovered through such a top-down approach.

Introduction
When faced with a novel environment, animals learn what actions to make through trial and
error. Such reward driven learning with incomplete knowledge of the environment is called re-
inforcement learning (RL) [1]. Starting from prominent experimental findings which show
that reward prediction errors are correlated with dopamine signals [2], many studies have in-
vestigated how reinforcement learning algorithms are implemented in the brain [3–5].
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Numerical simulations of spiking neural networks (SNN) can be used to test whether re-
ward learning algorithms are neurally plausible and to theoretically investigate the validity of
computational hypotheses. There have been several successful implementations of reinforce-
ment learning in SNNs [6–11].

However in many real world situations, the problems animals are faced with are more chal-
lenging than those that can be solved with RL. Observations are usually noisy and stochastic
and optimal decision making often depends on past experience. The generalization of RL to
such partially observable domains is known as partially observable reinforcement learning
(PORL) [12]. The PORL problems can be divided into two subclasses depending on the task
difficulty. When the optimal policy depends on the current observation, we call this case a his-
tory-independent PORL problem. On the other hand, when the optimal policy depends on the
past observations, we call this case a history-dependent PORL problem. PORL problems pro-
vide a framework for solving partially observable Markov decision processes (POMDP) with-
out full knowledge of the environment. It is firmly grounded theoretically and also general
enough to model the decision making of animals in the real world. Several algorithms have
been proposed to solve the PORL problem [13–16]. These algorithms construct an approxi-
mately Markovian state internally from the sequence of past observations, executed actions,
and obtained rewards.

Among these, there is an algorithm which solves the PORL problems using an approach
based on the free-energy of the stochastic system (e.g., restricted Boltzmann machine: RBM)
[15]. This is an extension of Sallans and Hinton’s approach [17] which is able to handle high-
dimensional binary states and actions. We call these approaches the free-energy-based rein-
forcement learning (FERL) framework. Using FERL, sensory information is known to be en-
coded in the activation patterns of neural populations in a goal-directed fashion. The
implementation of this approach in an SNN should provide a top-down glimpse into the neu-
ral algorithms of reward-based learning. In this work we propose a SNN implementation of
FERL and apply it to the solution of several types of PORL tasks.

This manuscript is organized as follows: First, in the Material and Methods section, we ex-
plain FERL and how it may be extended to solve PORL problems. The concepts required for its
implementation in SNN, such as pseudo-free-energies, are introduced. Then, in the Results sec-
tion, we test our SNNmodel on three tasks with increasing levels of difficulty: a center reaching
task (a RL problem), a digit center reaching task (a history-independent PORL problem), and a
digit-matching T-maze task (a history-dependent PORL problem). Finally, in the Discussion
section, we interpret our results to clarify the remaining issues of this approach and also pro-
vide an interpretation of our results from the perspective of biology.

Methods

Free-energy-based reinforcement learning
Sallans and Hinton [17] extended the application of the restricted Boltzmann machine (RBM)
framework from unsupervised and supervised learning to reinforcement learning. We call their
approach of using energy-based modeling in the context of reinforcement learning free-ener-
gy-based reinforcement learning (FERL). This is because it uses the free energy of a stochastic
system to capture important quantities which appear in reinforcement learning. The RBM is
an energy-based statistical model (also known as an “undirected graphical model” or a “Mar-
kov random field”) where binary nodes are separated into visible and hidden layers. Nodes in
the visible layer are fully connected to nodes in the hidden layer, but there are no connections
between nodes within the same layer. Due to this restricted connectivity, given the values of the
visible nodes, the posterior distribution over hidden nodes becomes conditionally independent,
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and it can be computed exactly without heavy computation. In FERL, binary nodes in the visi-
ble layer are further classified into state nodes s and action nodes a.

An energy function of the RBM is given by

Eðs; a; h; yÞ ¼ �
X

i

X
l

si w
sh
il hl �

X
j

X
l

aj w
ah
jl hl; ð1Þ

where wsh
il 2 < is the undirected connection weight between a state node si 2 {0, 1} and a hid-

den node hl 2 {0, 1}, and wah
jl 2 < is the undirected connection weight between an action node

aj 2 {0, 1} and a hidden node hl. Both sets of weights are collectively represented by the param-
eter θ. Given the energy function, we can also define another important quantity called free-en-
ergy. Formally, equilibrium free-energy is the expected energy of the stochastic system at
equilibrium minus its entropy:

Fðs; a; yÞ ¼
X
h

pðhjs; a; yÞEðs; a; h; yÞ þ
X
h

pðhjs; a; yÞ ln pðhjs; a; yÞ ð2Þ

¼ �
X

i

X
l

si w
sh
il ĥl �

X
j

X
l

aj w
ah
jl ĥl þ

X
l

ĥl ln ĥl þ ð1� ĥlÞ ln ð1� ĥlÞ
h i

; ð3Þ

where ∑h means summation over all possible configurations of hidden nodes h, and ĥl �
pðhl ¼ 1 j s; a; yÞ ¼ sðPiw

sh
il si þ

P
jw

ah
jl ajÞ is the probability that node hl takes the value 1

given the state s and action a where σ(z)� (1 + exp(−z))−1 is the logistic sigmoid function.
Reinforcement learning algorithms can be optimized by reducing the temporal difference

(TD) error between consecutive time steps. If the parameter dependent function approximator

Q̂ðs; a; yÞ with a parameter set θ is used to estimate the state action value function Qπ(s, a)�
Eπ[∑k = 0 γ

k rk+1js0 = s, a0 = a], where Eπ[�] represents the expectation over all possible trajecto-
ries produced by using the policy π(s, a)� p(ajs) in the given environment, accuracy can be
improved after sufficient exploration of the environment if the following SARSA learning rule
is used to update the parameters

y≔yþ a ðrkþ1 þ g Q̂ðskþ1; akþ1; yÞ � Q̂ðsk; ak; yÞÞryQ̂ðsk; ak; yÞ; ð4Þ

where rk+1 is an instantaneous reward obtained after executing an action at step k, and γ 2 [0,
1] is the discount factor controlling the influence of the future reward on the value function, α

is the learning rate set to a small value, andryQ̂ðsk; ak; yÞ is a gradient of the
function approximator.

In FERL, the negative free-energy of the RBM, −F(s, a; θ), is used as an approximator of the

state-action value function, Q̂ðsk; ak; yÞ, where θ denotes parameters of an energy function.
Therefore the update rule, Eq. (4), can be written as follows:

wsh
il ≔wsh

il þ a ðrkþ1 � g Fðskþ1; akþ1; yÞ þ Fðsk; ak; yÞÞ si ĥl; ð5Þ

wah
jl ≔wah

jl þ a ðrkþ1 � g Fðskþ1; akþ1; yÞ þ Fðsk; ak; yÞÞ aj ĥl; ð6Þ

where siĥl and ajĥl are the partial derivatives of −F(sk, ak;θ) with respect to wsh
il and w

ah
jl , respec-

tively. This learning rule can be interpreted as follows. When the TD error is positive (good
surprise), weights are updated to decrease the free energy of the (st, at) pair so that action at is
favored when state st is encountered in the future. On the other hand, when the TD error is
negative (bad surprise), weights are updated to increase the free energy of the (st, at) pair so
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that action at is avoided when state st is encountered in the future. In addition, this update rule
has the form of a local Hebbian learning rule modulated by the global TD error.

Implementation with spiking neuron

Leaky integrate-and-fire neuron
Our network is entirely composed of leaky integrate-and-fire neurons [18]. The evolution of the
membrane potential of postsynaptic neuron Vm is given by the ordinary differential equation

tm
dVm

dt
¼ �ðVm � VrestÞ þ RmðIe þ IsynðtÞ þ InoiseÞ; ð7Þ

where τm is the membrane time constant, Vrest is the resting membrane potential, Ie is an exter-
nally injected current, and Rm is the membrane resistance. The total synaptic current Isyn is
given by summation over alpha-function α(t)

IsynðtÞ ¼
P

i

X
ts2Ti

wi aðt � ts � diÞ; ð8Þ

aðtÞ ¼ t=tsyn exp ð1� t=tsynÞ � HðtÞ; ð9Þ

HðtÞ ¼ 0 t < 0

1 t � 0

� �
; ð10Þ

where the sum runs over all pre-synaptic neurons i and over times Ti of pre-synaptic spikes that
a post-synaptic neuron receives after the most recent postsynaptic spike. The amplitude and the
synaptic delay of the connection to pre-synaptic neuron i are denoted by wi and δi, respectively.
If the membrane potential Vm exceeds the threshold Vthres, a spike is generated and Vm is reset
to Vreset:

xiðtÞ ¼ 1 and VmðtÞ≔Vreset; if VmðtÞ > Vthres

xiðtÞ ¼ 0; otherwise;

�
ð11Þ

where xi(t) represents a spike of a neruon i at time t.

Network architecture
Binary stochastic nodes in the RBM are replaced by leaky integrate-and-fire neurons in our
proposed network model (Fig. 1). The network is composed of state, action, and hidden neu-
rons. The state, by definition, should contain all the information required for optimal decision
making. Therefore, in the MDP task, the state layer is composed of state neurons. On the other
hand, in the case of history-independent PORL task the state layer is composed of observation
neurons, while it is composed of observation and memory neurons in the history-dependent
PORL task. When an agent makes an observation or executes an action, neurons associated
with the specific observation or action receive direct current. Additionally, all state and action
neurons constantly receive noisy input to ensure they operate in a normal firing regime. All ob-
servation and memory neurons are unidirectionally connected to all hidden neurons. Action
neurons are bidirectionally connected to hidden neurons to reflect the fact that selected actions
affect the hidden neurons’ activities.

Approximation of free-energy
In order to implement the FERL framework in an SNN, we need to bridge the gap between dis-
crete and continuous time. Let us assume that agent-environment interactions have the
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following time course. When an agent enters state s at discrete time k, a set of state neurons s
are activated by current injection. The moment in continuous time this happens at is denoted
by tsk. Activation of these state neurons s continues while the agent remains in the current state
s. Selection of action a at discrete time k induces the activation of a set of action neurons a. The
moment in continuous time this happens at is denoted by tak , (t

s
k < tak ). Activation of these ac-

tion neurons continues until the next change of state.
In order to include spikes in the framework, we define a time window Δt sufficiently small

that it can include at most one spike. Then, the number of spikes within this short interval [t −
Δt, t) can be described as the s(t), a(t), and h(t) for state, action, and hidden neurons, respec-
tively. During the interval, ½tsk; tskþ1Þ, corresponding to the discrete time step k, neurons si(t),
aj(t), and hl(t) will be unlikely to take fixed values due to the characteristics of SNN.

Given the formal definition of the free-energy in Eq. (3) and the assumptions that the state
nodes si, k� [sk]i 2 {0, 1} and the action nodes aj, k� [ak]j 2 {0, 1} take fixed binary values dur-
ing continuous time t 2 ½tak ; tskþ1Þ, we can introduce a new quantity, “pseudo free-energy for
SNN”, as follows:

Fðsk; ak; yÞ¼ �
X

i

X
l

si;k w
sh
il
�hl;k �

X
j

X
l

aj;k w
ah
jl
�hl;k

þ
X

l

½�hl;k ln �hl;k þ ð1� �hl;kÞ ln ð1� �hl;kÞ�;

ð12Þ

where �hl;k � 1
N

PN
n¼1 hlðtskþ1 � nDtÞ is the average firing rate of hidden neuron l given the fixed

state si, k and action neurons aj, k. This quantity has the prefix, “pseudo”, due to the replacement

of ĥl , which is the conditional probability of the RBM’s hidden node hl to take the value of 1, by
�hl, which is the average firing rate of the SNN’s hidden neuron hl defined above. Here
tak � tskþ1 � NDt.

Fig 1. The structures of the spiking neural networks. State neurons are used for the MDP task.
Observation neurons are used for the PORL tasks instead of state neurons. Memory architecture (bounded
by dashed line in the figure) is introduced only for the history-dependent PORL task.

doi:10.1371/journal.pone.0115620.g001
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In reality, sk and ak take stochastic values during time interval ½tak ; tskþ1Þ without injecting ex-
tremely strong direct current. Therefore, we define a new quantity, “pseudo-free-energy with
average firing rate” (aFE), as follow:

FðIs;k; Ia;k; yÞ ¼ �
X

i

X
l

�si;k w
sh
il
�hl;k �

X
j

X
l

�aj;k w
ah
jl
�hl;k

þ
X

l

½�hl;k ln �hl;k þ ð1� �hl;kÞ ln ð1� �hl;kÞ�;

ð13Þ

where �si;k and �ai;k are the average firing rate of the state neuron i and action neuron j during the

interval t 2 ½tak ; tskþ1Þ, respectively. During this interval, the state and action neurons are activat-
ed by the current Is, k and Ia, k.

However, the use of average firing rates for the state and action neurons makes the value of
the free-energy different from that given by the original definition. Given the fact that we can
calculate the instantaneous energy for each time bin, we can also define an average instanta-
neous pseudo-free-energy (iFE) as follows:

FðIs;k; Ia;k; yÞ ¼ �
1

N

XN
n¼1

nX
i

X
l

siðtskþ1 � nDtÞwsh
il hlðtskþ1 � nDtÞ

þ
X

j

X
l

ajðtskþ1 � nDtÞwah
jl hlðtskþ1 � nDtÞ

o

þ
X

l

½�hl;k ln �hl;k þ ð1� �hl;kÞ ln ð1� �hl;kÞ� :

ð14Þ

This quantity could be calculated in either a batch or sequential manner. In batch mode, the
firing rate of the hidden neurons hl are calculated after the system reaches equilibrium. Spikes
in 100 ms intervals preceding each observation were used in the calculation. However this ap-
proach is not fully plausible biologically since the calculation of the hidden neuron’s average
firing rates requires storage of 100 ms spike trains. On the other hand, sequential calculation of
the iFE needs only raw spike trains. Let us define the following expression

f ðt; yÞ ¼ EðsðtÞ; aðtÞ; hðtÞ; yÞ þ ln pðhðtÞ j sk; ak; yÞ; ð15Þ
which resembles the expression appearing in Eq. (12). The first term in Eq. (15) is the energy of
the system at time t given the neural configuration s(t), a(t), and h(t). The second term is the
negative information (also known as “surprise”) associated with spikes h(t) given the spikes up
to the current moment t in the interval ½tak ; tskþ1Þ. This second term can be computed sequential-
ly using low pass filtering. In this case, the estimate of the probability p(hl(t) = 1jsk, ak) should
be updated according to the following rule

ĥlðtÞ  ĥlðt � DtÞ þ ah ðhlðtÞ � ĥlðt � DtÞÞ; ð16Þ

where αh is a small learning rate. Due to our assumption that sk and ak do not change during
the time period ½tak ; tskþ1Þ, the second term in Eq. (15) can be approximated sufficiently by track-
ing this variable for all the hidden neurons. Therefore, f(t;θ) can be approximated by the fol-
lowing expression

f̂ ðt; yÞ ¼ EðsðtÞ; aðtÞ; hðtÞ; yÞþ
X

l

hlðtÞ ln ĥlðtÞ þ ð1� hlðtÞÞ ln ð1� ĥlðtÞÞ
h i

; ð17Þ

Then, using Eq. (12) and (17), F(sk, ak;θ) can be estimated by Monte Carlo simulation. Since

f̂ (t; θ) can be calculated each time step, the accuracy of the estimate of F(sk, ak;θ) can now
be sequentially improved using only spike data available at the current time t. The entire
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algorithm for the sequential calculation of F(sk, ak;θ) using spike data is detailed in Algorithm
1. Both the learning rates αh and αf should be appropriately set so that the estimate is smoothly
tracked without too much drift.

Algorithm 1 Sequential estimation of iFE using spike data

while t 2 ðta
k;t

s
kþ1� do

Obtain spikes s(t), a(t), and h(t)
ĥlðtÞ  ĥlðt� DtÞ þ ahðhlðtÞ � ĥlðt� DtÞÞ; 8l
f̂ ðt;θÞ ¼ EðsðtÞ;aðtÞ;hðtÞ;θÞ þ

X
l

½hlðtÞ ln ĥlðtÞ þ ð1� hlðtÞÞ ln ð1� ĥlðtÞÞ�
F̂ ðt;θÞ ¼ F̂ ðt� Dt;θÞ þ af ½f̂ ðt;θÞ � F̂ ðt� Dt;θÞ�

end while
Use F̂ ðt;θÞ as an estimate of F(sk, ak;θ)

Working memory
In order to solve PORL problems (in particular the matching T maze task described in the re-
sults section below) the network should include recurrently connected neurons so that memory
of past observations is represented in the network activity. The memory layer is indicated by
the dotted box in Fig. 1. The recurrent weights, denoted wmm in Fig. 1, are fixed according to a
circular Gaussian distribution. This has the effect of maintaining a characteristic activity pat-
tern across the memory neurons which depends on the past sequence of observations

wmm
ij ¼ gs exp ððcos ðxi � xjÞ � 1Þ=gwÞ � gb; ð18Þ

where xi is a position of neuron i on a circle in radians, gs is a scaling factor, gw controls the
width of circular gaussian, and gb biases the average weight.

Observation
We employed the MNIST dataset (can be downloaded from http://yann.lecun.com/expdb/
mnist/) as a high-dimensional observation used in the PORL tasks. The training dataset of the
original MNIST dataset was used for feature extraction. We created the training and test sets
used for reward-based learning in PORL tasks from the test dataset of the original MNIST
dataset. For each dataset, we selected 10 different images for each digit. The size of each image
was reduced by cropping all four sides to speed up computation. For the digit center reaching
task and the digit matching T-maze task, images are cropped to 22 × 22 pixels and 20 × 15 pix-
els, respectively. During both training and testing phases in the PORL tasks, digits are random-
ly selected from corresponding datasets in each time step.

In order to process high-dimensional observations with working memory, the network
needs to support both feature extraction and topographically organized activation of a memory
layer based on the extracted features. Topographic structures are unlikely to emerge in ordi-
nary RBMs trained using contrastive divergence because this procedure generates maximally
independent posterior distributions across the hidden nodes. In order to produce feature ex-
traction and topographic mapping at the same time, the weights between the observation layer
and the memory layer were pretrained using the contrastive divergence algorithm (CD-3) [19]
with constraints given by the topographic RBM [20]. S1 Fig. describes the activation of hidden
nodes during the reconstruction of an observation given a test set of reduced MNIST digits.
The weights were trained on a training set of reduced MNIST digits.
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Simulation settings
We used three tasks to test our model: a simple center reaching task as an example of an MDP
task, a digit center reaching task as an example of a history-independent PORL task, and a digit
matching T-maze task as an example of a history-dependent PORL task. The codes are avail-
able gratis at ModelDB (http://senselab.med.yale.edu/modeldb). We used a different number
of neurons for each task (Table 1). Network weight were initialized according to a normal dis-
tribution with mean 20 and standard deviation 11.88. These parameters were selected so that
the initial weights were positive and to ensure that the spiking neurons operated in a normal
firing regime.

All neurons took the same parameters and had the same response properties. The NEST
Simulator (http://www.nest-initiative.org) default leaky integrate-and-fire neuron was used in
simulations. The membrane time-constant τm was set to 10 ms. The spike threshold Vthres was
set to −55 mV. The resting potential Vrest was set to −70 mV. The absolute refractory period
was set to 2 ms. The reset potential after spikes was set to −70 mV. The membrane capacitance
Cm was set to 250 pF.

Simulations consist of repeated observation-action cycles. One cycle lasts 1000 ms, divided
into a 500 ms observation phase and a 500 ms action phase. During the observation phase
some state/observation neurons are activated by externally injected current Ie and an action is
selected depending on the activation of action neurons. On the other hand during the action
phase both observation and action neurons are activated by input current. The pseudo-free-en-
ergy is calculated from the neural activities during the last 100 ms of the action phase.

We used the following parameters for the recurrent weights of the memory neurons in

Eq. (18): gs = 40, gw = (π/72)2, and gb ¼ 0:1gs
R 2p

0
expððcosðxÞ � 1Þ=gwÞdx.

Results

Center reaching task
We tested our proposed SNN model of the MDP task, the simple center reaching task, to con-
firm it works and to compare it to the original RBM. The task includes 7 states, labelled from
0 on the left to state 6 on the right. Agents start at either end of the maze randomly (the states
0 and 6). The middle state 3 is the goal state. Agents can make one of two actions, move one
step left (a = −1) or move one step right (a = 1). When the agent reaches the goal, it receives a
large positive reward (r = 50,000). All other moves incur small negative rewards (r = −1,000).
State neurons associated with the current state receive externally injected current Ie = 1000 pA.
Action neurons associated with the selected action and other neurons receive externally in-
jected current Ie = 1000 pA and Ie = −2000 pA, respectively. All neurons receive noise current

sampled from the normal distribution Inoise � N ð0; 6002Þ pA.
Fig. 2 describes the performance of an agent in batch update mode. Both cumulative re-

wards (Fig. 2A) and steps to the goal (Fig. 2B) appear to be approaching their theoretical

Table 1. The number of neurons in each task.

Task 1: simple center
reaching task

Task 2: digit center
reaching task

Task 3: digit matching
T-maze task

State / Observation 90 484 (= 22 × 22) 300 (= 20 × 15)

Hidden 90 90 90

Memory 50

Action 90 90 90

doi:10.1371/journal.pone.0115620.t001
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optimal values of R	0 ¼ 47015 and 3 steps, respectively. The negative iFE (Fig. 2C) properly
represents the predicted future reward.

Weights after training are shown in Fig. 2 (D, E). State values appear to be reflected in the
weights between the state and hidden neurons, wsh, described in Fig. 2D, because the average
strength of these weights reflects the number of steps away from the goal. This demonstrates
that weights represent state-action values. Weights also appear to encode the goal direction.
This is shown by the clear difference between the wsh values associated with the state neurons
1–45 and the wsh values associated with the state neurons 46–90. Similarly the optimal action
direction is encoded in the wah weights shown in Fig. 2E.

In addition to the iFE, we also tested our other approximation to the pseudo-free-energy,
the aFE. However, as shown in Fig. 3A, when we use the aFE instead of the iFE, the learning
does not occur. One possible explanation for this is that relevant network spiking patterns are
lost during the temporal averaging operation before the free-energy computation. To investi-
gate how synaptic delays and spike timing contribute to the pseudo-free-energy, we randomly
re-initialized synaptic delays after each episode. Surprisingly we find that learning in the iFE
still occurs with synaptic delay randomization. Towards the end of the learning phase, charac-
teristic firing patterns like those shown in Fig. 3 emerge, especially for the action neurons.
These firing patterns do not appear when the aFE is used, where they would block learning.
Furthermore the firing patterns persist even when the synaptic delays are set to different ran-
dom values. The presence of firing patterns can be quantified by calculating the distance of

Fig 2. Simple center reaching task. (A–C) Performance of the SNN. (A) The cumulative reward, (B) the number of steps to the goal, and (C) the negative
iFE for each state and action (C). (D, E) Connection weights after learning. (D) The weight matrix between the state layer neurons and the hidden layer
neurons (wsh). (E) The weight matrix between the action layer neurons and the hidden layer neurons (wha). The hidden neurons are sorted by mean weight
from the 1st to the 45th state neurons. For states 0, 1, 2, the optimal action is 1, and for states 4, 5, 6, the optimal action is -1.

doi:10.1371/journal.pone.0115620.g002

A Spiking Neural Network Model of Model-Free Reinforcement Learning

PLOS ONE | DOI:10.1371/journal.pone.0115620 March 3, 2015 9 / 18



neural activations between different time bins during the last 100 ms of the action phase
as shown in Fig. 3. As can be seen while both action and hidden neurons show recursive
patterns they are much clearer in the hidden neurons where they occur with period around
4–5 time bins.

Although it solves the MDP task the performance of our SNN implementation of the RBM
is not guaranteed theoretically. Here, we compare our SNN model and the original RBM to de-
termine how functionally different they are (Fig. 4). First we investigate the validity of using

Fig 3. Performance of aFE and iFE. (A) Steps to goal learned with the pseudo-free-energy based on the average firing rate. (B) Steps to goal learned with
the average instantaneous pseudo-free-energy under the random delay condition. (C) Firing patterns of all neurons in the random delay condition. Left and
right figures use different delays. (D) Distance between the current bin’s firing patterns and those of distant bins (Left: Action neurons, Right: Hidden
neurons). The more blue the color the shorter the distance.

doi:10.1371/journal.pone.0115620.g003
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Fig 4. Comparison between the SNN and the original RBM.Red colored symbols and lines indicate rightward actions, blue colored symbols and lines
indicate leftward actions. (A) Spike counts of action neurons in the SNN (left) and the negative free-energy in the original RBM (right) for each state.
Differences of spike counts (SNN) and negative free-energies (RBM) for action selection (middle). (B) Negative iFE of the SNN and negative free-energy of
the equivalent RBM for certain state-action pairs. (C) Correlations between hidden neuron spike counts and the posterior over hidden nodes for each action
(left) and when the weights are scaled (right, solid lines) and randomized (right, dotted lines). (D) Spike counts of hidden neurons in the SNN (top panel) and
the posterior of the original RBM (middle and bottom panels).

doi:10.1371/journal.pone.0115620.g004
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spike counts to determine action selection instead of the negative iFE used in the SNN. Spike
count “votes” for the two different actions in each of the states are shown in Fig. 4A. These
spike counts are determined from the trained network by injecting input current into the asso-
ciated state neurons for 100 ms. As can be seen by comparing Fig. 2C and Fig. 4A, these spike
counts reflect the structure of the negative iFE of the SNN. To quantify how similar the spikes
counts and the negative iFE of the SNN are, the negative iFE for the right action is subtracted
from that of the left action. This quantity encodes the network preference for left or right action
in each state in terms of the iFE. This quantity is more meaningful than the actual iFE value be-
cause the relative difference in iFE directly controls the action selection probability along with
a globally modulating inverse temperature. It is compared with the analogous quantity calcu-
lated using the spike counts in the middle panel of Fig. 4A. The strong correlation between
these quantities (r = 0.9621) indicates that spike count based action selection reflects the SNN
iFE or equivalently the learned state-action values.

Second, we assess how feasible it is to use an SNN instead of the RBM of the original FERL
framework. We construct an RBM using the same weights as the SNN. The right panel in
Fig. 4A shows the negative free-energy of the equivalent RBM. Free-energies for certain state-
action pairs are calculated by clumping together all associated state-action nodes. Although the
free-energies from the constructed RBM are different from the SNN iFE, they are highly corre-
lated (correlation coefficient, r = 0.9485) as shown in Fig. 4B. This linear relationship ensures
that an action selection probability (or policy) implemented by an SNN can be realized in the
equivalent RBM by adjusting the inverse temperature.

To further elucidate the relationship between SNNs and their equivalent RBMs, we compare
the activations of hidden neurons of the SNNs and the posterior distributions over hidden
nodes of the equivalent RBMs. As shown in Fig. 4C, the correlation between spike counts of
hidden neurons and the posterior over hidden nodes is higher for optimal actions than for sub-
optimal actions in all states. This correlation greatly increases when the SNN weights are divid-
ed by 1000 (scaling coefficient, c = 1000) to create an equivalent RBM. This increase in
correlation is not the general trend observed in RBM with small weights. To clarify this point,
we scaled all weights by 1000 after shuffling the state-hidden connection weights and action-
hidden connection weights independently. The correlation between the spike counts of hidden
neurons and the posterior over hidden nodes vanished after randomly shuffling the weights
(20 random shuffles). The correlation was lower in the unscaled condition compared to the
scaled condition because the posteriors are saturated in unscaled networks (Fig. 4D, middle).
The posterior structure can be observed by scaling the weights and is seen to be very similar to
the spike counts (Fig. 4D, top and bottom). Weight scaling is important in creating equivalent
RBMs due to the fundamental difference between SNNs and RBMs. Generally speaking, SNNs
need to be driven by large weights in the normal firing regime.

S2 Fig. shows the performance of an agent in the sequential update mode. The cumulative
rewards appear to approach their theoretical optimal values, in a similar way to the previous re-
sult. A sequential estimation of iFE converges at the end. This shows that spikes can be used to
sequentially calculate the iFE on the fly.

Digit center reaching task
Next, we test if the proposed architecture solves the history-independent PORL tasks. In this
task, observations are stochastic and high-dimensional, but the optimal policy only depends on
the true state behind these observations. We employ a task using the same maze as the simple
center reaching task, but images of handwritten digits are used. Each of the observation neu-
rons receives input from one of the pixels, so that observation neurons and pixels are in one-
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to-one correspondence. For the input current to the observation and action neurons Ie and the
noise current Inoise, we employed the same parameter setting used in the previous task. In both
training and test phases, at each time step an image is randomly selected from the correspond-
ing dataset, depending on the current state. Even with this high-dimensional input, the agent is
able to solve the task (Fig. 5).

Digits with the same optimal action (right action (open circle), left action (close circle)) in-
duce similar activations in the hidden neurons when they are activated by test digit data after
learning. As a control we also perform the task under the condition that the agent always gets
the same reward for all actions in all states. In this case the activation patterns of the hidden
neurons are seen to be independent of reward and clustered according to digit similarity (for
example the digit “1” is clustered separately due to its lack of similarity with any of the other
digits.)

Digit matching T-maze task
Our proposed model is able to solve the two tasks addressed above using only information of
the current state or observation. However in the real world it is often the case that tasks cannot
be solved solely based on current observations and memory of past experience is required.
Therefore we design another task, the digit matching T-maze task (Fig. 6A). This is a history-
dependent PORL task using high-dimensional observations. It is a simple extension of a regular
T-maze task [21]. In order to act optimally, agents need to use both memory and immediate
observation. At the start position and at the T-junction the agent observes one of two randomly
chosen digits, “0” or “1”. If the two digits at each end of the central corridor are the same, the
agent receives a reward of +20000 at the right goal and reward of −500 at the left goal. On the
other hand if the two digits at each end of the corridor are different, the rewards are reversed.

Fig 5. Digit center reaching task. (A) A set of digits used in the training. (B) The cumulative reward obtained
with test dataset. (C, D) The activation of hidden neurons projected on the first two principal components in
different reward settings. (C) The reward setting is the same as in the simple task. (D) The agent always gets
reward of 2000 for any states and actions. Each point shows the hidden activation for each state using test
digit dataset.

doi:10.1371/journal.pone.0115620.g005
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The model is extended with the addition of memory architecture. The connection weights
from the observation neurons to the memory neurons are pretrained with a topographical
RBM [20] in order to obtain different firing patterns in clusters of memory neurons in response
to different digits (S1 Fig.). Connections between memory neurons are fixed according to a cir-
cular Gaussian distribution so that input dependent activation patterns in these neurons are
long-lived. Observation neurons associated with the current state receive externally injected
current Ie = 2000 pA. Action neurons associated with the selected action and other neurons re-
ceive externally injected current Ie = 2000 pA and Ie = −5000 pA, respectively. All neurons re-

ceive noise current sampled from the normal distribution Inoise � N ð0; 3002Þ pA.
This extended model solves the digit matching T-maze task (Fig. 6). The cumulative reward

did not reach its theoretical optimum, which was calculated under the assumption of fully ob-
servable state, as shown in Fig. 6C. It is because unlike a fully observable reinforcement learn-
ing tasks, in PORL tasks, the agent could not detect the true underlying states and therefore
need to construct an approximate internal state with Markovian property, using noisy observa-
tions. Hidden neurons show action selection related firing patterns at the decision point which
depend on the expected reward rather than on the current position or on past observations.

Discussion
We constructed a spiking neural network model inspired by the free-energy-based reinforce-
ment learning (FERL) framework. First, we demonstrated that our SNN model had the capaci-
ty to handle reinforcement learning tasks in the simple center reaching task. Then we showed
that our SNNmodel could handle high-dimensional input in the digit center reaching task.

Fig 6. Digit matching T-maze task. (A) Illustration of the task. The agent starts at the bottom-end of the T
and makes a decision at the T-junction. The agent observes a “0” or a “1” randomly at these two positions and
gets reward if the decision is correct. (B) An example of the activity of the memory neurons. Observations of
digits “1”, “2” and “0” are given at 0, 500, and 1000 ms, respectively. The redder the color the higher the neural
activity. (C) The cumulative reward. (D) The hidden activity at the decision making position projected on the
first principal component. The first principal component accounts for 63.44 percents of the total variance and
the second principal component (not shown) accounts for 26.10 percents of the total variance.

doi:10.1371/journal.pone.0115620.g006
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Finally, we demonstrated that the SNN is able to solve PORL tasks in the digit matching T-
maze task. Our results show that FERL can be well approximated by a SNNmodel.

We have made three contributions in this work. First we proposed an SNN implementation
of FERL to solve the PORL problem. Second we made a comparison of SNNs and RBMs. Third
we introduced the pseudo-free-energy and its approximations (aFE and iFE) to convert RBMs
to SNNs. In this section, we discuss the SNN implementation of FERL and its possibilities.

Comparison with the original RBM
First, the biggest difference between the original version of the RBM and the proposed SNN
version is the neuron model. The original model uses a binary node, while the proposed model
uses a leaky integrate-and-fire neuron model. In the proposed model, due to the fact that the
neurons have an absolute refractory period of 2 ms, the maximum number of spikes that can
be fired in the 100 ms interval used in the iFE computation is 50. However the actual number
of spikes fired is much smaller than this theoretical maximum. For example, after successful
learning in the center reaching task, when the agent executed action 1 in state 0, the mean
spike counts during the 100 ms iFE computation interval were 14.53 (standard deviation: 0.64)
for the state neurons, 31.62 (standard deviation: 2.85) for the hidden neurons, and 34.78 (stan-
dard deviation: 0.64) for the action neurons. In the original RBM, state and action nodes are bi-
nary, which is equivalent to generate 50 spikes in the SNN during the last 100 ms of the action
cycle. Regardless of the low firing rates in the proposed model, the agent is still successful in
solving the task.

Second, another difference is discrete and continuous time. This directly influences both ac-
tion selection and the computation of the free-energy. For the action selection, in order to select
an action after an observation is given in the proposed model, spike counts are compared
across action neurons. On the other hand in the original RBM the free-energy must be explicit-
ly computed for each action. For the computation of the free-energy, in the proposed model,
the average firing rates of the hidden neurons after action selection are used to approximate the
posterior distribution, which is computed analytically in the original RBMmodel.

Third, there are benefits of using continuous time formulation. For the action selection, in
our proposed formulation the fact that the firing rate can be computed sequentially means that
the variance of the neural firing rate corresponding to a candidate action can be used to control
the time the action is executed. For the computation of the free-energy, in the sequential ap-
proximation scheme (S2 Fig.), the iFE variance can be calculated on the fly. This quantity rep-
resents the current iFE “confidence”. It can therefore be used as an additional variable which
controls the learning speed.

Learning ability with aFE and iFE
That learning fails with aFE but is successful with iFE despite delay randomization is at first
sight puzzling. In this section, we discuss the reasons why learning failed in the case of aFE.
One possible reason is that the simulation parameters are not adapted to aFE, which leads to
the failure of learning,

Another possible reason is the different firing patterns generated by the aFE and iFE models.
Clear firing patterns do not emerge in the aFE model. Learning does not happen in the aFE be-
cause firing patterns are smoothed out over the last 100 ms in the action phase, as shown in
Fig. 3A. This suggests that firing patterns contribute to learning. The fact that emergent pat-
terns persist in spite of delay randomization provides a clue for the resolution of this puzzle. In
our network hidden neurons receive inputs from many action neurons, and vice versa. If pre-
synaptic neurons fire at moderate frequencies postsynaptic neurons tend to accumulate input
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current at a constant rate regardless of variability in synaptic delays. This persistent input cur-
rent maintains neurons in a constant firing regime. Also the firing rates of the integrate-and-
fire neurons we use in our model saturate as input current is increased. Since neurons have
similar firing rates they can generate firing patterns. Also the fact that hidden nodes and action
nodes are bilaterally connected ensures that the firing patterns they generate have the same fre-
quency. Recursive firing patterns with the same frequency ensure dominant network configu-
rations, which are represented by a few firing patterns. Therefore, for learning to succeed, the
system only needs to learn the same state-action value for these limited firing patterns. This
embedding of the same state-action value in the limited but multiple firing patterns ensure the
robust maintenance of state-action value and successful learning.

Working memory architecture
Our model was able to solve the digit matching T-maze task. This history-dependent PORL
task is difficult enough to be considered an approximation to the actual tasks solved by real ani-
mals. It requires not only processing of high dimensional input but also depends on retained
memories of past observations. Although our model can memorize past states, its architecture
does not allow it to discriminate when or how many times the agent has visited any particular
state. Furthermore past action sequences are not stored in the current model. Since our main
purpose was to propose a neural architecture capable of solving a PORL task, we simply used a
memory architecture based on a circular Gaussian distribution. More challenging PORL tasks
could be solved by introducing other types of memory architectures [22, 23]. The pretrained
weights wmo were also chosen to provide efficient delivery of state information to memory neu-
rons and reduce computational cost. However it might be possible for agents to learn without
this weight pretraining if spike timing dependent plasticity or some other learning mechanism
is introduced in the recurrent memory networks connections.

Biological plausibility
Here we discuss insights into biological reinforcement learning algorithms which can be drawn
from our model and its biological plausibility. Since the FERL has been derived on purely theo-
retical grounds, some points do not agree with the biological evidence. First, the symmetric
weight constraint in the RBM is unlikely to be realized in a real biological network. Second, it is
difficult to imagine a mechanism whereby TD errors in successive time steps can be computed
from the free-energies.

In spite of these inconsistencies with the biological evidence our model has the potential to
provide insight into the neural implementation of reinforcement learning. This is because it is
able to handle the high dimensional highly noisy observations which are necessary for the solu-
tion of PORL tasks in the real world [24]. First, the way sensory inputs are encoded in a goal-
directed way in our experiments closely mimics experimental evidence found in the prefrontal
cortex [25, 26], the temporal cortex [27], and the lateral intraparietal (LIP) area. As in these ex-
perimental studies, activation patterns of our model neurons after reward based learning reflect
their reward and action dependent categories (Fig. 5). Second, the FERL update rule appears to
be neurally plausible. A wealth of evidence suggests that dopamine encodes the TD error and
globally modulates plasticity in striatal neurons [2, 5, 28]. Although our update rule was de-
rived purely from the minimization of a global objective function, the mean squared TD error,
it includes not only a global TD term but also a local activity dependent Hebbian learning like
term. Third, given the ability in FERL to sample actions according to the policy reflecting the
implicitly-encoded learned state-action values, it is possible that biological networks represent
state-action values implicitly. Action selection itself is more important than the explicit repre-
sentation of state-action values. Furthermore analysis of the activation patterns shown by
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hidden neurons after training in the FERL framework reveals that different neurons encode dif-
ferent types of information such as state-action values and pure state values as well as specific
actions [29]. This new perspective provides a new interpretation of experimental results that
show the existence of different types of state-action value coding neurons [4]. These character-
istics provide a glimpse into underlying laws which are only revealed through a top
down approach.

Supporting Information
S1 Fig. Characteristics of the pretrained weights between the observation layer and the
memory layer.Weights between the observation layer and the memory layer are trained by the
contrastive divergence algorithm (CD-3) [19]. The first (leftmost) column shows the images of
hand-written digits (20 × 15 pixels) shown to an agent. The second column shows the posterior
over the memory layer given the images of hand-written digits. The third column shows the re-
constructed images (observations given corresponding posteriors). The other columns are or-
ganized in the same fashion.
(EPS)

S2 Fig. Estimation of iFE by sequential manner. The cumulative reward (left). An example of
iFE trace during when the agent is one step before the goal and the agent chose the action to
reach the goal (right). The each trajectory shows samples before learning (black), during learn-
ing (blue), after learning (red).
(EPS)
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