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Thesis Abstract 
 
Microbial eukaryotes (protists) are important contributors to marine biogeochemistry and play 
essential roles as both producers and consumers in marine ecosystems. Among protists, 
mixotrophs—those that use both heterotrophy and autotrophy to meet their energy 
requirements—are especially important to primary production in low-nutrient regions. 
Acantharian protists (clades E & F) accomplish mixotrophy by hosting Phaeocystis spp.  as algal 
endosymbionts and are extremely abundant in subtropical low-nutrient regions where they form 
productivity hotspots. Despite their ecological importance, acantharians remain understudied due 
to their structural fragility and inability to survive in culture. In order to overcome these 
challenges and illuminate key aspects of acantharian biology and ecology—including 
distribution, abundance, and specificity and specialization of symbioses—single-cell RNA 
sequencing methods were developed for acantharians and used alongside environmental 
metabarcode sequencing and high-throughput, in-situ imaging. Major findings from this thesis 
were that i) acantharian cell (> 250 µm) concentrations decrease with depth, which correlates to 
patterns in relative sequence abundances for acantharian clades with known morphologies but 
not for those lacking known morphology, and that ii) while individual acantharians 
simultaneously harbor multiple symbiont species, intra-host symbiont communities do not match 
environmental communities, providing evidence for multiple uptake events but against 
continuous symbiont turnover, and that iii) photosynthesis genes are upregulated in symbiotic 
Phaeocystis , reflecting enhanced productivity in symbiosis, but DNA replication and cell-cycle 
genes are downregulated, demonstrating that hosts suppress symbiont cell division. Moreover,  
storage carbohydrate and lipid biosynthesis and metabolism genes are downregulated in 
symbiotic Phaeocystis , suggesting fixed carbon is relinquished to acantharian hosts. Gene 
expression patterns indicate that symbiotic Phaeocystis  is not nutrient limited and likely benefits 
from host-supplied ammonium and urea, thus providing evidence for nutrient transfer between 
hosts and symbionts. Interestingly, genes associated with protein kinase signaling pathways that 
promote cell proliferation are downregulated in symbiotic Phaeocystis . Deactivation of these 
genes may prevent symbionts from overgrowing hosts and therefore represents a key component 
of maintaining the symbiosis. This research contributes new insights into the ecologically 
relevant photosymbioses between Acantharea and Phaeocystis  and illustrates the benefits of 
combining single-cell sequencing and imaging technologies to illuminate important microbial 
relationships in marine ecosystems. 
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Thesis Introduction 
Protists—microbial, unicellular eukaryotes—are important contributors to marine 

biogeochemistry and play essential roles as both producers and consumers in marine ecosystems 

(Sherr et al., 2007) . Among protists, mixotrophs—or those that use both heterotrophy and 

autotrophy to satisfy their energy requirements—are especially important to primary production 

in low-nutrient regions where nutrient availability otherwise limits primary production (Mitra et 

al., 2014; Worden et al., 2015) . Acantharian protists in molecular clades E and F (Arthracanthida 

and Symphyacanthida) accomplish mixotrophy by hosting predominantly Phaeocystis species as 

algal endosymbionts (Decelle et al., 2012a; Mars Brisbin et al., 2018) . These photosymbiotic 

holobionts, encompassing hosts and multiple algal partners, are abundant in subtropical, 

low-nutrient regions and create localized primary production hotspots (Michaels, 1991; Caron et 

al., 1995) . Despite their ecological importance, acantharians remain understudied due to their 

structural fragility and inability to survive in culture (Michaels, 1988; Decelle et al., 2012a) , and 

as a result, major gaps exist in our understanding of acantharian biology. For example, when and 

where photosymbiotic acantharians reproduce is only hypothesized (Decelle et al., 2013) , as is 

the fate of their symbionts when they reproduce (Decelle et al., 2012a; Mars Brisbin et al., 2018) . 

This thesis, therefore, combines multiple culture-free approaches with non-destructive sampling 

in order to illuminate key aspects of acantharian biology and ecology: Chapter One evaluates 

acantharian abundance and vertical distribution in the western North Pacific and considers results 

in the context of acantharian life-history traits, Chapter Two investigates intracellular symbiont 

diversity in acantharians and examines questions regarding symbiont uptake and turnover, and 
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Thesis Introduction 

Chapter Three investigates changes in symbiont gene expression compared to free-living cells 

and proposes mechanisms for host control and nutrient exchange within the symbiosis. 

Typical acantharian morphologies include exquisite star-shaped skeletons, composed of 

strontium sulfate, that are embedded within amoeboid cells. While beautiful, acantharian 

structures are so delicate that they are often crushed or broken in plankton nets. Sampling 

acantharians is further complicated by the chemical composition of their skeletons: strontium 

sulfate dissolves in seawater and many traditional fixatives, including formalin (Michaels, 1988) . 

As a result, acantharian contributions to plankton net and sediment trap samples are often 

underestimated (Michaels, 1988; Michaels et al., 1995) . In fact, our current appreciation for 

acantharian abundance and primary production in low-nutrient surface waters rests almost 

completely on a series of studies performed in the late 1980’s and early to mid 90’s that used 

targeted methods to quantify acantharian abundances in the North Atlantic Subtropical Gyre, the 

North Pacific Subtropical Gyre, and the equatorial Pacific (Michaels, 1988, 1991; Caron et al., 

1995; Michaels et al., 1995; Stoecker et al., 1996) . Since then, acantharian contributions to 

plankton communities have primarily been documented using metabarcoding—amplifying and 

sequencing a small variable region within a conserved gene from a mixed, environmental sample 

to determine which organisms were present in the sample and their approximate relative 

abundances. This methodology has many advantages: it is easy, relatively inexpensive, and very 

fast. Unfortunately, because the resulting data are compositional (i.e. the abundance measured 

for a single group is inherently affected by the abundances of all other taxa) , they can never 

offer insight into actual abundances of different organisms (Gloor et al., 2017) . As meta ‘omics 

methods have become increasingly popular, the more tedious work of carefully sampling and 
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Thesis Introduction 

counting cells has fallen by the wayside and quantifying acantharians has not been revisited in 

the last decades, nor have new regions been surveyed.  

Chapter One of this thesis takes a modern approach to quantify acantharian abundances 

in the western North Pacific; a high-throughput, in-situ plankton imaging system was deployed 

to image acantharians in their natural state and determine cell concentrations at an extremely fine 

vertical resolution. Metabarcoding was performed alongside imaging to allow for comparisons 

between results from the two methods and to ultimately provide deeper insights into acantharian 

biology, particularly in regards to morphology and life-history. In-situ plankton imaging has 

already revealed high abundances of larger photosymbiotic protists around the globe, but the 

smaller size of most acantharians has so far precluded using this method to fully evaluate 

acantharian abundances (Dennett et al., 2002; Biard et al., 2016) . The imaging system used to 

collect data for this thesis is able to image cells with diameters greater than 250 µm, which aligns 

well with typical acantharian sizes. Results demonstrated that current acantharian cell 

concentrations in surface waters of the western North Pacific are quite similar to the 

concentrations previously reported from the eastern N. Pacific, equatorial Pacific, and N. 

Atlantic, indicating sustained acantharian abundances over space and time. Furthermore, imaging 

results correlated well with metabarcoding results for acantharians with known morphologies. In 

contrast, metabarcoding results for basal acantharian clades defined only by environmental 

sequences and without any known morphology did not correlate with abundances calculated 

from imaging. These results suggest that basal acantharian clades may not possess characteristic 

star-shaped skeletons, supporting predictions based on evolutionary relationships (Decelle et al., 

2012c) , or they may be too small to be caught on camera. Moreover, the observed variation in 
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cell size with depth aligns well with current hypotheses regarding asymbiotic acantharian 

cell-cycles: adult cells or cysts sink quickly to release reproductive swarmers at depth and 

juveniles slowly rise to the surface as they grow in size (Decelle et al., 2013) . Previously, 

photosymbiotic acantharians were hypothesized to complete this cycle in the photic zone since 

they cannot form cysts and rely heavily on photosynthesis (Decelle et al., 2013) , but results 

presented in Chapter One suggest photosymbiotic acantharians may also make the journey to the 

deep sea to reproduce. Lastly, the in-situ, non-destructive imaging allowed for a new acantharian 

behavior to be documented, which may represent a previously undescribed predation strategy 

among acantharians. 

Photosymbioses, like those between acantharians and their algal symbionts, are generally 

seen as mutualistic, based on the assumption that symbionts benefit from nitrogen and 

phosphorus supplied by hosts while simultaneously providing hosts with photosynthetically 

derived fixed organic carbon. It is unknown, however, whether Phaeocystis  cells symbiotic to 

acantharians retain reproductive capacity, nor if they can escape or are ever released from 

symbiosis, thus calling into question whether symbionts can truly benefit from the relationship 

(Decelle, 2013) . Photosymbiotic hosts require more symbionts to meet their metabolic needs as 

they increase in size, and, indeed, larger acantharians have more symbionts than smaller 

acantharians (Michaels, 1991) . At the same time, hosts must manage symbiont populations to 

ensure symbionts do not overgrow them. Hosts can limit symbiont population size by 

systematically digesting or releasing symbionts, or by preventing symbiont cell division 

(Boettcher et al., 1996; Titlyanov et al., 1996; Fishman et al., 2008) . Hosts that manage symbiont 

populations by digesting and releasing symbionts can afford to allow symbionts to divide within 
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host tissue, but if hosts regulate symbiont populations by preventing symbiont division, they 

must collect additional symbionts from the environment to meet their metabolic needs. Chapter 

Two explores these possibilities by assessing intra-host symbiont diversity within individual 

acantharian hosts through single-holobiont metabarcoding and by using fluorescent confocal 

microscopy to assess whether symbionts are systematically digested. Results demonstrated that 

acantharians simultaneously host multiple strains, species, and genera of symbionts, indicating 

that rather than starting with one symbiont that multiplies as the host grows, hosts continually 

recruit new symbionts from the environment. Furthermore, fluorescent imaging revealed that 

symbionts are not found within phagolysosomes and that lysosomes are not concentrated near 

symbionts, demonstrating that hosts do not regularly digest symbionts. Together, these results 

suggest that symbionts are maintained within hosts, but are probably not dividing, providing new 

evidence against mutualism in this relationship.  

Given that symbionts are maintained and not digested by hosts (Chapter Two), it follows 

that hosts should manipulate symbiont cell division to regulate symbiont population size. 

Chapter Three of this thesis uses transcriptome analyses to investigate molecular mechanisms 

involved in host control of symbionts and nutrient transfer between acantharians and 

Phaeocystis , and further explores the question of mutualism versus exploitation in acantharian 

photosymbioses. Moreover, endosymbiosis was fundamental to the evolution of current cellular 

complexity in extant eukaryotes (Archibald, 2015) . Elucidating molecular processes involved in 

photosymbioses, which can represent early intermediary stages of chloroplast acquisition, will, 

therefore, lead to a better understanding of steps involved in the evolution of secondary and 

tertiary chloroplasts among photosynthetic eukaryotes (Keeling, 2004; Archibald, 2015) .  
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Since acantharians collected from the same place can host distinct symbiont 

communities, as was shown in Chapter Two, it was necessary to perform single-holobiont RNA 

extractions in order to compare symbiotic gene expression to appropriate reference 

transcriptomes (as opposed to pooling holobionts). Unfortunately, the small size of acantharians, 

combined with the chemical makeup of their skeletons—divalent cations like those formed by 

strontium can interfere with nucleic acid extraction kit chemistry—meant that established 

methods for single-cell RNA extractions were not effective. Instead, methods for 

high-throughput single-cell sequencing were adapted and optimized for use with single 

acantharians (Trombetta et al., 2014) . Once working, these methods eventually allowed for 

single-holobiont transcriptomes to be sequenced from sixteen individual acantharians.  

Symbiotic gene expression within individual acantharian holobionts was compared to 

expression measured in three biological replicates each of two symbiont species grown in 

standard culture conditions: Phaeocystis cordata  and Phaeocystis jahnii . Overall, 

symbiosis-associated gene expression differed slightly between the two Phaeocystis  species, but 

there were several striking similarities. First, photosynthesis genes were significantly upregulated 

in symbiosis for both species, confirming that symbionts actively photosynthesize  in hospite. 

Second, genes involved in DNA replication and cell-cycle progression were significantly 

downregulated in symbiosis for both species, indicating that cell division is inhibited in hospite. 

These results are consequential because they suggest a mechanism for symbiont population 

control in Acantharea- Phaeocystis  photosymbioses—symbionts are prevented from dividing 

within host cells. Nuclear encoded chloroplast division genes were expressed at similar levels in 

symbiosis as in free-living cells, indicating that chloroplast division continues even though the 
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cell-cycle is inhibited. This is consistent with observations of altered phenotypes in symbiotic 

Phaeocystis —symbiotic cells are larger than free-living cells and have many additional 

chloroplasts (Febvre and Febvre-Chevalier, 1979; Decelle et al., 2019) . Expression patterns of 

nitrogen metabolism genes differed for the two species in symbiosis, but in both cases, results 

point to hosts providing ammonium and urea, and neither species seems to be nitrogen or 

phosphorus limited in symbiosis. Instead of limiting symbiont access to nutrients to suppress cell 

division, hosts may manipulate cell signaling pathways that transduce extracellular signals to the 

nucleus and influence cell-proliferation. By keeping symbionts well-fed and utilizing 

cell-signaling to maintain symbiont population sizes, hosts simultaneously maximize 

photosynthetic output and prevent symbiont overgrowth. While it cannot be determined from 

these data if the transformation of symbionts is reversible, it seems unlikely that symbionts can 

recover from such extreme remodeling, which would make the symbiosis an evolutionary dead 

end for Phaeocystis , and, therefore, makes mutualism improbable. 
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Chapter One: Acantharian abundance and vertical 
distribution illuminated through paired 
high-throughput imaging and sequencing 

Abstract 
Acantharians are important contributors to surface primary production and to carbon flux to the 

deep sea, but are often underestimated because their delicate structures are destroyed by plankton 

nets or dissolved by preservatives. As a result, relatively little is known about acantharian 

biology, especially regarding their life-cycles. This study takes a paired approach, bringing 

together high-throughput, in-situ imaging and high-throughput sequencing to investigate 

acantharian abundance, vertical distribution, and life-history in the western North Pacific. 

Observed concentrations of acantharian cells correlated well with sequence abundances from 

acantharians with known, recognizable morphologies, but not to sequences from those without 

known morphology (basal environmental clades). These results suggest basal clades may lack 

characteristic star-shaped skeletons or are much smaller than known acantharians. The decreased 

size-range of acantharians imaged at depth supports current hypotheses regarding asymbiotic 

acantharian life cycles: cysts or vegetative cells release reproductive swarmer cells at depth and 

juvenile cells grow as they ascend towards the surface. Moreover, sequencing data present the 

possibility that photosymbiotic acantharians also reproduce at depth, like their asymbiotic, 

encysting relatives, which is counter to previous hypotheses. Finally, in-situ imaging captured a 

new acantharian behavior that may be a previously undescribed predation strategy. 
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1.1. Introduction 
Acantharians are important contributors to primary production in surface waters and to 

carbon flux to the deep sea (Michaels, 1991; Michaels et al., 1995; Decelle et al., 2013; Belcher 

et al., 2018) . Acantharians in molecular clades E and F (Arthracanthida and Symphyacanthida), 

which include the majority of described acantharian species, host algal endosymbionts from the 

haptophyte genus Phaeocystis  (Decelle et al., 2012a; Mars Brisbin et al., 2018)  that exhibit 

elevated photosynthetic efficiency when living symbiotically (Decelle et al., 2019) . The 

acantharian skeleton is composed of strontium sulfate, the densest known organic biomineral, 

causing acantharians to sink quickly after death (Decelle et al., 2013) . In addition, their 

amoeboid cell structure with sticky cellular extensions (pseudopodia) predisposes sinking 

acantharians to form aggregates, further enhancing sinking rate (Gutierrez-Rodriguez et al., 

2019) . The biogeochemical significance of acantharians has been historically underestimated, 

however, because traditional sampling methods often miss acantharians; plankton nets destroy 

delicate acantharian cell structures (Michaels, 1988)  and common preservatives dissolve 

acantharian skeletons (Bernstein et al., 1992) . DNA sequencing surveys have revealed that 

acantharians account for large numbers of sequences from the water column and sediment traps 

in diverse ecosystems, including tropical and subtropical regions (Fontanez et al., 2015; Hu et 

al., 2018) , polar regions (Martin et al., 2010; Decelle et al., 2013) , and productive temperate 

coastal regions (Countway et al., 2010; Gutierrez-Rodriguez et al., 2019) . However, the 

relationship between DNA sequence abundance and acantharian biomass or flux is not clear and 

is complicated by acantharians being multinucleated and having multiple life stages, including 

encystment and reproductive swarmer production. 
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DNA metabarcoding—sequencing a region of the small-subunit ribosomal RNA gene for 

an entire community—has been extensively applied to estimating microbial community structure 

(e.g. de Vargas et al., 2015; Pernice et al., 2016) . While this method has undoubtedly 

revolutionized our understanding of microbial diversity in different ecosystems, it has several 

significant limitations. First, metabarcoding and other meta ‘omics produce compositional data, 

meaning that the abundance of any single group is inherently influenced by the abundance of 

other groups (Gloor et al., 2017) . This issue is further complicated by the varying nucleus and 

gene-copy numbers among protist groups—some organisms, like dinoflagellates, have many 

copies of ribosomal RNA genes and may be more represented in sequencing datasets as a result 

(Gong et al., 2013; Gong and Marchetti, 2019) . Gene-copy and nucleus number is especially 

problematic because it precludes the possibility of extrapolating absolute abundances from 

sequences and total cell counts—if the cell abundance to sequence abundance ratio was 

consistent, absolute abundance could be determined by multiplying the relative sequence 

abundance with the total cell count in a sample (Gong and Marchetti, 2019) . The second major 

limitation of DNA metabarcoding is that DNA can persist after a cell dies and, therefore, does 

not reflect metabolic state. As a result, it is unknowable whether DNA sequences derive from 

actively metabolizing cells, dormant cells or cysts, reproductive cells, or dead cells and detritus 

(Torti et al., 2015) . This is particularly relevant in evaluating acantharian abundances and 

relative contributions to biogeochemical cycles since acantharian vegetative cells, reproductive 

cells, and cysts will differentially contribute to photosynthesis, grazing/predation, and carbon 

flux (Decelle et al., 2013) . 

20 

https://paperpile.com/c/tXEF6Q/P7mNH+f6J4F
https://paperpile.com/c/tXEF6Q/MayFj
https://paperpile.com/c/tXEF6Q/uJ84e+rKeaz
https://paperpile.com/c/tXEF6Q/uJ84e
https://paperpile.com/c/tXEF6Q/ScjEU
https://paperpile.com/c/tXEF6Q/E99kd


Chapter 1: Acantharian abundance and vertical distribution illuminated through paired 
high-throughput imaging and sequencing 

 While not yet as widely adopted as molecular methods, high-throughput, in-situ imaging 

systems are being used to quantitatively assess abundances of marine microbes and other 

components of the plankton (Dennett et al., 2002; Grossmann et al., 2015; Biard et al., 2016) . 

Such imaging systems can drastically improve the spatial resolution of sampling and process 

much larger volumes of water than can be included in DNA surveys. Furthermore, imaging cells 

where they naturally occur and in their native orientation can reveal previously undescribed 

behaviors and associations (Möller et al., 2012; Greer et al., 2013; Peacock et al., 2014) . 

Analyzing data from high-throughput imaging, however, is still challenging; processing images 

and creating training sets for use with machine learning algorithms requires expertise in plankton 

taxonomy and is time-intensive (Orenstein et al., 2015) . The taxonomic resolution attainable 

with a particular imaging system depends on image size and quality, but will almost always be 

less than is possible with molecular methods. Furthermore, taxonomic resolution will vary for 

different taxonomic groups and will be higher for those with more defined morphological 

features and lower for organisms, like flagellates, that lack identifying features (Sieracki et al., 

2010) . Finally, a single imaging system cannot image the entire size-range of marine plankton, 

necessitating multiple systems to holistically characterize plankton communities (Lombard et al., 

2019) . Vegetative acantharian cells, with their characteristic star-shaped skeletons, are 

particularly amenable to imaging surveys (Biard et al., 2016) , but distinguishing acantharian 

reproductive cells or cysts with high-throughput, in-situ imaging may not be possible. 

DNA metabarcoding and high-throughput, in-situ imaging both have benefits and 

drawbacks as methods for assessing plankton abundance and community structure. By applying 

these methods together, this study aimed to better characterize acantharian abundance, 
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water-column distribution, and life-history. The BellaMare In-Situ Ichthyoplankton Imaging 

System (ISIIS) small-imager/area-scanner (Cowen and Guigand, 2008; 

www.planktonimaging.com/smaller-imagers ) was deployed at four sites along the Ryukyu 

Archipelago in the western North Pacific. Replicate water samples for DNA sequencing were 

also collected from the surface, deep chlorophyll maximum, middle water column, and about 10 

m above the seafloor from each site where imaging was performed and from 10 additional sites 

along the Ryukyu Archipelago. Water samples were sequentially size-fractionated in an effort to 

separate acantharian vegetative cells from reproductive swarmers. Relative abundance of 

acantharian sequences in the larger size fraction were compared to cell counts from imaging 

profiles to assess the relationship between acantharian relative sequence abundance and cell 

abundance. Metabarcoding results were further analyzed to evaluate the taxonomic distribution 

of acantharians by depth in the western North Pacific and results from size fractionation were 

considered in the context of hypothesized acantharian life-cycles.  

1.2. Materials and Methods 

1.2.1. Sampling locations 

Water samples for DNA sequencing were collected from 14 sites spanning the length of 

the Ryukyu Archipelago during the Japan Agency for Marine-Earth Science and Technology 

(JAMSTEC) MR17-03C cruise from May 29 to June 13, 2017 (Figure 1.1). The JAMSTEC 

DEEP TOW 6KCTD system, a towable frame outfitted with several imaging systems and a 

Conductivity-Temperature-Depth (CTD) sensor, was additionally deployed to a maximum of 
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1,000 m at four of the sampling sites (3, 10, 15, and 17), to take vertical profiles of plankton 

images (Figure 1.2). 

 
Figure 1.1. Map of sampling station locations. Stations where water samples for DNA 
analysis were collected and high-throughput imaging was performed are marked with closed red 
circles. Stations, where only water samples for DNA analysis were collected, are marked with 
open red circles. 
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A.                                                                     B. 
 

 
 

Figure 1.2. Photos of the JAMSTEC DEEP TOW 6KCTD (A) and BellaMare ISIIS small 
imager/area scanner attached to the DEEP TOW (B). Red arrows indicate the position of the 
ISIIS system on the DEEP TOW (A) and the imaging area of the ISIIS system (B). At each 
sampling station, the DEEP TOW was lowered straight down through the water column, to a 
maximum depth of 1000 m, before being towed at 1000 m and then continuing to be towed as it 
was raised back up through the water column. Only images from downward casts were used for 
this study, since forward motion of the frame prevented plankton from being properly imaged by 
the ISIIS. 

1.2.2. Image acquisition and processing 

An ISIIS small imager/area-scanner (BellaMare, San Diego, CA) was attached to the 

DEEP TOW to collect vertical profiles of plankton images (Figure 1.2). The camera system was 

set to image organisms > 250 µm, which aligns well with the size of vegetative acantharian cells. 

The ISIIS camera was programmed to take 1 photo per second coinciding with an LED flash. 

Each photo imaged 0.39 L (st. 3 and 10) or 0.35 L (st. 15 and 17) parcels of water in 2448 x 2050 

pixel resolution, with each pixel being 22.5 x 22.5 µm. Because the ISIIS camera was attached to 

the back of the DEEP TOW, only photos taken during the down-cast were considered in this 

study because the forward motion of the DEEP TOW during the up-cast could interfere with 

plankton moving naturally through the imaging area of the camera. A total of 4,010 photos were 
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taken during the down-cast at station 3; 3,639 at station 10; 3,056 at station 15; and 2,453 at 

station 17, so that 13,158 photos were included in the study—an equivalent of 4,931.5 liters of 

seawater. Down-cast photos were manually viewed by a single researcher and Regions of 

Interest (ROIs) containing characteristically star-shaped acantharian vegetative cells were 

cropped and saved. The ISIIS internal clock was calibrated to match that of a Sea-Bird SBE 9 

CTD (Sea-Bird Scientific, Bellevue, WA) mounted to the DEEP TOW so that CTD data could 

be used to determine the depth at which each image was taken. Concentrations of acantharian 

cells per liter were determined by normalizing acantharian cell counts to the total number of 

images taken for 10 m bins and correlation between cell concentration and depth was evaluated. 

ROI image area was used as a proxy for cell size, allowing for comparisons in cell-size range 

between sites and depths. Figure 1.3 illustrates the morphological diversity and size range of 

acantharians imaged in this study. Acantharian ROIs and all raw images used in the study are 

archived on Zenodo ( https://doi.org/10.5281/zenodo.3605400 ). 
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Figure 1.3. Acantharians imaged in this study, illustrating the morphological diversity 
and size range of imaged cells.  

1.2.3. Water sampling and DNA extraction 

A Niskin bottle rosette with 30 bottles (10 L) and fitted with a CTD probe (Sea-Bird SBE 

911plus) was deployed at each cruise station to collect water from the deep chlorophyll 

maximum (DCM), the middle water column (mid), and approximately 10–20 m above the 

seafloor (bottom) (Table 1.1). Surface seawater was collected by bucket alongside the research 

vessel. Two replicates of 4.5 liters (surface) from  separate bucket casts or 5 liters from separate 

Niskin bottles (DCM, mid, bottom) were sequentially filtered under a gentle vacuum through 

10.0-µm and 0.2-µm pore-size polytetrafluoroethylene (PTFE) filters (Millipore, Burlington, 

MA). Sequential size filtering was implemented in order to separate vegetative acantharian cells 

and cysts from reproductive swarmer cells (< 5 µm, Decelle et al., 2012a) , although complete 
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separation is probably not possible. Filters were flash-frozen in liquid nitrogen and stored at 

−80°C. 

DNA was extracted from PTFE filters (n = 224, two replicates of two filter pore-sizes at 

four depths from 14 stations) following manufacturer's protocols for the DNeasy PowerWater 

Kit (Qiagen, The Netherlands) including the optional heating step for 10 min at 65°C to fully 

lyse cells. Sequencing libraries were prepared following the Illumina 16S Metagenomic 

Sequencing Library Preparation manual, but with universal eukaryotic primers for the V4 region 

of the eukaryotic 18S rRNA gene (F: CCAGCASCYGCGGTAATTCC, Stoeck et al., 2010; R: 

ACTTTCGTTCTTGATYR, Mars Brisbin et al., 2018)  and 58°C annealing temperature in the 

initial PCR. Amplicon libraries were sequenced by the Okinawa Institute of Science and 

Technology (OIST) DNA Sequencing Section on the Illumina MiSeq platform with 2 x 300-bp 

v3 chemistry. Amplification and sequencing were successful for 211 samples, with at least one 

replicate for each sample type. 

Table 1.1. Coordinates, sampling depths, and total depth for all sampling stations. 
Station Longitude 

(°E) 
Latitude (°N) “DCM” Depth 

(m) 
“Mid” Depth 
(m) 

“Bottom” 
Depth (m) 

Site Depth 
(m) 

2 126.468 26.290 92 700 1066 1080 

3 127.500 25.416 72 1000 2385 2407 

4 126.900 25.928 58 700 1834 1857 

5 126.084 26.501 82 700 1900 1922 

8 124.994 25.942 88 700 1671 1681 

9 124.012 25.502 74 700 1890 1914 

10 123.837 24.857 85 700 1515 1530 

11 122.840 24.760 50 700 1217 1223 

12 126.903 27.785 80 700 1024 1033 

13 127.339 29.003 80 700 834 846 
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14 127.501 28.747 75 700 1013 1025 

15 129.029 28.792 67 700 776 783 

17 129.570 28.957 90 700 772 779 

18 130.904 28.981 100 1500 2957 2981  

 

1.2.4. Sequence analysis 

Sequence data from each of four flow-cells were denoised separately using the Divisive 

Amplicon Denoising Algorithm (Callahan et al., 2016a)  through the DADA2 plug-in for QIIME 

2 (Bolyen et al., 2019) . Denoised  Amplicon Sequence Variant (ASV) tables were merged before 

taxonomy was assigned to ASVs with a naive Bayes classifier trained on the Protist Ribosomal 

Reference (PR 2) database (Guillou et al., 2013)  using the QIIME 2 feature-classifier plug-in 

(Bokulich et al., 2018) . Results were imported into the R statistical environment (R Core Team, 

2018)  for further processing with the Bioconductor package phyloseq (McMurdie and Holmes, 

2013) . Full protist communities (including all eukaryotic ASVs, except those classified as 

Metazoa) were analyzed first to evaluate to what degree overall community composition varied 

by sampling depth and by filter pore-size at each depth. Sequences classified as Acantharea were 

further analyzed separately to determine (i) if patterns by depth and filter pore-size for 

acantharians reflected overall community patterns, (ii)  how much acantharian sequences 

contributed to the total number of sequences from each depth, (iii) how the relative abundance of 

different acantharian clades varied by depth, and (iv) if the acantharian contribution to total 

sequence numbers correlated to cell concentrations determined from imaging data. The data and 

code necessary to reproduce all statistical analyses are available on GitHub 
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( https://github.com/maggimars/Acanth_ImageSeq ), including an interactive online document: 

https://maggimars.github.io/Acanth_ImageSeq/Acanth_ImageSeq_Analysis.html . 

1.3. Results 

1.3.1. Sequencing results 

Overall, 31.5 million sequencing reads were generated for this study, with 

34,631–421,992 sequencing reads per sample (mean = 144,604). All raw sequence data is 

available from the NCBI Sequencing Read Archive, accession number PRJNA546472. 

Following denoising, 16.8 million sequences remained and 1.1 million were classified as 

Acantharea. We identified 1,053 unique acantharian ASVs in our dataset, out of a total of 22,656 

unique ASVs. 

In Principal Coordinates Analyses (PCoA) of Aitchison distances between samples based 

on full protist community compositions, samples clustered by depth first, with clear separation of 

surface and DCM samples from mid and bottom water samples on the primary axis; DCM and 

surface samples further separated from each other on the secondary axis (Figure 1.4A). When 

full protist communities were analyzed for each depth separately, surface and DCM samples 

separated by filter-pore size on the primary axis and mid and bottom water samples separated by 

filter-pore size on the secondary axis (Figure 1.5A), but these results were not found to be 

statistically significant with Permutational Analyses of Variance (PERMANOVA). 

Notwithstanding, the clear sample clustering by filter pore-size for each depth suggests that 

size-fractionation was moderately successful. It remains likely, however, that larger cells were 
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broken or otherwise squeezed through the larger pore-size filter to be captured on the lower 

filter, and that some smaller cells were stuck and retained on the larger pore-size filter. 

When only ASVs classified as Acantharea were included in PCoA based on Aitchison 

distances, samples also clustered by depth, but the overall pattern was distinct from that seen 

when full protist communities were analyzed. Acantharian communities varied more in mid and 

bottom water samples than full protist communities did (Figure 1.4B). Furthermore, while the 

full protist communities clustered separately by filter pore-size in each depth layer (Figure 1.5A), 

this was not true for acantharian communities, which did not separate by filter pore-size at any 

depth (Figure 1.5B). 

 
 

Figure 1.4. Principal coordinates analysis of Aitchison distance between full protist 
community compositions (A) and acantharian community compositions (B). Full protist 
communities (A) include all denoised sequences that were classified as Eukaryota, but not 
Metazoa. Acantharian communities (B) include all denoised sequences classified as Acantharea 
in the 4th taxonomic level of the PR2 database (i.e. class). Color indicates the depth layer from 
which samples were collected and shape reflects the filter pore-size used to collect samples in 
μm. Full protist communities form three main clusters by depth—surface, deep chlorophyll 
maximum (DCM), and mid/bottom (A)—whereas the acantharian communities are more varied 
in the mid and near-bottom waters (B).  
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Figure 1.5. Principal coordinates analysis of Aitchison distances between full protist 
community compositions (A) and acantharian community compositions (B) in different 
depth layers. Separating samples by depth layer allows for better resolution of the effect of 
filter pore-size on community composition. Each panel represented results for a given depth 
layer and point color reflects the filter pore-size used to collect samples in μm. Full protist 
communities (A) include all denoised sequences that were classified as Eukaryota, but not 
Metazoa. Acantharian communities (B) include all denoised sequences classified as Acantharea 
in the 4th taxonomic level of the PR2 database (i.e. taxonomic class). Full protist communities 
cluster by filter pore-size along the primary axis at the surface and DCM and along the 
secondary axis in the mid water-column (A); acantharian communities do not cluster by filter 
pore-size at any sampling depth (B).  
 

At the surface, Arthracanthida and Symphyacanthida acantharians made up almost the 

entire acantharian community in both large and small size-fraction samples at every sampling 

station (Figure 1.6). Arthracanthida and Symphyacanthida are the most recently diverging 

acantharian clades (molecular clades E and F); acantharians belonging to these clades are 

photosymbiotic and have robust skeletons that are sometimes ornamented with elaborate 

appendages (Decelle et al., 2012c) . In the DCM, the contribution of sequences deriving from 
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Chaunacanthida acantharians increased, as did sequences deriving from Acantharea-Group-II 

(Figure 1.6). The Chaunacanthinda clade diverged earlier than both Arthracanthida and 

Symphyacanthida clades. Chaunacanthida acantharians are generally asymbiotic, have less 

developed skeletons, and are capable of encystment (Decelle et al., 2012c, 2013) . The 

Acantharea-Group-II is one of several basal clades that are defined entirely by sequences 

recovered from environmental samples and have no known morphology (Decelle et al., 2012c) . 

In the mid and near-bottom water, the majority of the acantharian sequences derived from 

another basal environmental clade, the Acantharea-Group-I (Figure 1.6).  

 
Figure 1.6. Relative abundance of acantharian groups in size-fractionated samples from 
four depths in the western North Pacific. Sampling stations are ordered on the x-axis from 
south to north and the plot is faceted by sampling depth (columns) and filter pore-size in μm 
(rows). When replicates were available for a particle station/depth/filter combination, replicates 
were collapsed and represented with a single stacked bar. Stacked bars are divided to 
represent the contribution of major acantharian clades to acantharian communities: dark blue 
(Acantharea-X) represents sequences that were not classified past the class level (Acantharea). 
The acantharian communities at the surface are dominated by Symphyacanthida and 
Arthracanthida acantharians, while at the DCM, Symphyacanthida and Arthracanthida 
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acantharians still make up a large proportion of reads but communities are more diverse. 
Acantharian communities are dominated by the basal environmental clade Acantharea-Group-I 
in the mid and near-bottom waters.  
 

 In order to evaluate the relationship between depth and acantharian sequence abundance, 

the percent contribution of acantharian ASVs to all sequences was calculated for each sample 

and a linear regression model was fit to the percentages with depth as the independent variable. 

The linear model fit to acantharian sequence percentages in all samples demonstrated a 

significant positive correlation to depth (R 2 = 0.25, p < 0.001, Figure 1.7A). To facilitate 

comparisons between sequencing and imaging data, linear models were also fit individually to 

acantharian sequence percentages from stations where imaging profiles were taken. Increasing 

acantharian sequence percentage with depth was apparent for three of the four stations with 

imaging profiles, but model results were only significant for station 17 (R 2 = 0.73, p < 0.01, 

Figure 1.7B). 
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Figure 1.7. Percentage of sequences deriving from acantharians in water samples from 
all stations (A) and the four stations where plankton imaging was performed (B). 
Sequence percentages refer to the proportion of reads designated as acantharian out of all 
denoised sequences for a given sample, including metazoan sequences and sequences without 
a taxonomic classification. Linear models were fit to the data and are represented by blue lines 
with the 95% confidence intervals shaded grey. The linear model results for all samples (A) are 
statistically significant (p  < 0.001) with an R2 of 0.25. The linear model results for individual 
stations (B) were only statistically significant for station 17 (p < 0.01), which had an R2 of 0.76. 
Overall, the contribution of acantharian sequences was smallest in the surface waters and 
tended to increase with depth sampled. 
 

Only acantharians in the Chaunacanthida, Arthracanthida, and Symphyacanthida clades 

are definitively known to possess the characteristic star-shape used to identify acantharian 
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vegetative cells in images from this study. Therefore, the sequence percentages of 

Chaunacanthida, Arthracanthida, and Symphyacanthida were further considered separately. 

When only sequence percentages for these clades with known morphologies were included in a 

linear model, sequence abundance was significantly negatively correlated with depth (R 2 = 0.17, 

p < 0.001, Figure 1.8A)—opposite to the relationship when all clades were analyzed together. 

The same trend was apparent for all stations with imaging profiles when evaluated 

individually—percentage decreased with depth—but model results were only statistically 

significant for station 10, with R 2 = 0.65 and p < 0.01 (Figure 1.8B). 

 
Figure 1.8. Percentage of sequences deriving from Symphyacanthida, Arthracanthida, 
and Chaunacanthida acantharians in water samples from all stations (A) and the four 
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stations where imaging profiles were performed (B). Percentages refer to the proportion of 
sequences designated as Symphyacanthida, Arthracanthida, or Chaunacanthida acantharians 
out of all denoised sequences for a given sample, including metazoan sequences and 
sequences without a taxonomic classification. Linear models were fit to the data and are 
represented by red lines with 95% confidence intervals shaded grey. The linear model results 
for all samples (A) are statistically significant (p < 0.001) with an R2 of 0.17. The linear models 
for individual stations (B) were not statistically significant (R2 = 0.27–0.65). Overall, the 
contribution of Symphyacanthida, Arthracanthida, and Chaunacanthida acantharians to the 
whole community was larger in surface waters and at the DCM and tended to be smaller in the 
mid and near-bottom waters.  

1.3.2. Imaging results 

Overall, 1,235 acantharian ROIs were identified in the study and the vast majority of 

these were found in images taken close to the sea surface (Figure 1.9A). When linear models 

were fit to log-transformed cell concentrations calculated from images, with depth as the 

independent variable, cell concentrations were significantly negatively correlated with depth at 

each station (R 2 = 0.63–0.78, p < 0.001, Figure 1.9A). These results match the relationship 

between Chaunacanthida, Arthracanthida and Symphyacanthida sequence percentages with 

depth but not the relationship between all acantharian sequence percentages with depth. To 

directly evaluate how well imaging results correlated with sequencing results, we averaged 

acantharian cell concentrations in each depth layer (surface: 0–50 m, DCM: 50–150 m, mid: 

150–700 m, deep/bottom: > 700 m) and compared these values to Chaunacanthida, 

Arthracanthida and Symphyacanthida sequence percentages in samples from corresponding 

stations and depths. Averaged cell concentrations significantly positively correlated with 

Chaunacanthida, Arthracanthida and Symphyacanthida sequence abundance (R 2 = 0.33, p < 0.05) 

following exclusion of two outlying data points with exceptionally high sequence abundance or 

imaged cell concentration (Figure 1.10). Acantharian cell size ranged widely in the surface 
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waters and near the DCM, whereas the range was more constrained and cell size was generally 

smaller in deeper water (Figure 1.9B). Interestingly, many acantharians were observed with long 

pseudopodial extensions terminating in drop-shaped structures (Figure 1.11). This morphology 

has not previously been observed in acantharians, probably due to damage caused by plankton 

nets or other handling effects.  

 
Figure 1.9. Concentrations of visible acantharian cells per Liter observed in vertical 
imaging profiles (A) and size distributions of acantharian Regions of Interest (ROIs) (B). 
Acantharian cell concentrations were determined by dividing the number of observed cells for a 
10 m section of the vertical profile by the volume of water imaged in that section. Linear models 
were fit to log-transformed data and are plotted in turquoise with 95% confidence intervals 
shaded grey (visible for station 15). Linear models for each station (A) were statistically 
significant (p < 0.001) with st. 10 R2 = 0.64; st. 3 R2 = 0.63; st. 15 R2 = 0.66; st. 17. R2 = 0.78. 
The highest concentrations of visible acantharian cells were always observed close to the sea 
surface and decreased sharply with depth. Acantharian ROIs were cropped so that the edges of 
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the rectangular photos aligned with the outward reaches of cellular extensions in each direction. 
The pixel dimensions of each ROI image were converted to microns and then the area of ROI 
images was calculated and plotted against the depth at which it was imaged (B). ROIs exhibit a 
large size range in surface waters but larger ROIs become less common in deeper waters. 
 

 
Figure 1.10. Linear regression of acantharian cells per liter averaged for surface, DCM, 
mid, and bottom depth layers against percentage sequence contributions of 
Arthracanthida, Symphyacanthida, and Chaunacanthida acantharians at stations 3, 10, 15 
and 17. Acantharian cell concentration determined by high-throughput, in-situ imaging 
significantly correlates with percent sequence contribution of acantharians with known 
morphologies (R2 = 0.33, p  < 0.05).  
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Figure 1.11. In-situ imaging reveals apparent acantharian predation behavior. 
Acantharians imaged in this study were observed with long pseudopodial extensions ending in a 
drop-like shape. This behavior has not been seen previously, probably because the extensions 
are damaged in net-collected samples. Images were taken at 13.8 m, st. 15 (A); 16.4 m, st. 15 
(B, C, E); 27.5 m, st. 15 (D); 31.2 m, st. 15 (F); 57.2 m, st. 17 (G); 13.8 m, st. 17 (H). Image 
aspect ratios are unaltered and the scale bar below panel H is accurate for all panels. Image 
orientations are likewise unchanged, with the top of images being toward the sea surface.  

1.4. Discussion  
Acantharians are important contributors to primary production throughout the global 

ocean, but detailed studies on absolute abundance and fine-scale distribution have been hindered 

by specific acantharian traits, such as their fragile cell structures and skeletons that dissolve in 

common fixatives. In addition, the smaller size of acantharians compared to other Rhizaria has 

precluded their full inclusion in quantitative imaging surveys (Biard et al., 2016; Biard and 

Ohman, 2019) . As a result, advances in our understanding of acantharian biology and ecology 

have come primarily from molecular studies. This study took a paired approach and combined 
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molecular survey methods with high-throughput, in-situ imaging to better evaluate acantharian 

abundance and distribution. We found that vegetative acantharian cells were concentrated in the 

uppermost water column, but were sporadically present throughout the water column, including 

at the deepest depths images were taken (1,000 m, Figure 1.9). The concentrations of acantharian 

cells determined from imaging data correlated with the contribution of Arthracanthida, 

Symphyacanthida, and Chaunacanthida acantharians to sequences recovered from the same 

depth and location (Figure 1.8). In contrast, the percentages of sequences from all acantharians, 

including those belonging to undescribed environmental clades, increased with depth (Figure 

1.7). Together, these results can provide information about the distribution and abundance of 

different clades of acantharians, the morphology of undescribed environmental clades, and the 

life-cycles of acantharians. 

1.4.1. Acantharian abundance and distribution in the western N. Pacific 

Maximum acantharian abundances of 0.9–4.7 cells per L were observed in this study by 

using an in-situ camera system capable of imaging organisms with diameters greater than 250 

µm. Maximum abundances were observed in the upper euphotic zone at each station: 0–10 m 

depth at stations 15 and 17, 20–30 m depth at station 3, and 40–50 m depth at station 10 (Figure 

1.9A). These results are consistent with previous studies that carefully preserved and counted 

acantharians collected by high-volume plankton pump or with Niskin bottles (Michaels, 1991; 

Michaels et al., 1995) . Michaels et al. (1995)  observed near-surface acantharia maxima in the 

subtropical North Atlantic with maximum abundances ranging from 5.5–18 cells per L (mean 1.2 

cells with  > 100 µm diameter per L in Niskin samples; mean 2.5 cells per L in pumped 

samples). Similarly, Michaels (1991)  recorded 0.1–4 acantharian cells per L (> 100 µm 
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diameter) in the surface mixed layer of the eastern North Pacific Subtropical Gyre. Using 

high-throughput, in-situ imaging, Biard and Ohman (2016) likewise found high concentrations of 

acantharians near the sea surface in the California Current Ecosystem, although they identified 

acantharians only with diameter > 600 µm. Compared to other high-throughput imaging studies 

(Biard et al., 2016; Biard and Ohman, 2019) , the acantharian abundances we recorded are closest 

to the cell abundances reported when cells were previously counted by microscopy (Michaels, 

1991; Michaels et al., 1995) . While the cell abundances we measured are likely still an 

underestimate since many acantharians are smaller than 250 µm (Michaels, 1991; Michaels et 

al., 1995) , the results from our high-throughput imaging allow for a more quantitative estimate of 

acantharian abundance and vertical distribution than analyzing sequencing data alone. 

1.4.2. Basal environmental clades of Acantharea 

The relative abundance of sequences classified as Chaunacanthida, Symphyacanthida and 

Arthracanthida decreased as sampling depth increased (Figure 1.8), which correlated with the 

acantharian abundances determined from imaging data (Figures 1.9, 1.10). In contrast, the 

relative abundance of all sequences classified as Acantharea at the class level increased with 

depth and did not correlate with imaging results. The additional acantharian sequences in 

communities from deeper water were primarily classified as Acantharea-Group-I (Figure 1.6), 

which is basal to Chaunacanthida, Arthracanthida and Symphyacanthida, and has no known 

morphology (Decelle et al., 2012c; Decelle and Not, 2015) . Similarly, the total acantharian 

contribution to clone libraries from coastal waters near California increased with depth 

(Schnetzer et al., 2011)  and environmental sequences from basal acantharian clades I–III have 

been recovered from deep waters throughout the global ocean (López-García et al., 2001; 
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Edgcomb et al., 2002; Countway et al., 2007; Not et al., 2007; Terrado et al., 2009; Gilg et al., 

2010; Quaiser et al., 2011; Decelle et al., 2013) . Here, the discrepancy between the depth-related 

increase in sequence abundance for Acantharea-Group-I and the coinciding decline in cells 

imaged with characteristic acantharian morphologies may provide new evidence regarding the 

morphology of basal environmental acantharian clades. 

The acantharian skeleton is a central feature to their morphological classification; the 

most recently diverged clades (Arthacanthida and Symphyacanthida) have spicules of varying 

lengths—some with elaborate appendages and apophyses—that are fused in a robust central 

junction, whereas earlier diverging clades (e.g. Chaunacanthida) have simpler spicules of equal 

length that either cross the central region of the cell or form loosely-fused central junctions 

(Decelle et al., 2012c) . This evolutionary trajectory—from less to more developed 

skeletons—suggests that the earliest diverging acantharian clades (i.e. basal environmental 

clades I–III) may have only rudimentary skeletal structures, or may lack the quintessential 

acantharian skeleton altogether (Decelle et al., 2012c) . The decreased observance of recognizable 

acantharian cells with depth coinciding with an increased sequence abundance for Group I 

acantharians suggests that they may, indeed, lack traditionally recognized acantharian 

morphologies. Alternatively, Group I acantharians may simply be too small to be imaged with 

the ISIIS small-imager used in this study. Ultimately, the morphology of the basal environmental 

acantharian clades can only be definitively resolved with single-cell sequencing of deep-sea 

isolates coupled with microscopy (Sieracki et al., 2019) . However, these results demonstrate that 

small cells lacking symmetrical strontium sulfate skeletons should be considered for sequencing 

in studies seeking to determine the morphology of the earliest diverging acantharian clades. 
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The high relative abundance of sequences deriving from clade I acantharians in deeper 

waters (mid and bottom water samples) and the almost complete absence of clade I sequences in 

shallow water (surface and DCM, Figure 1.6) indicate that these acantharians occupy a different 

ecological niche than the better studied, later-diverging acantharians with known morphology. 

Specifically, clade I acantharians seem to only inhabit mesophotic (i.e. the twilight zone) and 

aphotic zones, meaning they must not rely on photosymbiosis, as all Arthracanthida and 

Symphyacanthida acantharians (Decelle et al., 2012a)  and some Holacanthida acantharians 

(Decelle et al., 2012b)  do. Instead, these acantharians are most likely pure heterotrophs and their 

small proposed size means that they might graze bacteria or other small flagellates. However, 

they may also take advantage of larger particles, such as marine snow, as a food source; particle 

association would contribute to their high relative abundance in the > 10 µm size fraction (Figure 

1.6). The results, therefore, indicate that clade I acantharians have both distinct morphology and 

ecology from later-diverging acantharians. 

1.4.3. Acantharian life cycles 

 Knowledge regarding acantharian life cycles remains relatively limited because a full 

acantharian life cycle has not yet been observed. However, cyst formation and swarmer release 

from cysts and vegetative cells have been observed in laboratory settings (Decelle et al., 2012a, 

2013) . Swarmers are small (2–3 µm) biflagellated cells with unknown ploidy; it is assumed that 

they are reproductive cells and fuse to form juveniles, but this has never been witnessed (Decelle 

et al., 2012a) . So far, cyst formation has only been observed for earlier diverging acantharian 

lineages and has not been observed for Arthracanthida or Symphyacanthida acantharians. 

Acantharians that form cysts shed most of their spicules before cyst formation, suggesting that 
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acantharians in later diverging clades with more robust and elaborate skeletons cannot form cysts 

because of the fixed central junctions in their skeletons. In addition, cysts recovered from 

sediment traps have only ever been found to belong to earlier diverging clades, based on 

phylogenetic analysis, but not to environmental clades I or II (Decelle et al., 2013) . As a result, 

current hypotheses propose that acantharians in earlier diverging clades, including 

Chaunacanthida, form cysts as a means for ballast, allowing them to sink to deep water where 

they release swarmer cells, whereas acantharians in the later diverging Arthracanthida and 

Symphyacanthida clades complete their life cycle in the photic zone, since they cannot form 

cysts and need to acquire photosymbionts at the start of each generation (Martin et al., 2010; 

Decelle et al., 2013) . 

 The imaging results demonstrating decreased cell size and abundance below the surface 

mixed layer (Figure 1.9B) are consistent with the idea that many acantharians sink to release 

swarmers and the new juveniles grow in size as they make their way up towards the surface. 

Adult cells sink quickly, whether for reproduction or as detritus (Gutierrez-Rodriguez et al., 

2019) , and both vegetative cells and cysts dissociate after releasing swarmers (Decelle et al., 

2012a, 2013) , making them less likely to be caught on camera. A large number of swarmers 

released at depth would potentially produce many small juvenile cells that gradually increase in 

size as they slowly ascend. These smaller, more abundant juveniles would be much more likely 

to be imaged than the rarer, faster-moving adults. Alternatively, decreased cell-size range at 

depth could also reflect decreased nutritional resources available in deeper waters or 

constitutively smaller sized species being more common below the surface mixed layer. 

However, the sporadic presence of large cells in very deep water is evidence that they at least 
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occasionally reach deep water from the surface or that cells can reach larger sizes at depth 

(Figure 1.9B).  

 By combining metabarcoding of size-fractionated samples with imaging, further insight 

into acantharian life cycles can be gained. In principle, vegetative cells and cysts should have 

been retained on the upper filter with larger pore-size and the swarmer cells should have passed 

through the upper filter and been retained on the lower filter with smaller pore-size. A disparity 

in the contribution of one clade to sequences from the two size-fractions could, therefore, 

indicate that vegetative cells or reproductive cells belonging to that clade are more or less 

abundant at a particular depth. Such size separation can never be perfect—and it may be 

especially problematic with delicate cells like acantharians—but Principal Coordinate Analysis 

(PCoA) of Aitchison distances between entire plankton communities showed clear segregation 

by filter type at each depth (Figure 1.5A), suggesting size-fractionation was relatively successful. 

In contrast, PCoA for acantharian communities in the same samples did not show segregation by 

filter type (Figure 1.5B), thus providing some evidence that swarmers and vegetative cells or 

cysts coexist at the depths sampled. Given that acantharians belonging to the Chaunacanthida 

clade are among those that form cysts and are believed to sink before releasing swarmers, 

Chaunacanthida would be expected to be more abundant than non-cysting Arthracanthida and 

Symphyacanthida in both size fractions at depth. Interestingly, Arthracanthida and 

Symphyacanthida sequences were recovered from both large and small size-fraction samples 

from mid and near-bottom water at every sampling station and had similar relative abundances to 

Chaunacanthida sequences (Figure 1.6). This lack of differentiation in deep water sequence 

abundances of Arthracanthida-Symphyacanthida and Chaunacanthida does not support the idea 

45 



Chapter 1: Acantharian abundance and vertical distribution illuminated through paired 
high-throughput imaging and sequencing 

that the later diverging clades only reproduce in the photic zone. An alternative hypothesis might 

be that some Arthracanthida and Symphyacanthida acantharians also sink to deep water to 

reproduce but do so as vegetative cells, aided by their robust skeletons and fine buoyancy control 

(Febvre and Febvre-Chevalier, 2001) , rather than in the form of cysts (Michaels et al., 1995) . It 

cannot be ruled out that the DNA recovered from deep waters could be extracellular or derive 

from detrital matter, but the alternative hypothesis is further supported by the occasional 

observation of large acantharian cells at depth (Figure 1.9B, Biard and Ohman, 2019) .  

1.4.4. Acantharian behavior revealed by in-situ imaging 

 Being notoriously delicate and sticky, acantharians are often broken or clumped when 

collected by plankton net. As a result, their fine structure is usually damaged even when they do 

survive collection, which can preclude behavioral observations. In-situ imaging is especially 

useful in such cases, as it allows for the observation of natural orientation and behaviors that 

could not otherwise be seen. Acantharians are known to be active predators: microscopy of 

SCUBA collected acantharians revealed ciliates, diatoms, and dinoflagellates as acantharian prey 

items (Swanberg and Caron, 1991)  and results from 18S sequence analysis of single acantharians 

included copepod, diatom, and dinoflagellate sequences (Mars Brisbin et al., 2018) . However, 

actual predatory strategies of acantharians are unknown. In this study, we repeatedly observed 

acantharians that had long pseudopodial extensions terminating in drop-shaped structures. This 

morphology/behavior has not been previously reported and we hypothesize that the extensions 

may represent a fishing apparatus that allow acantharians to lure and capture prey. However, 

since we did not observe prey items stuck to the droplets, it remains possible that these structures 

may be involved in other processes (e.g. reproduction, buoyancy, or locomotion). 
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1.4.5. Prospects for future automatic classification of acantharians 

 The images produced in this study were annotated manually, which represents a major 

barrier in high-throughput imaging studies; manual image annotation is a large time commitment 

and requires experience identifying plankton groups. The ultimate goal for high-throughput 

imaging is to have annotated training sets that are extensive and comprehensive enough to 

provide highly accurate automatic image classification using machine learning algorithms. 

Currently, several instrument- and location-specific learning sets are available in the public 

realm: e.g. the WHOI-plankton dataset, which includes 3.4 million annotated images in 70 

classes that were taken with the Imaging Flow Cytobot in Martha’s Vineyard (Orenstein et al., 

2015) , and the PlanktonSet-1.0, which includes 30,336 images in 121 classes that were taken 

with the ISIIS line-scan imager in the Straits of Florida (Rodrigues et al., 2018) . These datasets 

could be used for transfer learning to improve classification accuracy and efficiency, but since 

they do not include very many acantharian images and the plankton size range for both data sets 

excludes the majority of acantharians imaged in this study (Rodrigues et al., 2018) , they alone 

would not have allowed for accurate classification of acantharians in our dataset. Therefore, by 

contributing over a thousand new annotated acantharian images, including cells ranging in 

diameter from 250–2500 µm, this study will facilitate accurate automatic acantharian 

classification in future datasets acquired with the ISIIS small-imager and other imaging systems 

that capture a similar size-range of organisms. Accurate automatic classification will eventually 

allow for larger studies of acantharian abundance and distribution, including expanded 

geographic and temporal scales, and thus a deeper understanding of acantharian contributions to 

biogeochemical processes in the ocean. 
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1.4.6. Conclusions 

 High-throughput imaging used in this study showed that acantharians are abundant in the 

surface waters of the western North Pacific and have similar concentrations as have been 

reported in the eastern North Pacific and the North Atlantic where cells were manually counted 

with microscopy. Similar to previous studies, vegetative acantharian cells were concentrated 

very close to the sea surface and decreased in abundance with depth, but were still sometimes 

observed at depths approaching 1000 m. Imaging data correlated with sequence abundances from 

acantharian clades with known and easily recognizable morphologies, but were in contrast to 

sequence abundances from acantharian environmental clade I, whose morphology is not known. 

This discrepancy suggests that basal environmental clades, such as clade I, may have 

morphologies distinct from other acantharians, and may lack characteristic star-shaped strontium 

sulfate skeletons. The high abundance relative of clade I acantharian sequences in deep water 

and their near total absence in surface waters suggest a distinct ecological niche for deep water 

acantharian populations, likely as grazers, as opposed to these sequences being representative of 

surface export. The size distribution of imaged acantharians is consistent with current hypotheses 

about acantharian life-cycles: size range decreases with depth, supporting the idea of 

reproduction at depth by way of small swarmer cells, followed by the ascension, and growth, of 

juveniles into surface waters. However, the similar relative abundance of different acantharian 

clades in small and large size fractions at depth suggests that later diverging clades (i.e. 

Arthracanthida and Symphyacanthida) may also reproduce at depth, which is counter to previous 

hypotheses. By pairing high-throughput sequencing with high-throughput, in-situ imaging, this 

study advances our understanding of acantharian biology but also highlights how much is still 
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unknown. Future work will benefit from the annotated images generated for this study, but 

should consider further pairing imaging with RNA sequencing or single-cell genomics. 
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Diversity and Extended Symbiont Maintenance in Photosymbiotic Acantharea (Clade F). Front. 
Microbiol.  9, 1998. 

Abstract 

Photosymbiotic protists contribute to surface primary production in low-nutrient, open-ocean 

ecosystems and constitute model systems for studying plastid acquisition via endosymbiosis. 

Little is known, however, about host-symbiont dynamics in these important relationships, and 

whether these symbioses constitute mutualisms is debated. In this study, singl e-cell sequencing 

methods and advanced fluorescent microscopy were both applied to investigate host-symbiont 

dynamics in clade F acantharians, a major group of photosymbiotic protists in oligotrophic 

subtropical gyres. The 18S rRNA gene from single acantharian hosts and environmental samples 

was sequenced to assess intra-host symbiont diversity and to determine whether intra-host 

symbiont community composition directly reflects the available symbiont community in the 

surrounding environment. Results demonstrate that clade F acantharians simultaneously host 

multiple species from the haptophyte genera Phaeocystis and Chrysochromulina, indicating that 

symbiont uptake occurs more than once. The intra-host symbiont community composition was 

distinct from the external free-living symbiont community, suggesting that these acantharians 
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maintain symbionts for extended periods of time. After selectively staining digestive organelles, 

fluorescent confocal microscopy showed that symbionts were not being systematically digested, 

which is consistent with extended symbiont maintenance within hosts. Extended maintenance 

within hosts may benefit symbionts through protection from grazing or viral lysis, and therefore 

could enhance dispersal, but only if symbionts retain reproductive capacity and are ever released 

or escape from hosts.  

2.1. Introduction 
Photosymbiosis, a nutritional symbiosis where a heterotroph hosts photosynthetic 

endosymbionts, substantially increases surface primary production in oligotrophic marine 

ecosystems (Not et al., 2016; Beinart, 2019) . Photosymbiosis is also believed to have led to the 

evolution of eukaryotic oxygenic photosynthesis and the eventual emergence of diverse 

photosynthetic eukaryotes, with many evolving from eukaryote-eukaryote secondary and tertiary 

endosymbiosis (Keeling, 2004) . Eukaryote-eukaryote photosymbioses continue to be extremely 

common among marine protists and contribute significantly to the productivity of oligotrophic 

open-ocean ecosystems (Decelle et al., 2015) . Nonetheless, little is known about host-symbiont 

dynamics, such as host-symbiont specificity or host mechanisms for symbiont recognition, 

uptake, and maintenance. Additionally, photosymbioses have traditionally been considered 

mutualisms under the assumption that hosts provide nitrogen to symbionts and symbionts 

provide organic carbon to hosts in return (Garcia and Gerardo, 2014) . Whether these 

relationships are truly mutualistic or are instead cases of symbiont exploitation has been 

increasingly questioned in recent years and there is mounting evidence that exploitation is the 

rule rather than the exception (Keeling and McCutcheon, 2017) . Determining the nature of 
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photosymbioses is particularly interesting, as it could provide insight into how the relationships 

evolve and persist.  

The Acantharea belong to the Rhizaria, a supergroup of amoeboid protists that includes 

many photosymbiotic lineages (Burki and Keeling, 2014) . Photosymbiotic acantharians are often 

the most abundant photosymbiotic Rhizaria in oligotrophic surface waters (Michaels et al., 

1995) , where they contribute significantly to primary production (Caron et al., 1995) . The 

majority of acantharian species (clades E and F) host algal symbionts in the Haptophyte genus 

Phaeocystis  (Decelle et al., 2012a) . Phaeocystis  is a globally distributed genus with species that 

present multiple phenotypes —solitary, flagellated, and colonial —and sometimes form harmful 

algal blooms (Schoemann et al., 2005) . Despite the ecological significance of both partners, this 

symbiosis remains largely unstudied. There is some evidence, however, suggesting that this 

relationship is not a case of mutualism and symbionts are instead exploited (Decelle, 2013) . 

When photosymbiotic protists are cultured in high-light and low-prey conditions, as 

found in oligotrophic surface waters, hosts benefit from an increased growth-rate, but symbiont 

growth-rate can be suppressed and their photosynthetic efficiency is sometimes decreased 

compared to free-living symbionts (Lowe et al., 2016) . Therefore, some algal symbionts may 

actually experience restricted nitrogen availability in hospite, rather than receiving supplemental 

nitrogen from hosts, and thus do not benefit from symbiosis as assumed (Lowe et al., 2016) . 

Estimated populations of free-living Phaeocystis in oligotrophic conditions (Moon-van der Staay 

et al., 2000)  are much larger than possible symbiotic populations if estimated from acantharian 

abundance and symbiont load (Michaels, 1991) . The difference in population size between 

symbiotic and free-living Phaeocystis  suggests higher growth-rates in free-living than symbiotic 
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populations, and provides some evidence that the relationship is not beneficial to Phaeocystis 

symbionts (Decelle, 2013) .  

Increased growth rate is not the only means by which symbionts can benefit from the 

relationship: decreased predation, viral attack, or competition in hospite may allow symbionts to 

benefit from enhanced dispersal and future reproduction, assuming reproductively viable 

symbionts are ever released from hosts (Douglas, 2010; Garcia and Gerardo, 2014) . Reproducing 

symbionts are known to be released from some photosymbiotic protists: Chlorella  escapes from 

Paramecium  hosts and establishes free-living populations when low-light inhibits host benefit 

(Lowe et al., 2016)  and dinoflagellate symbionts of colonial radiolarians establish free-living 

populations when isolated from hosts (Probert et al., 2014) . Some photosymbiotic forams, 

however, digest all of their symbionts prior to gametogenesis (Takagi et al., 2016) . It is currently 

unknown whether symbiotic Phaeocystis  retains reproductive capacity , but symbiotic cells have 

not yet been cultured from hosts (Decelle et al., 2012a) . It is possible that phenotypic changes 

observed in symbiotic Phaeocystis —additional plastids and an enlarged central vacuole (Febvre 

and Febvre-Chevalier, 1979; Decelle et al., 2012a) —are evidence that symbionts are incapable 

of cell division, which would make the relationship an ecological and evolutionary dead-end for 

Phaeocystis and preclude the possibility for mutualism (Decelle et al., 2012a; Decelle, 2013) .  

The number of symbionts observed in individual acantharians increases with host size 

(Michaels, 1991) , thus requiring that symbionts reproduce in hospite, that acantharians recruit 

new symbionts, or possibly both. If acantharians recruit one or a few symbionts early in 

development and then support a reproducing symbiont community, the intra-host symbiont 

community would exhibit low diversity and may be divergent from the free-living environmental 
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community. If symbionts divide within hosts, hosts must exert an alternative form of population 

control, potentially by shedding (mutualism) (Boettcher et al., 1996; Fishman et al., 2008)  or 

digesting (exploitation) excess symbionts (Titlyanov et al., 1996) . Conversely, if acantharians 

recruit new symbionts, the intra-host symbiont community is likely to be more diverse and 

representative of the available free-living symbiont community in the surrounding waters. 

Low-diversity intra-host symbiont communities would, therefore, suggest that symbionts 

maintain reproductive capacity and allows for possible symbiont benefit, whereas high diversity 

communities may be interpreted as further evidence against mutualism. However, neither 

intra-host symbiont diversity, nor the relationship between symbiont identity and environmental 

availability of potential symbionts have been investigated in photosymbiotic acantharians. 

In this study, single-cell Next Generation Sequencing (NGS) was used to illuminate 

intra-host symbiont diversity in individual acantharians collected from 7 sampling sites along the 

Ryukyu Archipelago, spanning more than 1,000 km in the East China Sea (ECS), and near 

Catalina Island (California, USA). NGS was further applied to evaluate the environmental 

availability of symbionts where acantharians were sampled in the ECS. Intra-host symbiont 

diversity was compared to intra-host symbiont population size by enumerating symbionts with 

fluorescent confocal microscopy in a subset of acantharians prior to nucleic acid extraction. 

Additional acantharians were collected and imaged after selectively staining lysosomes and 

phagolysosomes in order to observe their proximity to symbionts and to determine if symbionts 

are systematically digested. This study provides new evidence to the mutualism-exploitation 

debate relative to Acantharea- Phaeocystis  symbioses by investigating intra-host symbiont 
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diversity and by assessing host-symbiont specificity in the context of environmental symbiont 

availability.  

2.2. Materials and Methods 

2.2.1. Individual acantharian sampling 

Single acantharians were collected from coastal water near Catalina Island (California, 

U.S.A.) and from 7 sampling sites along the Ryukyu Archipelago, including coastal water near 

Okinawa Island (Okinawa, Japan) and from 6 cruise stations visited during the Japan Agency for 

Marine-Earth Science and Technology (JAMSTEC) MR17-03C cruise to the ECS aboard the 

R/V Mirai in May and June 2017 (Figure 2.1, Table 1.1). Okinawa Island and Catalina Island 

plankton samples were collected by pulling a Rigo Simple 20 cm diameter, 100-mm-mesh 

plankton net or a SEA-GEAR 12” diameter, 163-µm-mesh plankton net, respectively, along the 

sea surface approximately 5 m behind a small craft at its lowest speed. Aboard the R/V Mirai, 

plankton samples were collected by passing unfiltered seawater pumped from the sea surface 

through a 100-µm-mesh, hand-held plankton net (Rigo). Plankton samples were observed under 

a dissecting microscope and individual acantharians were transferred by glass micropipette to 

clean Petri-dishes. Acantharians were rinsed with 0.2-µm-filtered seawater several times, until 

all visible contaminants were removed, and then cells were incubated for 0.5–2 hr to allow for 

additional self-cleaning. Acantharians collected aboard the R/V Mirai and those from near 

Okinawa Island were imaged with inverted light microscopy (Zeiss Primovert, Olympus CKX53, 

Figures S2.1 and S2.2). Several acantharians collected near Okinawa Island were also imaged 

with laser confocal microscopy (described below). Each acantharian was transferred to a 
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maximum recovery PCR tube (Axygen) and successful transfer was confirmed by microscopy 

before adding 30 µL of RLT-plus cell-lysis buffer to each tube (Qiagen). Immediately following 

buffer addition, samples were flash-frozen with liquid nitrogen and stored at -80°C until later 

processing in the lab. 

 

Figure 2.1. Sampling sites along the Ryukyu Archipelago in the East China Sea (ECS) (A) 
and near Catalina Island, California, U.S.A. (B). (A) ECS Stations 2, 4, 10, 12, 13, and 17 
were sampled during the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) 
MR17-03C cruise in May and June 2017. Samples were collected from the Okinawa Island 
(Okinawa, Japan) sampling site in April, May, and December 2017. (B) Additional samples were 
collected near the University of Southern California's Wrigley Institute for Environmental Studies 
on Catalina Island, California, U.S.A. in May 2017.  

2.2.2. Environmental sampling 

Seawater samples were collected at each ECS cruise station visited by the JAMSTEC 

MR17-03C cruise where acantharians were also isolated. Two replicates of 4.5 L of seawater 

were collected from the sea surface by bucket and sequentially filtered under a gentle vacuum 

through 10.0 µm and 0.2 µm pore-size Polytetrafluoroethylene (PTFE) filters (Millipore) to size 
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fractionate plankton and separate free-living Phaeocystis  (< 10 µm) from acantharian hosts (> 10 

µm). Filters were flash-frozen in liquid nitrogen onboard and stored at −80°C until processing 

onshore. 

2.2.3. RNA extraction from individual acantharian hosts 

RNA extractions from single acantharians (n = 42, 1–14 per site) were accomplished by 

modifying the methods of Trombetta et al. (2015). Samples were thawed over ice, vortexed twice 

(10 s, speed 7, Vortex-Genie 2), and then incubated at room temperature for 5 min to fully lyse 

cells. Agencourt RNAClean XP magnetic beads (Beckman Coulter) were added to each sample 

at a 2.2:1 V:V ratio and fully mixed by pipette prior to a 30-min incubation in order to bind all 

RNA to the magnetic beads. After two 80% ethanol washes, RNA was eluted from the beads in 

11 µL of a custom elution buffer (10.72 µL nuclease-free water, 0.28 µL RNAase inhibitor) and 

10.5 µL of eluted RNA was further processed following the single-cell protocol for the 

SMART-seq v4 Ultra Low Input Kit (Clonetech) with 18 cycles in the primary PCR. The 

resulting cDNA from each sample was quality checked with the Bioanalyzer High Sensitivity 

DNA Assay (Agilent) and quantified with the Qubit dsDNA High Sensitivity Assay (Qubit 3.0, 

ThermoFisher). 

2.2.4. DNA extraction from environmental samples 

Environmental DNA was extracted from the 0.2-µm pore-size PTFE filters (n = 12, 2 

replicates from 6 stations) following manufacturer protocols for the Qiagen AllPrep DNA/RNA 

Mini Kit with limited modifications. Half of each PTFE filter was submerged in RLT-plus 

cell-lysis buffer (Qiagen) with garnet beads in a 2-mL tube (MoBio/Qiagen). Samples were 
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heated for 10 min at 65°C and then vortexed at maximum speed (Vortex-Genie 2) for 5 min with 

the MoBio/Qiagen vortex adapter to fully lyse cells. After cell lysis, DNA extraction proceeded 

without further modifications. Extracted DNA was quantified with the Qubit dsDNA High 

Sensitivity Assay on a Qubit 3.0 instrument (ThermoFisher). 

2.2.5. Library preparation and sequencing 

Library preparation for acantharian cDNA samples and environmental DNA samples 

followed procedures described in the Illumina 16S Metagenomic Sequencing Library Preparation 

manual, modified only to include universal eukaryotic primers for the v4 region of the eukaryotic 

18S rRNA gene (Stoeck et al., 2010)  and amplicon PCR conditions most appropriate for these 

primers. The forward primer, TAReuk454FWD1 (CCAGCASCYGCGGTAATTCC, Stoeck et 

al., 2010), was used unmodified. The reverse primer, TAReuk454REV3 

(ACTTTCGTTCTTGATYRA, Stoeck et al., 2010) was reported to not amplify the Phaeocystis 

18S gene in in silico  PCRs (Tanabe et al., 2016) . Further investigation revealed a mismatch 

between the final 3’ adenine in the primer sequence and the Phaeocystis  18S gene sequence. 

Although we found that the original primers do amplify the v4 region of the Phaeocystis  18S 

gene in de facto  PCRs with DNA extracted from Phaeocystis  cultures, the mismatch could create 

bias against Phaeocystis  sequences in more diverse samples. We, therefore, eliminated the final 

3’ “A” in the TAReuk454REV3 sequence and used a new reverse primer, TAReuk454REV3.1 

(ACTTTCGTTCTTGATYR). The optimum annealing temperature for the Illumina-adapted 

primers was determined by performing temperature gradient PCRs (53–65°C, 0.5°C steps) and 

the annealing step in the amplicon PCR was set at 58°C thereafter. Following the second, 

indexing PCR and final product purification, amplicon libraries were quantified with the Qubit 
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dsDNA High Sensitivity Assay (Qubit 3.0, ThermoFisher) and the amplicon size was determined 

with the Bioanalyzer High Sensitivity DNA Assay (Agilent). Amplicon libraries were then 

submitted to the Okinawa Institute of Science and Technology (OIST) sequencing center for 

300x300-bp paired-end sequencing on the Illumina MiSeq sequencing platform with v3 

chemistry. Raw sequences generated for this study were submitted to the European Nucleotide 

Archive under the study accession number PRJEB24538.  

2.2.6. Amplicon sequence analysis and annotation 

Demultiplexed paired-end sequences returned from the OIST sequencing center were 

imported to QIIME 2 (v2017.11) software (Bolyen et al., 2019) . The Divisive Amplicon 

Denoising Algorithm (DADA) was implemented with the DADA2 plug-in for QIIME 2 to 

perform quality filtering and chimera removal and to construct a feature table consisting of read 

abundance per amplicon Sequence Variant (SV) by sample (Callahan et al., 2016c) . DADA2 

models the amplicon sequencing error in order to identify unique SVs and infers sample 

composition more accurately than traditional Operational Taxonomic Unit (OTU) picking 

methods that identify representative sequences from clusters of sequences based on a % 

similarity cut-off  (Callahan et al., 2016c) . Taxonomy was assigned to SVs in the feature table 

with a naive Bayes classifier trained on SILVA 18S 97% representative sequences and consensus 

taxonomy (Release 128, (Quast et al., 2013)  using the QIIME 2 feature-classifier plug-in 

(Bokulich et al., 2018) . The SV feature table was split into two separate feature tables, one 

acantharian and one environmental, before both feature tables were extracted from QIIME 2 and 

imported into the R statistical environment (R Core Team, 2018)  for further analysis with the R 

package phyloseq (McMurdie and Holmes, 2013) . 
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Prevalence filtering was applied to both the acantharian and environmental feature tables 

with phyloseq in order to remove low-prevalence (< 5%) SVs and decrease the chance of data 

artifacts affecting the analysis (Callahan et al., 2016b) . Prevalence filtering effectively eliminated 

most sequences from known Rhizaria prey (i.e. metazoans and diatoms (Swanberg and Caron, 

1991) ) and parasites (i.e. alveolates (Bråte et al., 2012) ) from the acantharian feature table. Of 

the remaining SVs in the acantharian table, 26 were classified as Rhizaria and 21 as 

Prymnesiophyceae, which includes Phaeocystis . In addition, 3 remaining sequences were 

classified as Holozoa, 2 as Stramenopiles, 2 as Apusomonadidae, 2 as Ancyromonadida, 1 as 

Chloroplastida, and 5 were not classified. When the unclassified sequences were queried against 

the GenBank non-redundant nucleotide (nr/nt) database, the tops hits for all 5 sequences were 

Acantharea (BLASTn 2.8.0+, 07/1/2018, Camacho et al., 2009) . Unlike Holozoa (metazoans) or 

Stramenopiles (diatoms), which are acantharian prey (Swanberg and Caron, 1991) , 

Apusomonadidae, Ancyromonidae, and Chloroplastida have not previously been found in 

association with acantharians. As a result, we considered only the 21 Prymnesiophyceae 

sequences as symbiotic SVs. In the environmental feature table, there were 187 

Prymnesiophyceae sequences remaining after prevalence filtering, but since it is not possible to 

know which of these can be acantharian symbionts, we further filtered the environmental feature 

table to only include the 21 symbiotic SVs also found in acantharian samples. 

The 21 symbiotic SVs were further classified by building a phylogenetic tree. An initial 

BLAST query against the GenBank nr/nt database indicated that the symbiont SVs belong to the 

Haptophyte genera Phaeocystis  and Chrysochromulina. Likewise, a SILVA SSU sequence 

search (03/23/2018, Quast et al., 2013) classified 18 of the sequences as class Prymnesiophycae, 
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order Phaeocystales or Prymnesiales, and genus Phaeocystis  or Chrysochromulina, when 

classified to genus level. The remaining 3 symbiotic SVs were designated “unclassified” in the 

SILVA sequence search. Reference 18S rRNA gene sequences were downloaded from GenBank 

(Benson et al., 2012)  for the 5 Haptophyte orders (Pavlovales, Phaeocystales, Prymnesiales, 

Isochrysidales, and Coccolithales (Medlin and Edvardsen, 2007) ) and were included in a 

Multiple Sequence Comparison by Log Expectation (MUSCLE) v3.8.31 (Edgar, 2004) 

alignment along with the 21 symbiotic SVs. A Bayesian phylogenetic tree was then built from 

the alignment using MrBayes v3.2.7 with the number of nucleotide substitution types (nst) set to 

6 (Ronquist and Huelsenbeck, 2003)  (Figure 2.2). A phylogenetic tree was built for the 5 

dominant acantharian host SVs following the same methods (Figure 2.3) with representative 

sequences for acantharians in clades E and F (Decelle et al., 2012c) , also downloaded from 

GenBank.  
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Figure 2.2. Phylogenetic placement of symbiotic Sequence Variants (SVs) identified from 
acantharian hosts. The phylogenetic tree was built from a MUSCLE v3.8.31 alignment of 21 
symbiotic SVs and GenBank reference sequences representing the 5 haptophyte orders with 
MrBayes v3.2.7. The symbiotic SVs are highlighted to match the legend in Figure 2.4. 
Phaeocystis clades are color-coded and include the Phaeo2 clade, which is an uncultured clade 
identified from symbiotic sequences from acantharians collected near Okinawa (Decelle et al. 
2012a). Values associated with nodes are posterior probabilities as a percent after 100,000 
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generations (average standard deviation of split frequencies = 0.019). The scale bar indicates 
0.02 changes expected per site. 

 

Figure 2.3. Phylogenetic placement of acantharian host Sequence Variants (SVs). The 
phylogenetic tree was built from a MUSCLE v3.8.31 alignment of the 5 dominant host SVs and 
GenBank reference sequences representing clades E and F acantharians and the nasellarian 
radiolarian Triastrum aurivillii  (outgroup). The tree was built with MrBayes v3.2.7. Values 
associated with nodes are posterior probabilities as a percent after 40,000 generations (average 
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standard deviation of split frequencies = 0.01). The scale bar indicates 0.03 changes expected 
per site.  

2.2.7. Statistical analyses 

Bray-Curtis distances between symbiont community compositions in acantharian and 

environmental samples were computed from relative abundances of symbiotic SVs in the filtered 

feature tables with the R package phyloseq (McMurdie and Holmes, 2013) . Bray-Curtis 

distances were used to perform Principal Coordinate Analyses (PCoA) within the phyloseq 

package, and PCoA plots were rendered with the R package ggplot2 (Wickham, 2010) . 

Permutational Multivariate Analyses of Variance (PERMANOVA) with 999 permutations were 

performed with the adonis function in the R package vegan (Oksanen et al., 2019)  to determine 

whether clustering observed in the ordination plots was statistically significant and to discern 

which covariates were deterministic of symbiont community composition. Specifically, adonis 

PERMANOVA were performed by location and by host SV on a Bray-Curtis distance matrix 

including all acantharian samples as well as by sample type (acantharian or environmental) for a 

Bray-Curtis distance matrix including the environmental samples and acantharian samples 

collected at environmental sampling locations. Pairwise PERMANOVA by location and by host 

SV were also performed on the Bray-Curtis distance matrix including all acantharian samples 

with the beta-group-significance function in the QIIME 2 diversity plugin. Differences were 

considered statistically significant when the p -value was < 0.05. Intermediate data files and data 

analysis pipelines are available at https://github.com/maggimars/AcanthareaPhotosymbiosis  and 

https://maggimars.github.io/AcanthareaPhotosymbiosis/Analysis.html . 
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2.2.8. Fluorescent confocal microscopy 

In order to observe and enumerate symbionts within hosts for which symbiont 

communities were also evaluated, acantharians collected near Okinawa in April (Oki.3A, 

Oki.4A) and May (Oki.3, Oki.7, Oki.10, Oki.11) were imaged without staining using an inverted 

laser scanning confocal microscope (Zeiss LSM 780) prior to RNA extraction. A z-stack of 

chlorophyll autofluorescence (ex633 nm, em670 nm) and halogen light images was assembled 

for each host to compare the number of visually discernible symbionts to the number of 

symbiotic SVs identified. In order to evaluate possible host digestion of symbionts, additional 

acantharian samples were collected in December 2017 (n = 3) and stained with LysoTracker 

Green DND-26 (ThermoFisher), a fluorescent dye that selectively stains acidic compartments 

(i.e. digestive organelles) within cells, including lysosomes and phagolysosomes. The 

LysoTracker dye was diluted from the 1-µM stock solution to a 100-nM working solution in 

0.2-µm-filtered seawater and each sample was incubated in 100 µL working solution in the dark 

for 2 hr before imaging. Z-stacks for these samples were assembled by imaging with 3 channels: 

red for autofluorescence from symbiont chlorophyll (ex633 nm, em670 nm), green for 

LysoTracker-stained host lysosomes and phagolysosomes (ex488 nm, em514 nm), and grey for 

halogen light imaging. FIJI Image-J software (Schindelin et al., 2012)  was used to adjust image 

brightness, merge color channels, and create 3-D projections for all imaged host cells. 
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2.3. Results 

2.3.1. Intra-host symbiont diversity in individual acantharians 

In order to determine if and to what extent intracellular symbiont diversity exists in 

acantharians, single-cell RNA extractions were performed and 18S rRNA gene amplicons were 

sequenced from 42 individual acantharians. A total of 6,154,808 sequences were generated from 

acantharian samples, with 28,828–241,809 sequences per sample. After quality filtering and 

feature table construction, 3,294,093 total sequences remained (5,579–136,339 per sample). 

Within each acantharian sample, 72–99% of sequences were classified as Rhizaria and 1–17% of 

sequences were classified as Prymnesiophyceae and therefore designated as deriving from 

symbionts (Figure 2.4). Twenty-one symbiotic SVs were identified from within the acantharian 

samples, and each acantharian host contained 4–12 unique symbiotic SVs (mean = 8, standard 

deviation = 2) (Figure 2.5A). Phylogenetic analysis determined that symbiotic SVs belonged to 

four Phaeocystis  clades: the globosa  clade, the cordata  clade,  the jahnii clade, which has not 

previously been reported as a symbiont, and the uncultured Phaeo2 clade, which was discovered 

by Decelle et al. (2012a)  as an acantharian symbiont near Okinawa (Figure 2.3). Additionally, 

four symbiotic SVs belonged to the genus Chrysochromulina, which had not previously been 

identified as a symbiont in clade E or F acantharians. The majority of symbiotic SVs in 

acantharians collected from the ECS belonged to the Phaeocystis clades  cordata , jahnii and 

Phaeo2, and only 3 of these samples contained SVs belonging to Chrysochromulina . The 

opposite pattern was observed in samples collected near Catalina Island: the majority of 

symbiotic SVs in these samples were Chrysochromulina spp. However, all three samples from 
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Catalina Island hosted symbionts from the Phaeo2 Phaeocystis  clade, which had previously only 

been found in hosts collected near Okinawa Island (Decelle et al., 2012a) . These results 

demonstrate that acantharians simultaneously host multiple symbiont species and that 

Phaeocystis -hosting acantharians can also host Chrysochromulina spp. 

 

Figure 2.4. Relative abundance of Sequence Variants (SVs) in single acantharian 
holobionts. Each bar represents a single acantharian host and is labeled by collection location 
(st#: ECS cruise station number, Oki: Okinawa Island, Cat: Catalina Island) and sample ID. 
Relative abundance includes all SVs remaining after initial prevalence filtering. Within each 
host, 72–99% of sequences were classified as Rhizaria and 1–17% of sequences were 
classified as Prymnesiophyceae.  
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Figure 2.5. Relative abundance of symbiotic Sequence Variants (SVs) in individual 
acantharian hosts (A) and environmental samples (B). (A) Each bar represents a single 
acantharian host and is labeled by collection location (st.#: ECS cruise station number, Oki: 
Okinawa Island, Cat: Catalina Island) and sample ID. Individual acantharians contained 4–12 
symbiotic SVs (mean = 8, standard deviation = 2). (B) Each bar represents an environmental 
replicate from ECS cruise stations. Symbiotic SVs are colored by clade: green is 
Chrysochromulina , blue is Phaeocystis clade Phaeo2, pink is Phaeocystis cordata, grey/black is 
Phaeocystis jahnii , and purple is Phaeocystis, but not placed with known clades. Ten of the 
symbiotic SVs were not found in environmental samples and are marked by an asterisk in the 
legend.  
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 We also investigated the effect of host type and collection location on symbiont 

community composition within individual acantharians. Acantharian samples were each 

dominated by 1 of 5 unique Rhizarian SVs, all of which belonged to Acantharea clade F and 

represented 3 genera: Amphibelone (Host SVs 1 and 3), Amphilonche (Host SVs 2 and 4), and 

Acanthometra  (Host SV5) (Figure 2.3). Host SV did not appear to determine the symbiont 

community in a Principal Coordinate Analysis (PCoA) plot based on Bray-Curtis distances 

between acantharian symbiont community compositions, but collection location did appear to 

play a role and the Catalina Island samples formed a distinct cluster in the PCoA plot (Figure 

2.6). Statistical testing showed that collection location had a significant effect on symbiont 

community ( p  = 0.001, R2 = 0.47) and in pairwise comparisons, only two comparisons —st. 17 to 

st. 12 and st. 13 to Okinawa—were not significantly different. Host SV also significantly 

affected symbiont community ( p = 0.009, R2 = 0.19), but pairwise comparisons showed that the 

significance was driven solely by the symbiont community associated with host SV 5, which was 

only found near Catalina Island, indicating that host effect was confounded by location.  
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Figure 2.6. Principal Coordinates Analysis of Bray-Curtis distances between symbiont 
communities within individual acantharian hosts. Point shape corresponds to host 
sequence variant (SV) and the color corresponds to the collection location of the host 
acantharians (n = 42, 1–14 per site). The symbiont communities associated with acantharians 
collected near Catalina Island and from ECS station 2 form clusters, while communities from the 
other locations do not cluster separately. A PERMANOVA by location (excluding st. 4 and st. 10 
due to insufficient sample size) on the Bray-Curtis distances between symbiont communities 
confirmed that collection location had a significant effect on symbiont community (p  = 0.001, R2 

= 0.47 after 999 permutations). Host SV also had a significant effect (p  = 0.009, R2 = 0.19), but 
only SV 5 was significantly different when pairwise PERMANOVA comparisons were performed.  

2.3.2. Comparison of intra-host and free-living symbiont communities 

To determine whether the relative abundance of symbionts within hosts is a reflection of 

the relative abundance of available symbionts in surrounding water, we compared symbiont 

communities within acantharians collected from cruise stations in the ECS to environmental 

samples taken at the same time and place. 1,852,276 sequences were generated from 

environmental samples with 93,291–246,564 reads per sample. After quality filtering and feature 
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table construction, 645,325 sequences remained, with 35,691–89,163 sequences per sample. A 

PCoA plot based on Bray-Curtis distances between the entire community for each environmental 

sample confirmed that replicates from each location were more similar to each other than to 

replicates from other locations (Figure 2.7). The environmental feature table was subset to 

include only symbiotic SVs identified in acantharian samples, which comprised 1–3% of 

sequences in environmental samples. Only 11 of 21 symbiotic SVs identified from acantharian 

samples were also found in environmental samples (SVs 2, 5, 7, 11, 13, 14, 15, 16, 18, 19 were 

missing) (Figure 2.5B). Chrysochromulina  SVs 20 and 21, which were rare in the acantharian 

samples, were among the most abundant symbiotic SVs in the environment, while Phaeocystis 

cordata  SV 17, which was one of the most abundant SVs in acantharian samples, was relatively 

rare in the environmental samples (Figure 2.5A, B). Intra-host and environmental symbiont 

communities clustered separately in a PCoA based on Bray-Curtis distances between samples 

(Figure 2.8) and the observed difference between community compositions in the two sample 

types was statistically significant ( p = 0.001, R2 = 0.33). These results indicate that the intra-host 

community composition of symbiotic SVs is distinct from the relative availability of symbionts 

in the surrounding environment. 

71 



Chapter 2: Specificity and maintenance in acantharian photosymbioses  

 

Figure 2.7. Principal Coordinates Analysis of Bray-Curtis  distances between microbial 
Eukaryote communities at East China Sea (ECS) cruise stations. Point color corresponds to 
the 6 ECS cruise stations where surface water samples were collected when collecting 
acantharians. Bray-Curtis distances between microbial Eukaryote communities in ECS cruise 
station samples were calculated from entire microbial Eukaryote communities in the greater than 
0.2 µm and less than 10.0 µm size fraction . Biological replicates of environmental microbial 
Eukaryote communities in each location are more similar to each other than to replicates from 
other locations.  
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Figure 2.8. Principal Coordinates Analysis of Bray-Curtis distances between 
host-associated symbiont communities and free-living symbiont communities. The point 
color indicates sample type and point shapes represent sampling locations. Host-associated 
and environmental communities form two distinct clusters and the difference in community 
composition between the two sample types is statistically significant (PERMANOVA, p < 0.001, 
R2 = 0.33, 999 permutations).  

2.3.3. Visualization of host-associated symbionts and host digestive-organelles 

By imaging symbiont chlorophyll autofluorescence with laser confocal microscopy, it 

was possible to clearly enumerate photosynthetic symbionts within hosts (Figure 2.9). The 

resulting images showed there were more individual symbiont cells within acantharians collected 

near Okinawa in April and May than there were unique symbiont SVs identified from those hosts 

(Table 2.1). Symbionts with the free-living phenotype (twin parietal plastids, cell diameter < 5 
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µm) and symbionts with the symbiotic phenotype (more than 2 plastids, enlarged central 

vacuole, cell diameter > 5 µm) were observed inside the same host cells (Figure 2.10A, B). By 

selectively staining host digestive-organelles with a fluorescent dye, host lysosomes and 

phagolysosomes and their proximity to symbionts were visualized (Figure 2.10C–E). Lysosomes 

were observed in both host exoplasm and endoplasm, while symbionts were only observed in 

host endoplasm. No symbionts were enclosed in phagolysosomes and lysosomes did not appear 

to be concentrated near symbiont cells. 
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Figure 2.9. Laser confocal microscopy of acantharians collected near Okinawa in April 
and May 2017. Acantharians were imaged with a Zeiss LSM780 inverted laser scanning 
confocal microscope. Halogen light images (A, C, E, H, I, K) are single optical slices and 
fluorescent images (B, D, F, G J, L) are maximum projections of z-stacks spanning the entire 
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host, with symbiont chlorophyll autofluorescence colored red. Scale bars are 50 µm in all 
panels. Images are labeled by sample ID, host SV, and associated host genus. 

Table 2.1. Number of acantharian symbionts visible by microscopy and unique symbiotic 
SVs identified per host. Symbionts within 6 acantharians collected in April (Oki.3A and Oki.4A) 
and May (Oki.3, Oki.7, Oki.10, Oki.11) from coastal waters near Okinawa, Japan were 
enumerated by visualizing chlorophyll autofluorescence with laser confocal microscopy. More 
symbiont cells were observed in each of the imaged hosts than unique SVs were detected from 
analyzing amplicon sequence data.  

  Symbionts Visible 
in Micrograph 

Symbiotic SVs per 
Host 

Oki.3A 20 6 

Oki.4A 17 10 

Oki.3 29 10 

Oki.7 38 8 

Oki.10 28 12 

Oki.11 24 5 
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Figure 2.10. Fluorescent confocal microscopy of acantharians and their symbionts. (A) 
Single optical slice displaying autofluorescence of symbiont chlorophyll (red) and halogen light 
imaging of acantharian sample Oki.3A. (B) Maximum projection of a z-stack spanning the entire 
host sample Oki.4A, which contains 17 visible symbionts and 10 symbiotic sequence variants. 
Arrows indicate symbionts presenting the free-living phenotype—smaller cell diameter and two 
elongate, parietal chloroplasts—which is also visible in the inset image of a Phaeocystis globosa 
CCMP1528 cell in culture that was imaged following the same methods. Red fluorescence is 
chlorophyll autofluorescence. (C–E) Maximum projections of z-stacks spanning entire hosts 
collected near Okinawa in December 2017. Red fluorescence is from symbiont chlorophyll 
autofluorescence. Green fluorescent staining is LysoTracker Green, which selectively binds to 
low-pH digestive-organelles, including lysosomes and phagolysosomes. Symbionts are not held 
in phagolysosomes and lysosomes are not concentrated around symbionts, indicating that 
symbionts are not actively being digested. Scale bars are 10 µm in all panels. 

 

77 



Chapter 2: Specificity and maintenance in acantharian photosymbioses  

2.4. Discussion  
Acantharians are globally abundant but are especially so in low-nutrient subtropical gyres 

where they contribute to primary production by harboring intra-cellular algal symbionts 

(Michaels, 1991; Michaels et al., 1995) . Despite their ecological importance, host-symbiont 

dynamics in acantharian photosymbioses remain largely unstudied. Decelle et al. (2012a) 

discovered that Acantharea- Phaeocystis  symbioses are flexible in regard to symbiont species and 

hypothesized that the relationship is more akin to enslavement than mutualism (Decelle et al., 

2012a; Decelle, 2013) . If symbionts are manipulated to the extent that they are unable to 

reproduce, hosts will need to continuously recruit symbionts and should host diverse symbiont 

communities reflecting the relative availability of different symbionts. The amplicon sequencing 

results show that acantharians do simultaneously host multiple species of Phaeocystis, as well as 

Chrysochromulina spp., but we found that the host-associated symbiont community does not 

simply mirror the free-living community. The microscopy results show that individual hosts 

harbor symbionts exhibiting the free-living phenotype as well as the symbiotic phenotype and 

demonstrate that symbionts are not being systematically digested. Together, these results suggest 

that hosts recruit symbionts more than once, but that they maintain recruited symbionts. 

As acantharians increase in size, the number of symbionts they host also increases 

(Michaels, 1991) . To accomplish this, acantharians could recruit microalgal partners early in 

development and nurture reproducing symbiont populations. Alternatively, acantharians could 

recruit more symbionts as they grow, which would likely lead to multiple species of symbionts 

coexisting within individual hosts. All 42 acantharians collected in this study hosted multiple 

species of Phaeocystis  symbionts and several also hosted Chrysochromulina spp., indicating that 
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acantharians recruit symbionts more than once. Acantharians in this study also contained more 

individual symbiont cells than unique Sequence Variants, which could mean that hosts recruit 

multiple symbiont cells from free-living populations during uptake events, that recruited 

symbionts divide within hosts, or both. The observation of symbionts with the free-living 

phenotype alongside symbionts with the symbiotic phenotype within single hosts can be seen as 

evidence that hosts continue to recruit new symbionts (Febvre and Febvre-Chevalier, 1979 ; 

Figure 2.10). Symbionts exhibiting the free-living phenotype within hosts could also represent 

recently divided cells rather than recently engulfed cells, but structural changes associated with 

mitotic division have not been observed in acantharian symbionts so far (Febvre and 

Febvre-Chevalier, 1979) . The results presented here cannot exclude the possibility that 

symbionts reproduce in hospite, and symbionts are indeed known to reproduce within larger 

photosymbiotic rhizarians (Takagi et al., 2016) , but continued symbiont uptake is evidence 

against intra-host symbiont division. 

Since acantharians in this study simultaneously hosted multiple Phaeocystis  and 

Chrysochromulina species, the intra-host symbiont community may be expected to reflect 

environmental symbiont availability. However, the relative abundance of symbiotic SVs within 

hosts was distinct from the relative abundance of these SVs in the surrounding environment. 

Additionally, acantharians sometimes hosted Phaeocystis  genotypes (e.g. P. jahnii SV 5, P. 

globosa SVs 13 & 14) that were not detected in environmental samples collected from the same 

place. These results suggest acantharians may maintain symbionts for extended periods of time, 

beyond that required for external populations to respond to changing environmental conditions. 

This is feasible since Phaeocystis generation times  can be as brief as 6.6 h and vary by species in 

79 

https://paperpile.com/c/tXEF6Q/9bNO
https://paperpile.com/c/tXEF6Q/9bNO
https://paperpile.com/c/tXEF6Q/9bNO
https://paperpile.com/c/tXEF6Q/qdQ8


Chapter 2: Specificity and maintenance in acantharian photosymbioses  

different light and temperature conditions (Jahnke, 1989) , while acantharians likely survive for at 

least one month (Suzuki and Not, 2015) . Intra-host symbiont communities may, therefore, be 

cumulative representations of all encountered environmental symbiont communities, rather than 

just a snapshot of the current community. 

The observed differences between acantharian symbiont communities and the availability 

of symbionts could also indicate that hosts selectively uptake symbionts, especially since there 

were many more prymnesiophyte SVs found in the environment than were identified as 

symbionts. Chrysochromulina SVs were dominant in each acantharian sample collected near 

Catalina Island, but were only found in three of the acantharians collected from ECS cruise 

stations and from near Okinawa Island, despite being well-represented in all cruise station 

environmental samples. Chrysochromulina  spp. may, therefore, make better partners in the 

Catalina Island environment compared to the Ryukyu Archipelago. Chrysochromulina spp. may 

also have been much more abundant in the waters near Catalina Island and therefore more likely 

to become symbionts, but we did not analyze the environmental community there. If 

acantharians select and concentrate environmentally rare symbionts, it increases the likelihood 

that our environmental sampling missed those symbionts and provides an alternative explanation 

as to why some symbiotic SVs were not observed in any environmental samples. It is also 

possible that the differences observed between intra-host and environmental symbiont 

communities could derive from different nucleic acid extraction methods used. However, lack of 

symbiont digestion by hosts provides additional support for extended symbiont maintenance in 

hospite (Figure 2.10) , even if recruitment is highly selective. 
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This study demonstrates for the first time that intra-cellular symbiont diversity exists in 

clade F acantharian photosymbioses. Acantharians in the clade B genus , Acanthochiasma , also 

host multiple symbiont types, including Chrysochromulina spp. and several dinoflagellate genera 

(Decelle et al., 2012b) . Radiolarian and foraminiferan (Rhizaria) hosts also host dinoflagellates 

and prasinophytes or prymnesiophytes (Gast and Caron, 2001) . Theoretically, simultaneously 

hosting multiple symbiont species or genotypes is ineffective and should negatively impact host 

fitness since different symbionts would compete for space and resources within hosts (Douglas, 

1998) . Planktonic hosts can be transported long distances and may, therefore, experience larger 

environmental gradients on shorter time-scales than stationary, benthic photosymbiotic hosts. 

This could make hosting a diverse community of symbionts more effective for planktonic hosts, 

especially if some symbionts perform better under different conditions. Indeed, different 

Phaeocystis  species have different light and temperature optima (Jahnke, 1989)  and different 

strains of a single species have varying abilities to utilize different nitrogen sources (Wang et al., 

2011) . Drifting buoys in the Global Drifter Program (Lumpkin et al., 2013)  passing our sampling 

sites in spring, the season we sampled, traveled an average of 3.66° latitude in 30 days (n = 42), 

the estimated minimum survival time of acantharians (Suzuki and Not, 2015) , suggesting they 

can travel at least this far in their lifetime. While the associated mean temperature gradient of 

1.93°C is smaller than experimental temperature gradients shown to differentially influence 

Phaeocystis spp. , changes in day length and irradiance may affect photosynthetic output of 

Phaeocystis  strains differently (Jahnke, 1989) . 

The possible fitness benefit for symbionts associated with acantharians remains 

enigmatic, but the evidence we present for extended symbiont maintenance allows that 
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Phaeocystis  could glean some advantage from the symbiosis. Acantharian symbionts were not 

enclosed in phagolysosomes in host cells imaged in this study, which could be due to symbionts 

escaping phagosomes (Jamwal et al., 2016)  or a failure of host lysosomes to fuse with 

symbiont-containing phagosomes (Hohman et al., 1982; Sibley et al., 1985) . Electron 

microscopy suggests that there is a host membrane surrounding acantharian symbionts (Febvre 

and Febvre-Chevalier, 1979) , so it is more probable that lysosomes do not fuse with 

symbiont-containing phagosomes and they are instead symbiosomes or long-term perialgal 

vacuoles. Symbiont signaling prevents lysosomes from fusing with symbiosomes housing 

Chlorella  symbionts in Paramecium  (Kodama et al., 2011)  and Hydra (Hohman et al., 1982) 

hosts. Complex signaling between hosts and symbionts leading to development of symbiosomes 

and symbiont differentiation is suggestive of coevolution (Hinde and Trautman, 2001) . If 

Phaeocystis  also actively prevents lysosomes from fusing with phagosomes, then Phaeocystis 

has adapted to avoid digestion and perhaps to promote a stable symbiosis. Although our results 

suggest that acantharians maintain symbionts, we cannot rule out that they digest symbionts 

when stressed or before releasing reproductive swarmers. Acantharian swarmers, which are 

believed to be gametes, do not contain symbionts and although asexual reproduction has been 

observed in one group of clade B acantharians, it has not been reported for photosymbiotic 

acantharians in clades E or F (Decelle and Not, 2015) . It is not yet known whether symbionts are 

digested or released during swarmer production (Decelle and Not, 2015) , but nassellarian and 

spumellarian radiolarians release viable symbionts when producing swarmers (Yuasa and 

Takahashi, 2016) . Additionally, it remains an open question whether released symbionts are 

reproductively competent outside the host (Decelle et al., 2012a) . 
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The results presented here demonstrate that clade F acantharians simultaneously associate 

with multiple Phaeocystis  and Chrysochromulina species, providing further evidence that the 

Acantharea- Phaeocystis  photosymbiosis is relatively flexible. The results further suggest that 

symbionts escape host digestion for extended periods, but whether symbionts are capable of 

reproducing in hospite or after release and whether they benefit from the relationship is still 

undetermined. Until acantharians can be maintained for prolonged periods under laboratory 

conditions, it will remain challenging to elucidate many aspects of the host-symbiont dynamics 

in this system. LysoTracker dyes can be utilized to track symbiosome conditions for as long as 

hosts survive and species- or genotype-specific fluorescent probes may be used to investigate 

whether different species or genotypes are differentially transformed into the symbiotic 

phenotype or are compartmentalized within the host. If symbionts with a single 18S rRNA gene 

Sequence Variant (or a unique combination of SVs) are co-localized, it would provide evidence 

for in hospite reproduction. Efforts to culture symbionts from Phaeocystis -hosting acantharians 

should continue. If successful, it would demonstrate unequivocally that symbionts maintain 

reproductive capacity and cultured symbionts would be an invaluable resource for comparative 

genomics and transcriptomics. Differential gene expression analysis could then be utilized to 

investigate physiological shifts in symbiotic Phaeocystis or Chrysochromulina within hosts 

compared to free-living cells of symbiotic strains and could illuminate mechanisms of 

host-symbiont interaction. Further investigation into whether symbionts benefit from this 

relationship will be important to understanding host-symbiont dynamics in this and other 

protistan photosymbioses. 
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2.5. Supplementary Material 

 

Figure S2.1. Light microscopy images of acantharians collected from ECS cruise stations 
in May and June 2017 . Samples are labeled by the station and sample number. The Host SV 
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and the associated Acantharea genus are indicated below sample names. All samples were 
imaged at 200x on a Zeiss PrimoVert inverted light microscope. Images are not cropped or 
otherwise distorted. 
 

 

Figure S2.2. Light microscopy images of acantharians collected near Okinawa in April 
(Oki.3A and Oki.4a) and May 2017 (Oki.3, 6, 7, 10, 11 & 12). The Host SV and associated 
Acantharea genus are indicated below sample names. Acantharians were imaged with an 
Olympus CKX53 inverted light microscope. Scale bars are in micrometers. 
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Chapter Three: Symbiont maintenance and 
host-control in Acantharea-Phaeocystis 
photosymbioses revealed through single-holobiont 
transcriptomics 

Abstract 
Photosymbioses, like those between acantharians (Rhizaria) and Phaeocystis (Haptophyta), 

contribute significantly to primary production in low nutrient ecosystems. These relationships are 

generally assumed to be mutualistic, with hosts providing nitrogen and phosphorus and 

symbionts providing organic carbon in return. It is unknown, however, whether or not 

Phaeocystis  symbionts are released or can escape from hosts or if they maintain reproductive 

capacity, calling into question whether the relationship can really be mutualistic. Furthermore, 

almost nothing is known about mechanisms for host control or nutrient transfer in rhizarian 

photosymbioses. This study aimed to elucidate cellular pathways important to symbiosis for 

Phaeocystis  by comparing gene expression in free-living, cultured Phaeocystis  with gene 

expression in symbiotic Phaeocystis  within individual acantharian holobionts. The results 

provide evidence for strong host manipulation of symbionts at the molecular level. Key genes in 

the mitogen activated protein kinase (MAPK) signaling pathway are downregulated in symbiotic 

Phaeocystis , potentially leading to the downregulation of DNA replication and cell-cycle 

progression genes that was measured. While the cell-cycle is arrested in symbiotic Phaeocystis , 

chloroplast division genes continue to be expressed, causing the proliferation of plastids and 

enhancing photosynthesis. Symbionts forgo storage molecule biosynthesis and seem to export 
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small organic nitrogenous compounds to the host, while the host supplies urea and ammonium to 

fuel photosynthesis. By keeping symbionts flush with nutrients and utilizing a cell signaling 

pathway to manage symbiont population size, acantharian hosts exert fine control over 

symbionts and ensure that symbiont carbon fixation is maintained. These findings demonstrate 

strong interactions between hosts and symbionts in this system. 

3.1. Introduction 
Photosymbiosis—where photosynthesizing cells reside inside heterotrophic hosts—is 

ubiquitous among marine microbial eukaryotes and is especially common among Rhizaria 

(Foraminifera, Radiolaria, and Acantharea) (Not et al., 2016) . These relationships make 

significant contributions to primary production in low nutrient ecosystems; photosymbiotic 

Rhizaria can contribute up to 4 orders of magnitude the primary production as occurs in an 

equivalent volume of oligotrophic seawater (Caron et al., 1995) . Furthermore, because hosts 

often possess dense biomineralized skeletons, they can facilitate carbon sequestration from 

surface waters to the deep sea (Michaels, 1991; Michaels et al., 1995; Martin et al., 2010; 

Gutierrez-Rodriguez et al., 2019) . Nutrient coupling between hosts and symbionts, such that 

symbionts relinquish fixed organic carbon to hosts and hosts provide inorganic nutrients (eg. N, 

P), is generally assumed, leading to photosymbioses being considered mutualistic. It is difficult, 

however, to demonstrate whether such symbioses confer advantages on symbionts, particularly 

because most Rhizaria cannot be cultured or even maintained in laboratory conditions. But, as 

more genetic and observational data become available, it seems increasingly likely that at least 

some of these relationships, specifically among acantharians, represent a more one-sided 
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arrangement where symbionts are being exploited (Decelle et al., 2012a; Decelle, 2013; Mars 

Brisbin et al., 2018) . 

 Photosymbiotic acantharians host algal symbionts from the haptophyte genus 

Phaeocystis , but the dominant Phaeocystis  species in symbiosis varies geographically (Decelle et 

al., 2012a)  and individual acantharians simultaneously host multiple strains and species of 

Phaeocystis  (Mars Brisbin et al., 2018) . The inclusion of multiple symbiont strains inside hosts 

indicates that hosts incorporate symbionts throughout their life-span, which could suggest 

continued symbiont turn-over by host digestion and would not benefit symbionts. However, 

microscopic observations demonstrate that symbionts are not systematically digested by hosts 

(Mars Brisbin et al., 2018) , which opens the question as to how hosts manage symbiont 

populations. Phaeocystis  symbionts undergo extensive structural remodeling  in hospite; 

symbiotic cells become enlarged with increased plastid abundance and altered plastid 

morphology (Febvre and Febvre-Chevalier, 1979; Decelle et al., 2019) . Cytokinesis may, 

therefore, be blocked in symbiotic cells, causing them to accumulate chloroplasts and increase 

photosynthetic output while simultaneously preventing symbionts from over-growing hosts. If 

cytokinesis is indeed blocked in symbionts, whether the transformation is reversible is a key 

question in determining if the relationship is mutually beneficial. For symbionts to benefit from 

the relationship, they must reproduce following release or escape from hosts. Symbionts isolated 

directly from hosts have not yet been successfully brought into culture, suggesting that this 

symbiosis may be an evolutionary dead-end for symbionts (Decelle, 2013) . As such, this 

relationship may represent an early intermediary step between photosymbiosis and a more 
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permanent incorporation of photosynthetic machinery, making the elucidation of involved 

mechanisms particularly interesting.  

Comparable, but less extensive and reversible, symbiont remodeling has been observed in 

other photosymbioses, including dinoflagellate symbionts of corals (Blank, 1987; Gates et al., 

1995) , radiolarians, and foraminifera (Gast and Caron, 1996, 2001; Shaked and de Vargas, 2006; 

Probert et al., 2014) . Specifically, Symbiodinium  dinoflagellates lose their flagella, transition 

from a peanut to a coccoid shape, increase photosynthetic rate, and release more photosynthate 

when living in cnidarian tissue than when free-living (Blank, 1987; Gates et al., 1995) . Likewise, 

Brandtodinium  and Pelagodinium  dinoflagellates lose their flagella and undergo similar 

morphological transformations when living as symbionts in Polycystine radiolarians or in 

foraminifera (Gast and Caron, 1996, 2001; Shaked and de Vargas, 2006; Probert et al., 2014) . 

Based on the phenotypic transformations observed in photosymbioses, hosts are likely 

manipulating symbionts to match their needs, either directly through biochemical signaling or 

indirectly by controlling the microenvironment surrounding the symbiont. Nutrient limitation is 

suspected to be used in order to limit symbiont population growth (Xiang et al., 2020) , but a 

homogenate of cnidarian host tissue can also induce phenotypic changes in cultured 

Symbiodinium , suggesting hosts may deploy chemical signaling as well (Gates et al., 1995; 

Koike et al., 2004) . Furthermore, experiments have shown that both free amino acids (Gates et 

al., 1995)  and lectins (Koike et al., 2004)  induce at least some of the phenotypic changes 

observed in symbiotic Symbiodinium . Host-homogenate studies with Rhizaria are not feasible 

due to their small size and the difficulty in separating symbionts from host tissue, especially for 

acantharians, but investigating gene expression in symbiosis presents an alternative method for 
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probing the mechanisms involved in symbiont manipulation among microbial eukaryotes 

(Balzano et al., 2015; Liu et al., 2019) .  

The inclusion of multiple symbiont strains and species in individual acantharian hosts 

complicates comparisons between symbiont gene-expression in pooled acantharian samples to 

free-living symbiont cells, since biological replicates of pooled hosts may contain more or less of 

a particular symbiont strain. As a result, transcriptomic evaluation of single holobionts is 

preferred, but is technically challenging. In this study, mRNA was extracted and sequenced from 

16 individual acantharians and gene expression in symbiotic Phaeocystis  was compared with 

free-living Phaeocystis  by further sequencing mRNA from biological replicates of two 

Phaeocystis  symbiont species available in culture ( P.  cordata  and  P. jahnii). Differences in 

symbiotic expression patterns between the two species are expected, particularly because P. 

jahnii produces mucilaginous, multicellular colonies and P. cordata  does not (Zingone et al., 

1999) . However, by focusing on shared changes between the two species while in symbiosis, it 

should facilitate interpretation of results and bolster confidence in the conclusions. Specifically, 

this study aims to elucidate molecular mechanisms for host control of symbiotic Phaeocystis 

populations and nutrient transfer between hosts and symbionts. 

3.2. Materials and Methods  

3.2.1. Acantharian collection 

Individual acantharians (n = 16) were collected from 5 sampling stations (n = 1–7 per 

station) in the Okinawa Trough (East China Sea) in May and June 2017 during the Japan Agency 

for Marine-Earth Science and Technology (JAMSTEC) MR17-03C cruise (Figure 2.1A). 
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Plankton samples were collected by passing unfiltered seawater pumped from the sea surface 

through a 100-µm-mesh, hand-held plankton net (Rigo) and were observed under a dissecting 

microscope. Individual acantharians were transferred by glass micropipette to clean Petri-dishes, 

rinsed with 0.2-µm-filtered seawater several times, until all visible contaminants were removed, 

and incubated for 0.5–2 hr for additional self-cleaning. Each acantharian was imaged with 

inverted light microscopy (Zeiss Primovert, Figure S2.1) before being transferred to a maximum 

recovery PCR tube (Axygen) with the smallest possible volume of accompanying seawater. 

Transfer success was confirmed by microscopy before adding 30 µL of RLT-plus cell-lysis 

buffer (Qiagen) and immediate flash-freezing with liquid nitrogen. Samples were stored at 

−80°C until RNA extraction. 

3.2.2. Phaeocystis  culture conditions 

Three biological replicates each of Phaeocystis cordata  CCMP3104 and Phaeocystis 

jahnii CCMP2496 were prepared by inoculating 45 mL of sterile L1 media with 1 mL stock 

culture in 50-mL Erlenmeyer flasks. Replicates were placed on a gently rotating twist mixer in a 

plant growth chamber with cool white fluorescent lamps (CLE-305, TOMY) set to 22°C with 

light level 4 and a 12:12 day:night ratio. A HOBO temperature and light logger (Onset) was kept 

in the growth chamber during culturing: the daytime temperature was 21°C with about 

1900–2000 Lux (~30 µmol m-2 s -1) light intensity, and the nighttime temperature was 22°C. 

Positions of replicates were rotated daily to prevent position in the chamber from systematically 

affecting replicates. Four days after initiating cultures, 1 mL of each replicate was transferred to 

45 mL of sterile L1 media in a clean 50-mL flask. The culture conditions were then repeated, 
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allowing for acclimation to the culture conditions. Algal cells were harvested for RNA extraction 

on the fourth day of the second culture round by filtering entire culture volumes through 

polytetrafluoroethylene (PTFE) filters (0.45-µm pore-size, Millipore) under gentle vacuum. 

Filters were immediately flash frozen in liquid nitrogen and stored at −80°C until RNA 

extraction. 

3.2.3. RNA extraction and sequencing library preparation 

RNA extractions from single acantharian holobionts were accomplished by modifying 

methods of Trombetta et al. (2014) . Samples were thawed over ice, vortexed twice (10 s, speed 

7, Vortex-Genie 2), and then incubated at room temperature for 5 min to fully lyse cells. 

Agencourt RNAClean XP magnetic beads (Beckman Coulter) were added to each sample at a 

2.2:1 V:V ratio and fully mixed by pipette prior to a 30-min incubation to bind all RNA to the 

magnetic beads. After two 80% ethanol washes, RNA was eluted from the beads in 11 µL of a 

custom elution buffer (10.72 µL nuclease-free water, 0.28 µL RNAase inhibitor) and 10.5 µL of 

eluted RNA were directly processed following the single-cell protocol for the SMART-seq v4 

Ultra Low Input Kit (Clonetech/Takara) with 18 cycles in the primary PCR. 

RNA was extracted from Phaeocystis  cells collected on PTFE filters by following the 

manufacturer’s protocols for the MoBio PowerWater RNA extraction kit (Qiagen) including the 

optional initial heating step. Extracts were diluted so that 10 ng of RNA were used from each 

sample as input with the SMART-seq v4 Ultra Low Input RNA Kit. Each Phaeocystis  sample 

was additionally supplemented with 2 µL of a 1:10,000 dilution of External RNA Controls 

Consortium (ERCC) spike-in mix one (Ambion) as an internal quality control. ERCC spike-in 

92 

https://paperpile.com/c/tXEF6Q/PakLg/?noauthor=1


Chapter 3: Symbiont maintenance and host-control in Acantharea-Phaeocystis photosymbioses 
revealed through single holobiont transcriptomics 
 
was only added to Phaeocystis libraries, and not single holobiont libraries, because RNA 

concentrations in single-holobiont libraries were extremely low and the spike-in would, 

therefore, take up too much of the sequencing resources for those samples. The SMART-seq 

total RNA protocol was then followed with 12 cycles in the primary PCR. 

The quality and concentration of cDNA from acantharian holobionts and Phaeocystis 

cultures were assessed before continuing with the manufacturer’s protocols for the Nextera XT 

DNA Library Prep Kit (Illumina). Sixteen acantharian holobiont and six Phaeocystis  culture 

cDNA libraries were submitted to the Okinawa Institute of Science and Technology DNA 

Sequencing Section. Eight acantharian libraries were pooled for 2x150bp paired-end sequencing 

on four lanes of an Illumina HiSeq4000 flow-cell and the second eight acantharian libraries and 

the six Phaeocystis  libraries were pooled and sequenced on four lanes of an additional 

HiSeq4000 flow-cell. 

3.2.4. Phaeocystis  reference transcriptome assembly and annotation 

Adapters were trimmed from sequencing reads and low-quality reads were filtered and 

discarded with trimmomatic software (Bolger et al., 2014) . Reads mapping to ERCC reference 

sequences were removed to prevent internal standard sequences from being included in the 

transcriptome assemblies. The pre-processed Phaeocystis cordata  and P. jahnii libraries were 

then assembled into de novo  transcriptomes using the Trinity software (v2.8.4, Grabherr et al., 

2011)  and these assemblies were used as references for read mapping and counting prior to 

differential gene expression testing. The assemblies were deduplicated by removing reads with 

95% similarity using CD-HIT-EST (Fu et al., 2012) . While the SMART-seq kit employs poly-A 
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priming to target eukaryotic mRNA and reduce the amount of ribosomal and bacterial RNA 

present in sequencing libraries, some RNA deriving from these sources remain, especially in 

low-input samples. Sequences of bacterial origin were removed from transcriptomes by 

performing a blastn query against the NCBI nr-nt nucleotide database (downloaded March 2018, 

ncbi-blast v2.6.0+, Camacho et al., 2009)  and parsing results to identify and remove bacterial 

contigs. The final assemblies were assessed for completeness by determining how many 

eukaryotic and protistan Benchmarking Universal Single-Copy Orthologs (BUSCO v3, Simão et 

al., 2015)  were present in the transcriptomes with the HMMER3 software (Eddy, 2010) . 

BUSCOs provide a method to quantitatively assess the quality of a transcriptome in terms of 

gene content: more complete transcriptomes contain more full-length BUSCOs, which are 

well-conserved genes appearing only once in complete, representative genomes for each BUSCO 

group. The P. cordata  CCMP3104 BUSCO scores were compared with scores for the P. cordata 

RCC1383 transcriptome that was assembled as part of the Marine Microbial Eukaryote 

Transcriptome Sequencing Project (MMETSP) (Keeling et al., 2014) . The P. jahnii 

transcriptome had not been previously sequenced and hence an assembly was not available for 

comparison.  

The Phaeocystis  transcriptomes were annotated using two different databases and 

functional annotation methods: Pfam (Finn et al., 2014)  and the Kyoto Encyclopedia of Genes 

and Genomes (KEGG) (Kanehisa et al., 2016) . Pfam annotation was accomplished with the 

dammit software (Scott 2018), which wraps Transdecoder to translate transcriptome contigs to 

the longest possible amino acid sequence (Haas et al., 2016)  and HMMER to assign Pfam 

protein homologs to sequences (Eddy, 2010) . After discarding annotations with e-values greater 
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than 1E-5, the Pfam annotation with the lowest e-value was selected for each contig. The Pfam 

annotations were matched to corresponding Gene Ontology (GO) terms using the Gene Ontology 

Consortium’s Pfam2GO mapping ( geneontology.org/external2go/pfam2go , version 07/14/2018, 

Mitchell et al., 2015) . KEGG Orthology (KO) annotation was performed using the 

GhostKOALA tool with the Transdecoder translated amino acid sequences (kegg.jp/ghostkoala, 

05/21/2019, Kanehisa et al., 2016) . The KEGG Orthology numbers were then used to access the 

KEGG API (kegg.jp/kegg/rest/keggapi.html , July 2019) and determine the KEGG pathways to 

which transcriptome contigs belonged. Additional annotations for genes of interest were acquired 

by blasting the Phaeocystis  transcriptomes against the Emiliania huxleyi  reference genome (Read 

et al., 2013) . 

3.2.5. Differential gene expression analysis 

Quality filtered sequences from each of the sixteen acantharians were mapped to one or 

both of the reference transcriptomes, depending on symbiont presence in holobiont samples 

based on rRNA gene sequence analysis (Figure 3.1), but holobiont reads were only allowed to 

map to one reference transcriptome to avoid double counting (n = 12 acantharian holobionts with 

reads mapping to P. cordata , and n = 13 for P. jahnii). Sequences from Phaeocystis  culture 

replicates were mapped to corresponding reference transcriptomes. All read mapping and 

quantifying steps were accomplished with the Salmon software (Patro et al., 2017) . Counts for 

each sample were imported into the R statistical environment with tximport (Soneson et al., 

2015) . Differential gene expression testing between symbiotic and free-living replicates was 

performed with the DESeq function in the Bioconductor package DESeq2 (Love et al. 2014). 
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Genes that were differentially expressed with a False Discovery Rate (FDR) adjusted p-value 

(padj) less than 0.05 were considered statistically significant and included in gene set enrichment 

testing. 

 
Figure 3.1. Intra-host symbiont communities in acantharian holobionts for which 
RNA-sequencing libraries were prepared. Symbiont community composition is based on 18S 
rRNA gene amplicon sequence variants. Each color represents an individual sequence variant. 
Sequence variants represented by similar colors clustered together on a phylogenetic tree with 
sequences from the main Phaeocystis clades, as indicated in the legend (Figure 2.2). Maroon 
sequences did not directly cluster with any cultured Phaeocystis strains or environmental 
Phaeocystis sequences from GenBank, but were most closely related to Phaeocystis jahnii .  

3.2.6. Gene set enrichment testing 

GO term enrichment among significantly up- and downregulated genes was determined 

with a hypergeometric test in the R package GOstats (Falcon and Gentleman, 2007) . GOstats 

accommodates user-defined GO annotations, which are necessary when studying non-model 

organisms like Phaeocystis . Enrichment of KEGG pathways among up- and downregulated 

genes was tested for by applying linear model analysis with the kegga function from the 
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Bioconductor package edgeR (Robinson et al., 2010) . GO terms and KEGG pathways were 

considered significantly enriched when the statistical test resulted in a  p-value less than 0.05. 

3.3. Results 

3.3.1. Sequencing and quality control  

Sequencing for this project produced over 2.9 billion read pairs with 78–350 million read 

pairs per sample. The sequencing data are available from the NCBI Sequence Read Archive 

(SRA) with accession number PRJNA603434. Following quality filtering with Trimmomatic, 2.5 

billion read pairs remained, with 62–305 million read pairs per sample. Reads mapping to ERCC 

reference sequences (Cronin et al., 2004)  were counted with RSEM software for each sample (Li 

and Dewey, 2011)  and counts were further analyzed in the R statistical environment (R Core 

Team, 2018) . To assess the relationship between ERCC sequence read counts and their original 

concentrations in the ERCC standard, the log of the observed FPKM (Fragments Per Kilobase 

per Million reads) was plotted against the log of the initial concentrations for each standard 

sequence. Linear regressions were fit for each sample and R 2 values ranged from 0.883–0.926 

(Figure 3.2). The strong correlation between observed FPKM and initial concentration for ERCC 

sequences indicates minimal bias was introduced during PCR amplification, library preparation, 

and sequencing.  
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Figure 3.2. Correlation between External RNA Controls Consortium (ERCC) standard 
sequence initial concentrations and sequence counts from Phaeocystis cordata and 
Phaeocystis jahnii culture replicates. Quality-filtered sequences for each culture replicate (P. 
cordata replicates: PC2 – 4, P. jahnii  replicates: PJ1 – 3) were mapped to ERCC standard 
sequences and read counts were determined with RSEM software. Fragments Per Kilobase per 
Million reads (FPKM) were log transformed and plotted against the log transformed initial ERCC 
sequence concentrations. A linear model was fit for each culture replicate in the R statistical 
environment and the resulting regression line, equation and R-squared are displayed on each 
plot panel.  

3.3.2. Transcriptome assembly and annotation 

The P. cordata CCMP3104 transcriptome assembled for this study is made up of 41,629 

contigs and had an N50 of 989 bp; the P. jahnii CCMP2498 transcriptome is made up of 90,009 

contigs and had an N50 of 1,351 bp (Table 3.1). The P. cordata  transcriptome includes complete 

sequences for 74% of eukaryotic BUSCOs, whereas the  P. cordata  (RCC1383) transcriptome 

that was assembled for the MMETSP included complete sequences for only 46.5% of eukaryotic 
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BUSCOs. The P. jahnii transcriptome includes complete sequences for 81.2% of eukaryotic 

BUSCOs (Figure 3.3). The P. cordata  and  P. jahnii transcriptomes had similar annotation rates, 

with 41.5 and 35.1%, respectively, of contigs being assigned high confidence Pfam annotations. 

Similarly, 18.5% and 20.3% of P. cordata  and P. jahnii contigs were assigned KEGG orthology 

annotations (Table 3.1).  

 
Table 3.1. Assembly and annotation summary statistics for Phaeocystis cordata 
(CCMP3104) and Phaeocystis jahnii (CCMP2496) transcriptomes.  

 P. cordata CCMP3104 P. jahnii CCMP2496 

Number of contigs 41,629 90,009 

Sum bp 49,775,870 95,573,289 

min contig length 201 192 

max contig length 24,502 26,543 

med contig length 1,027 782 

mean contig length 1,196 1,062 

N50 989 1,351 

GC% 67.1 67.7 

With Pfam annotation 13,548 (41.5%) 31,580 (35.1%) 

With GO annotation 7,119 (21.8%) 16,878 (18.8%) 

With KO annotation 7,720 (18.5%) 18,233 (20.3%) 

With Kegg Pathway 4,618 (11.1%) 11,071 (12.3%) 
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Figure 3.3. Percent of Eukaryotic and Protistan Benchmarking Universal Single-Copy 
Orthologs (BUSCOs) present in Phaeocystis transcriptomes. The  P. cordata RCC1383 
transcriptome was sequenced as part of the Marine Microbial Eukaryote Transcriptome 
Sequencing Project (MMETSP). The P. cordata CCMP3104 and P. jahnii CCMP2496 
transcriptomes were sequenced for this study and are more complete than the previously 
assembled P. cordata  transcriptome.  

3.3.3. Differential expression in free-living and symbiotic Phaeocystis 

Symbiotic and free-living samples for both Phaeocystis  species clustered separately in 

principal component analyses (PCA) of variance stabilized gene expression results (Figure 3.4). 

In both cases, symbiotic and free-living samples separated along the primary axis and symbiotic 

samples further spread along the secondary axis, indicating that there is wider variation in gene 

expression in symbiotic than cultured Phaeocystis . For Phaeocystis cordata , 589 genes (1.4%) 

were significantly upregulated in symbiosis and 5211 genes (12.5%) were significantly 

downregulated in symbiosis ( p < 0.05). For Phaeocystis jahnii , 132 (0.15%) genes were 
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significantly upregulated in symbiosis and 4545 (5.05%) were downregulated in symbiosis ( p  < 

0.05).  

A. P. cordata B. P. jahnii  

 

                                                                                                        
Figure 3.4. Principal component analysis of variance stabilized gene expression in 
symbiotic and free-living Phaeocystis cordata (A) and Phaeocystis jahnii (B). Free-living 
(F) Phaeocystis is blue and symbiotic (S) Phaeocystis is grey in both panels. PCA included 12 
holobiont samples with symbiotic Phaeocystis cordata  and 13 holobionts with symbiotic 
Phaeocystis jahnii . Symbiotic and free-living samples separated along the primary axis for both 
species. Symbiotic samples further separated along the secondary axis for both species, 
indicating more variation in gene expression between symbiotic cells compared to cultured cells.  

3.3.4. Gene set enrichment analysis 

For P. cordata , 139 Biological Process (BP) GO terms were enriched among genes 

upregulated in symbiosis (Table S3.1) and 31 BP GO terms were enriched among genes 

downregulated in symbiosis (Table S3.2). For P. jahnii, 90 BP GO terms were enriched among 

upregulated genes (Table S3.3) and 130 BP GO terms were enriched among downregulated 

genes (Table S3.4). GO terms were further categorized and visualized with REVIGO software 

(Supek et al., 2011)  and GO terms enriched in up- and downregulated genes were plotted as 

treemaps for each species (Figure 3.5). Of the GO terms enriched among upregulated genes in 

symbiosis, 62 were shared between both species, whereas only eight GO terms enriched among 
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downregulated genes in symbiosis were shared between the two species. Enriched GO terms that 

were common to both species were categorized and visualized with REVIGO as a nonmetric 

multidimensional scaling (NMDS) plot (Figure 3.6). Notably, photosynthesis GO terms 

—including GO:Photosynthesis (count = 5, p = 0.001 for P. cordata  and count = 2, p  = 0.04 for 

P. jahnii), GO:Photosynthetic electron transport chain (count = 4, p  = 0 for P. cordata  and count 

= 1, p = 0.03 for P. jahnii) , and GO:Photosynthesis light reaction (count = 5, p = 0 for P. 

cordata )—are enriched among upregulated genes in symbiosis in the two symbiont species 

(Tables S3.1 and 3.3). Also of note, the DNA replication GO term is enriched among genes in 

symbiosis for both species (count = 15, p  = 0.004 for P. cordata  and count = 10, p = 0.03 for P. 

jahnii).  

Consistent with the lower annotation rates for KEGG terms, less KEGG pathways were 

enriched among up- and downregulated genes in symbiotic Phaeocystis  than were GO terms. For 

P. cordata , ten KEGG pathways were enriched among genes upregulated in symbiosis and 

sixteen pathways were enriched among downregulated genes. For P. jahnii, seven pathways 

were enriched among genes upregulated in symbiosis and ten pathways were enriched among 

downregulated genes. The two species shared four pathways enriched among upregulated genes 

and one pathway enriched among downregulated genes (Figure 3.7). Importantly, the 

photosynthesis KEGG pathway was enriched among upregulated genes in symbiosis for both 

species. 
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A. GO terms enriched among genes upregulated in symbiotic P. cordata 

 
 
B. GO terms enriched among genes downregulated in symbiotic P. cordata 
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C. GO terms enriched among genes upregulated in symbiotic P. jahnii 

 
 
D. GO terms enriched among genes downregulated in symbiotic P. jahnii 

 
Figure 3.5. Treemaps for GO terms that were enriched among upregulated (A) and 
downregulated (B) genes in symbiotic Phaeocystis cordata and upregulated (C) and 
downregulated (D) genes in symbiotic Phaeocystis jahnii. REVIGO software was used to 
categorize GO terms and find a representative subset of terms with a clustering algorithm based 
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on semantic similarity measures. Each color depicts a cluster within one panel, and rectangles 
depict representative GO terms in that cluster.  
 

 
Figure 3.6. Multidimensional scaling plot of semantic similarities between non-redundant 
Gene Ontology (GO) terms over-represented in significantly up- and downregulated gene 
sets from symbiotic Phaeocystis cordata and Phaeocystis jahnii. The analysis was 
performed using the REVIGO online tool with allowed similarity set to 0.7 (to remove redundant 
GO terms) and the SimRel metric selected to calculate similarities. GO terms that were 
overrepresented in upregulated gene sets are colored red and GO terms overrepresented in 
downregulated gene sets are colored blue. GO terms with similar meanings are clustered closer 
together on the plot. 
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Figure 3.7. Comparison of KEGG pathways enriched among up- and downregulated 
genes in symbiotic Phaeocystis cordata and Phaeocystis jahnii. Pathways that are 
upregulated or downregulated in both species are highlighted in green and pathways that are 
enriched in opposite gene sets in the two species are highlighted in red. Values following 
pathway names indicate the number of genes in that pathway that were significantly up- or 
downregulated over the number of genes in that pathway that were annotated in the 
transcriptome. 

3.3.5. Expression of genes and pathways of interest 

In addition to testing for significant changes in global expression, expression of genes 

and pathways of specific interest based on previous reports in the literature were analyzed. An 

important Phaeocystis  characteristic is its role in the global sulfur cycle as a major producer of 
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DMS (Liss et al., 1994) . Decelle et al. (2012a)  found that acantharian holobionts produce more 

DMSP and DMS than cultured Phaeocystis cordata . So far, there are only two genes that have 

been experimentally proven to be involved in DMSP and DMS production in algae: DSYB 

catalyzes a key step in DMSP biosynthesis (Curson et al., 2018)  and Alma  (Alcolombri et al., 

2015)  catalyzes the breakdown of DMSP to DMS and acrylate. While orthologs for both of these 

genes were found in the transcriptomes for P. cordata  and P. jahnii, they were not expressed at 

higher rates in symbiotic Phaeocystis when expressed at all (Figure S3.1), which opens the 

possibility that the host may be producing the additional DMSP/DMS, as has been demonstrated 

in coral symbioses (Raina et al., 2013) .  

Genes involved in chloroplast division are of particular interest since a drastic increase in 

chloroplast number is among the most striking characteristics of symbiotic Phaeocystis . Nuclear 

encoded chloroplast division genes were, therefore, identified within the  P. cordata  and P. jahnii 

transcriptomes and expression levels of these genes were compared between the free-living and 

symbiotic state for both species (Chen et al., 2018) . FtsZ  genes encode tubulin-like cytoskeletal 

GTPases that assemble into the Z ring (GTP-dependent self-assembly), which marks the 

constriction point during chloroplast division. The Min system regulates where the Z ring 

assembles on the chloroplast, and once it is assembled, dynamin-related proteins (encoded by 

DRP5B) and PD rings (encoded by PDR1 ) constrict the plastid membranes and ultimately divide 

the plastid (McFadden, 2014) . Nuclear encoded chloroplast division genes were expressed at 

similar levels in free-living and symbiotic Phaeocystis , demonstrating that chloroplast division 

continues in symbiotic cells (Figure S3.2), despite the cell-cycle and DNA replication KEGG 

pathways—including several genes for cyclin proteins which are key for the advancement to 
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mitosis (Nigg, 1995) —being downregulated in symbiosis for both symbiont species (Figures 

S3.6, S3.7).  

Genes related to nitrogen and phosphorus metabolism are of interest because these 

nutrients are limiting where photosymbiotic acantharians are most common. Heterotrophic hosts 

are widely believed to provide nitrogen and phosphorus to photosynthetic symbionts, and, in 

some cases, to use access to these nutrients as a means to control symbiont population size 

(Xiang et al., 2020) . Determining whether symbiotic Phaeocystis  cells are experiencing N or P 

limitation will provide evidence for or against hosts providing these nutrients to symbionts. 

Genes orthologous to those in nitrogen and phosphorus metabolism gene clusters annotated for 

the Emiliania huxleyi  reference genome (Read et al., 2013)  were identified in the P. cordata  and 

P. jahnii transcriptomes and their expression in symbiotic and free-living cells were compared. 

Genes associated with phosphorus limitation, such as those for alkaline phosphatases ( PhoA, 

Ehap1 ) and the synthesis of phosphorus-free membrane lipids ( SQD1), were not expressed at 

significantly higher levels in symbiosis than in the free-living cells growing in nutrient-replete 

culture conditions (Figure S3.3). Importantly, the alkaline phosphatase genes were only 

expressed at a detectable level within a single symbiotic replicate, while these genes were 

expressed in all culture replicates of both symbiont species (Figure S3.3). 

Patterns of expression for nitrogen metabolism genes were not fully congruent for the 

two symbiont species, and differences may be attributable to P. jahnii forming colonies in 

culture while P. cordata  did not.  The nitrate and nitrite transporter gene ( Nrt) was significantly 

downregulated in symbiotic P. cordata (log2FC = −8.0, padj = 0.001) as was the gene encoding 

assimilatory nitrite reductase ( NirA) (log2FC = −7.4, padj = 0.04). Genes encoding the 
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ammonium assimilating  GS-GOGAT (Glutamine Synthetase and Glutamine Oxoglutarate 

Aminotransferase) enzymes, on the other hand, were significantly upregulated (log2FC = 10.8, 

padj = 0.0 and log2FC = 6.2, padj = 0.001, respectively) in symbiotic P. cordata  (Figure S3.5A). 

In addition, the gene for carbamoyl-phosphate synthase ( CPS1 ), which is involved in ammonium 

assimilation for arginine biosynthesis, was significantly upregulated in symbiotic P. cordata 

(log2FC = 8.5, padj = 0.0). In contrast, the nitrate and nitrite transporter gene ( Nrt) was 

upregulated in symbiotic P. jahnii (log2FC = 5.6 , padj = 0.02) and the GS gene was 

downregulated (log2FC = −5.1, padj = 0.01), whereas GOGAT and carbamoyl-phosphate 

synthase genes were not differentially expressed (Figure S3.5B). Despite these contrasting 

expression patterns for important nitrogen metabolism genes in the two symbiont species, several 

similarities remain. For instance, neither urea nor ammonium transporter genes were 

differentially expressed in symbiotic P. cordata  or P. jahnii (Figure S3.4). In addition, urea cycle 

genes were expressed at similar or higher levels in symbiotic cells compared to free-living cells 

for both species (Figure S3.4). 

3.4. Discussion 
Photosymbioses are ubiquitous throughout the global ocean and are especially important 

to primary production in low nutrient ecosystems. The Acantharea- Phaeocystis  photosymbiosis 

is an ecologically relevant system, due to its abundance in oligotrophic surface waters, and is 

additionally of interest in an evolutionary context. While photosymbioses are often considered 

mutualistic, there is mounting evidence that symbionts may not benefit in some cases, such as in 

Acantharea- Phaeocystis  associations, where symbionts are strongly manipulated by the host and 
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may be transitioning toward full integration as organelles. This study, therefore, attempted to 

decipher mechanisms of host control and nutrient transfer in Acantharea- Phaeocystis 

photosymbioses by comparing gene expression between symbiotic Phaeocystis  and free-living 

Phaeocystis  in culture conditions. The results demonstrate that photosynthesis genes are 

upregulated in both symbiont species that were included in the study, demonstrating that 

symbionts are ramping up photosynthesis  in hospite at the molecular level. Key genes for the 

progression of the cell cycle are downregulated in both species, indicating that cell division is 

inhibited, but chloroplast division genes continue to be expressed at similar levels as in 

free-living cells, allowing for the proliferation of photosynthetic machinery. While expression of 

some nutrient assimilation pathways differs between the two species, neither species seems to be 

nutrient limited based on gene expression patterns. As a result, nutrient independent host 

inhibition of the cell-cycle must be taking place, thus suggesting a high level of symbiont 

integration. The downregulation of cell signaling pathways that influence cell proliferation while 

cells are in symbiosis presents potential mechanisms for symbiont manipulation by hosts.   

3.4.1. Differences in morphology and gene expression patterns between P. cordata 

and P. jahnii  

Comparisons between results from P. cordata  and P. jahnii are somewhat complicated 

due to the distinct cell morphologies of the two species in culture; P. cordata  CCMP3104 

cultures include only solitary flagellated cells that are actively swimming, whereas P. jahnii 

CCMP2496 cultures include colonial and solitary cells, some of which are flagellated and 

actively swimming, but not all. Differences in gene expression related to these different 
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morphological phenotypes are evident, for example, in the enrichment of the KEGG pathway for 

Mucin type O-glycan biosynthesis among downregulated genes in symbiotic  P. jahnii but not P. 

cordata (Figure 3.7). This result likely reflects a decrease in expression of genes associated with 

building the colony matrix while living symbiotically, as such polysaccharides have previously 

been indicated as components of Phaeocystis colonies (Janse et al., 1996) . In addition, cellular 

respiration is enriched among genes downregulated in symbiotic P. cordata  but not symbiotic P. 

jahnii (Figure 3.5), which is likely influenced by the cessation of active flagellar motility in 

symbiotic P. cordata , since flagellar locomotion is energy intensive (Ronkin, 1959) . 

Nevertheless, major similarities in differential expression between symbiotic and free-living cells 

of the two species were apparent and are the primary focus in the interpretation of results. 

3.4.2 Photosynthesis, cell cycle progression, and chloroplast division in symbiosis 

The most striking similarities in gene expression results between P. cordata  and  P. jahnii 

include the upregulation of photosynthesis and the downregulation of DNA replication and 

progression through the cell cycle (Figures 3.6, S3.6, S3.7). Dinoflagellate symbionts in 

cnidarian hosts increase photosynthetic rate (Phipps and Pardy, 1982)  and this enhancement of 

photosynthesis is considered a major feature of photosymbioses. Among Rhizaria, Decelle et al. 

(2019)  reported higher photosynthetic efficiency for Phaeocystis  residing in acantharian hosts 

than for free-living cells. The fact that photosynthesis genes are upregulated in both symbiotic P. 

cordata  and P. jahnii in this study confirms that acantharians enhance symbiont photosynthetic 

rate at the molecular level. Takagi et al. (2019)  proposed that a larger increase in photosynthesis 

in rhizarian than cnidarian symbionts when compared to their free-living counterparts, regardless 
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of ambient inorganic nutrient availability, indicates a higher level of host-symbiont interaction. 

Enhanced photosynthesis in symbiotic Phaeocystis , even when compared with free-living cells 

cultured in nutrient replete conditions, suggests strong interactions between symbionts and hosts. 

In this case, the extensive morphological remodeling—namely the proliferation of 

chloroplasts—in symbiotic Phaeocystis  compared to free-living cells may be responsible for the 

increased photosynthetic output in the symbiotic state.  

Symbiotic Phaeocystis  cells have increased cell volume with the additional space 

primarily filled by multiple additional chloroplasts. Free-living Phaeocystis  cells have only 2–4 

chloroplasts, whereas symbiotic Phaeocystis  can have many more chloroplasts, with some 

symbionts reported to contain up to 31 chloroplasts (Decelle et al., 2019) . The increase in 

symbiont cell size accompanied by the multiplication of chloroplasts suggests that hosts are 

manipulating symbionts to prevent cell division and maximize photosynthetic output. Here, the 

downregulation of genes encoding genes for the major protein complexes responsible for DNA 

replication (e.g. DNA polymerase components, DNA clamp, DNA clamp loader) and proteins 

that promote progression through the cell cycle (e.g. cyclins, cyclin-dependent kinases, anaphase 

promoting complex) in both symbiont species supports the notion that hosts are preventing 

symbionts from dividing in hospite (Figures S3.6, S3.7). These results are remarkable because 

they suggest a mechanism for maintenance of the relationship. Preventing symbiont overgrowth 

presents a major dilemma for organisms hosting endosymbionts, which many hosts overcome by 

systematically digesting (Titlyanov et al., 1996)  or releasing symbionts (Boettcher et al., 1996; 

Fishman et al., 2008) . Previous results indicate that acantharians do not systematically digest 

symbionts and that they maintain symbionts long enough for external symbiont availability to 
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shift compared to internal symbiont populations (Mars Brisbin et al., 2018) . While those results 

pointed to sustained symbiont maintenance without symbiont digestion, the current study shows 

that symbiont cell division is indeed inhibited within acantharian hosts.  

Unlike plants, whose cells often have many chloroplasts that divide independently from 

the plant cell, algal chloroplast and cell division are typically synchronized (Sumiya, 2018) . In 

symbiotic Phaeocystis,  chloroplast and cell division have become decoupled, with chloroplasts 

continuing to divide and accumulate even though the cell-cycle is arrested. Chloroplast division 

in single-celled algae is generally initiated by the expression of nuclear-encoded chloroplast 

division genes during S-phase of the algal cell cycle, leading to the hypothesis that if algal cells 

are stuck in S-phase, chloroplasts may continue to divide and accumulate. Indeed, when 

Cyanidioschyzon merolae (a unicellular red alga) was artificially prevented from progressing 

from S-phase, chloroplasts continued to divide (Itoh et al., 1996) , thus indicating that chloroplast 

division can be sustained when algal cells themselves do not divide. In this study, 

nuclear-encoded chloroplast division genes— FtsZ , PDR1 , DRP5B—were not differentially 

expressed in symbiotic and free-living Phaeocystis (Figure S3.2), despite cell-cycle genes being 

significantly downregulated in symbiotic cells (Figure S3.7). These results suggest that 

symbiotic Phaeocystis  may be arrested in S-phase, allowing chloroplasts to continue dividing 

and accumulating and ultimately keeping symbiont population density constrained while 

simultaneously increasing symbiont photosynthetic output. 
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3.4.3. Nutrient transfer between hosts and symbionts 

Nutrient transfer between hosts and symbionts is considered central to photosymbioses, 

especially in low-nutrient regions where nutrient availability otherwise limits phytoplankton 

production. Symbiotic algae are expected to benefit from host-supplied nitrogen and phosphorus 

procured through prey capture and, in return, to supplement hosts with an additional energy 

source by sharing photosynthetically derived organic carbon. Understanding which compounds 

are transferred between hosts and symbionts is, therefore, a principal aim in studying these 

symbioses. Identifying whether and in what form hosts provide nitrogen and phosphorus to 

symbionts from gene expression data is challenging, though, because gene expression does not 

perfectly correlate to protein translation and is further removed from enzymatic activity and 

metabolic rates (Waldbauer et al., 2012) . The matter is further complicated when symbionts are 

compared to free-living cells in nutrient replete conditions. A more informative comparison in 

this regard might be between symbiotic Phaeocystis  and Phaeocystis  living in naturally 

occurring communities in oligotrophic conditions, which could be accomplished in the future by 

preparing metatranscriptomes from size-fractionated seawater samples (to remove hosts). 

Notwithstanding, the results presented here can help decipher patterns of nutrient exchange 

between symbiotic Phaeocystis  and acantharian hosts while keeping these limitations in mind.  

Overexpression of the nitrate/nitrite transporter gene ( Nrt) is a major indicator of nitrogen 

limitation in marine algae (Alipanah et al., 2015; Sanz-Luque et al., 2015; Xiang et al., 2020) . In 

symbiotic P. cordata , Nrt was significantly downregulated, suggesting that symbiotic cells were 

not nitrogen limited. Furthermore, the assimilatory nitrate reduction gene ( NirA) was 
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downregulated and ammonia assimilation genes—carbamoyl phosphate synthetase ( CPS1 ), 

glutamine and glutamate synthetases ( GS-GOGAT )—were upregulated in symbiosis (Figure 

S3.5A). These findings mirror those reported for another rhizarian photosymbiosis, between the 

Polycystine radiolarian Thalassicolla nucleata  and its dinoflagellate symbiont, Brandtodinium 

sp. (Liu et al., 2019) , where host-supplied ammonium was indicated as the main nitrogen source 

for symbionts. Ammonium transporter genes were expressed at low levels in symbiotic P. 

cordata  and a urea transporter gene was also expressed at similar levels as in free-living cells, 

along with several urea metabolism genes, including argininosuccinic acid synthetase and 

argininosuccinate lyase (Figure S3.6A). Phaeocystis , like other haptophytes, can use urea as a 

nitrogen source by catalyzing its breakdown to ammonium and carbon dioxide, which would also 

help meet an increased carbon dioxide demand resulting from elevated photosynthetic rates in 

symbiosis (Lindehoff et al., 2011; Wang et al., 2011; Syrett and Leftley, 2016) . Heterotrophic 

protists excrete both urea and ammonia as nitrogenous waste (Weatherby, 1929; Dolan, 1997) , 

thus making both urea and ammonium potential nitrogen sources for symbiotic Phaeocystis .  

Interestingly, the expression patterns for nitrogen metabolism genes were different in P. 

jahnii compared to P. cordata , which probably reflects the formation of colonies by free-living 

P. jahnii in culture. Unlike in symbiotic P. cordata , Nrt was upregulated in symbiotic P. jahnii 

and while genes for nitrate reductase, carbamoyl phosphate synthetase, and glutamate synthetase 

were not differentially expressed, the gene for glutamine synthetase was downregulated in 

symbiosis (Figures S3.6B, S3.7B). Ammonium transporter and urea transporter genes were 

expressed at similar levels in symbiotic P. jahnii as in P. cordata  (Figure S3.4) and genes for 

argininosuccinate lyase (urea cycle) were expressed at similar levels in symbiotic and free-living 
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P. jahnii. Phaeocystis  colonial matrices include amino group-containing 

compounds—potentially amino sugars or amino acids—that cells may later access as additional 

nitrogen sources (Hamm et al., 1999) . If colonial cells rely more heavily on these alternative 

nitrogen sources than solitary cells, it could explain the differing expression patterns for nitrogen 

metabolism genes between symbiotic and free-living, colonial Phaeocystis jahnii compared to 

between symbiotic and free-living, non-colonial  P. cordata . However, since cellular nitrogen 

compound biosynthesis, peptide biosynthesis and translation GO terms were still enriched among 

genes upregulated in symbiotic  P. jahnii, like in P. cordata , is appears that P. jahnii is also not 

nitrogen limited within hosts.  

Chloroplasts within symbiotic Phaeocystis  cells have a higher N:P ratio than in 

free-living cells (Decelle et al., 2019) , which could be considered evidence that symbiotic 

Phaeocystis  is phosphorus limited. Alternatively, denser thylakoids and increased photosynthetic 

rate in symbiotic Phaeocystis  could also skew the N:P ratio towards N (Decelle et al., 2019) , as 

thylakoid membranes are primarily protein and lipid (only 9% phospholipid) (Andersson and 

Barber, 1994) . Alkaline phosphatase, which catalyzes the hydrolysis of organic phosphorus 

compounds and releases inorganic phosphorus, is an indicator of P-limitation in marine 

phytoplankton (Annis and Cook, 2002; Alipanah et al., 2018; Li et al., 2018) . Symbiotic P. 

cordata  and P. jahnii did not express alkaline phosphatase genes ( PhoaA, Ehap1 ) at detectable 

levels (except for in one holobiont sample), whereas free-living cells in nutrient replete media 

expressed both alkaline phosphatase genes in all replicates (Figure S3.5). Likewise, P. cordata 

and P. jahnii orthologs to Emiliania huxleyi  genes associated with P-limitation (Read et al., 

2013)  were either expressed at similar or lower levels in symbiosis compared to in free-living 

116 

https://paperpile.com/c/tXEF6Q/n2YxB
https://paperpile.com/c/tXEF6Q/ba8Mk
https://paperpile.com/c/tXEF6Q/ba8Mk
https://paperpile.com/c/tXEF6Q/ETfCc
https://paperpile.com/c/tXEF6Q/ETfCc
https://paperpile.com/c/tXEF6Q/m5V5j+dtVVe+MxXHO
https://paperpile.com/c/tXEF6Q/ElW8e
https://paperpile.com/c/tXEF6Q/ElW8e


Chapter 3: Symbiont maintenance and host-control in Acantharea-Phaeocystis photosymbioses 
revealed through single holobiont transcriptomics 
 
cells. Together, these results suggest that Phaeocystis  symbionts are not nutrient-limited, 

especially since symbiotic gene expression was compared to expression in nutrient replete 

conditions. Therefore, Nitrogen and Phosphorus procured through host predation is probably 

available to the symbionts in hospite, since there are vanishingly low inorganic nutrient 

concentrations in the surface waters where holobionts were collected (Hirose and Kamiya, 2003) .  

The carbon fixation (the Calvin-Benson cycle) pathway and glycolysis/gluconeogenesis 

pathway were both upregulated in symbiotic Phaeocystis , indicating a potential increase in 

organic carbon production in symbiosis (Figures 3.7, S3.8). Excess fixed organic carbon can 

either be converted to storage molecules or transferred to the host. Eukaryotic phytoplankton in 

oligotrophic regions preferentially store organic carbon as triacylglycerols (TAG), as these lipid 

molecules are built from only C, O, and H—they do not use N or P, which are scarce—and they 

are more energy rich than carbohydrates (Becker et al., 2018) . Haptophytes in the oligotrophic 

North Pacific Subtropical Gyre store energy as TAGs throughout the day and then use them as 

energy sources at night (Becker et al., 2018) . Key genes for TAG biosynthesis, including those 

for acyl-CoA binding proteins and acyltransferases that are involved in the production of TAG 

precursors (e.g. phosphatidic acid) and diacylglycerol transferase, which performs the last step in 

TAG synthesis, were all significantly downregulated in both symbiotic P. cordata  and P. jahnii 

(Tables S3.5, S3.6). Lipases specifically involved in TAG consumption were likewise all 

significantly downregulated in both symbiont species (Tables S3.5, S3.6). Symbiotic Phaeocystis 

does not appear to be using the carbon storage pathway most commonly used by free-living 

haptophytes in the environment from which holobionts were collected. Fixed carbon can 

alternatively be stored as starch, but starch synthesis (glycogen synthase, GYS) was significantly 
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downregulated in both species (log2FC = −6.9, padj = 0.02 for P. cordata ; log2FC = −7.0, padj = 

0.003 for P. jahnii). These results suggest that symbiotic cells may forego carbon storage and 

instead relinquish surplus photosynthate to hosts.  

While reduced biosynthesis of storage molecules implies that symbionts export carbon to 

hosts, the form in which symbionts share organic carbon is not completely clear. Sugar 

metabolism (galactose, fructose, mannose) and polysaccharide biosynthesis (glycosaminoglycan, 

N-glycan, mucin type O-glycan) were downregulated in symbionts (Figure 3.7) and the GO term 

for carbohydrate derivative transport was enriched among downregulated genes for both species 

(count = 15, p = 0.01 for P. cordata , count = 17, p = 0.004 for P. jahnii). In contrast, multiple 

GO terms associated with the biosynthesis and transport of small organic nitrogen compounds, 

such as amides and peptides, were enriched among genes upregulated in symbiosis for both 

symbiont species (Tables S3.1, S3.3). Rather than sharing carbohydrates with hosts, it seems 

possible that symbionts may instead share small organic nitrogen compounds, especially since 

nitrogen is not limiting in symbiosis. Similarly, comparative transcriptomics with a 

dinoflagellate symbiotic to radiolarians also suggested that symbionts export organic nitrogen 

compounds rather than carbohydrates (Liu et al., 2019) . It is particularly interesting that both 

Phaeocystis  species in this study downregulated pathways for the biosynthesis of 

exopolysaccharides while in symbiosis, since Phaeocystis ’ predisposition towards exuding these 

compounds could have increased its attractiveness as a symbiont. Free-living colonial 

Phaeocystis  jahnii uses these compounds to build the colonial matrix (Hamm, 2000)  and solitary 

free-living Phaeocystis cordata  and jahnii often excrete these compounds through exocytosis 

(Quesada et al., 2006) . However, Phaeocystis  also stores organic nitrogen compounds in the 
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colonial matrix (Solomon et al., 2003) , indicating that adaptations for colonial living may still 

contribute to Phaeocystis ’ suitability as a symbiont if these compounds are also shared with 

hosts.  

3.4.4. Host control of symbiont populations through cell-signaling pathways 

Nutrient limitation is used to regulate symbiont population size in several photosymbiotic 

systems (Xiang et al., 2020) . Nitrogen starved symbiotic dinoflagellates divide less frequently 

but maintain photosynthetic output (Xiang et al., 2020) . Similarly, some dinoflagellates also 

maintain photosynthetic rates and increase in size but do not divide under P-limitation (Li et al., 

2016) . However, exogenous P or N enrichment releases symbionts from nutrient limitation, thus 

making nutrient limitation a relatively inefficient mechanism for controlling symbiont population 

density (Annis and Cook, 2002; Béraud et al., 2013) . In addition, many phytoplankton species, 

including several diatom and dinoflagellate species, decrease photosynthetic output when N- or 

P-limited (Béraud et al., 2013; Alipanah et al., 2018) . The data presented here suggest that 

symbiotic Phaeocystis  cells are not nutrient limited, necessitating an alternative, 

nutrient-independent mechanism for symbiont population control by acantharian hosts.  

One way hosts could slow or stop symbiont cell division without limiting access to 

nutrients might be to manipulate a cell-signaling pathway that regulates cell division. The 

mitogen activated protein kinase (MAPK) signaling pathway is involved in signal transduction 

from specific extracellular stimuli to targets in the cytoplasm and nucleus and affects cell 

proliferation, differentiation, and survival (Morrison, 2012). Several modules are included within 

the MAPK signaling pathway, including the extracellular-signal-related kinase (ERK) cascade, 
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which is involved in responding to mitogens, hormones, and other chemical signals, whereas the 

other MAPK modules are generally activated by stress or environmental conditions. When 

activated, the ERK cascade can stimulate cell proliferation, but can also induce differentiation, 

development, cell survival, migration, or apoptosis depending on signal strength and duration, 

intracellular conditions, and other signaling pathways (Shaul and Seger, 2007) . The MAPK 

signaling pathway, therefore, represents a potential nutrient-independent mechanism for host 

cells to mediate symbiont cell division and differentiation in hospite. 

In symbiotic P. cordata, genes encoding ERKs and genes encoding Ras proteins, which 

initiate ERK cascades, were significantly downregulated compared to in free-living cells (Figure 

S3.9A). The decreased expression of key genes in this pathway could indicate that the pathway is 

suppressed in symbiosis, preventing progression of the cell cycle. Indeed, downregulation of 

ERKs has a clear anti-proliferation effect in model systems (e.g. yeast and human cell lines) 

(Fisher et al., 2001; Bae et al., 2013) . Furthermore, ERK expression can be downregulated in 

response to chemical signaling as well as mechanical signaling due to high cell-density (Bae et 

al., 2013; Gérard and Goldbeter, 2014; VanHook, 2019) . Acantharian hosts may be limiting 

symbiont cell division by suppressing ERK expression by way of a not yet identified chemical 

signal, by keeping symbionts in very tight quarters (Febvre and Febvre-Chevalier, 1979) , or by a 

combination of these tactics.  

Slightly different expression patterns for MAPK genes were observed in symbiotic  P. 

jahnii compared to symbiotic P. cordata. Genes for ERKs and Ras proteins were not 

significantly differentially expressed in symbiosis, but genes for RSK2 (ribosomal protein S6 

kinase A6), which is activated by ERKs and induces cell-proliferation (Vaidyanathan et al., 
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2007) , were significantly downregulated in symbiotic P. jahnii (Figure S3.8B). This difference 

could, again, arise from gene expression specific to colony formation in P. jahnii. The MAPK 

pathway is downregulated in colonial P. globosa  compared to solitary cells (Mars Brisbin and 

Mitarai, 2019) . If the MAPK pathway is similarly downregulated in colonial P. jahnii compared 

to solitary cells, it could mask the downregulation of key genes in the pathway in symbiotic P. 

jahnii. Alternatively, different regulatory mechanisms may be more important to different 

Phaeocystis  species in symbiosis. For example, genes for AKT serine-threonine kinases, which 

also regulate cell proliferation (Marte and Downward, 1997) , are significantly downregulated in 

symbiotic P. jahnii (Figure S3.9B).  

3.4.5. The question of mutualism in Acantharea-Phaeocystis  photosymbioses 

It is clear that photosymbiotic acantharians benefit from hosting Phaeocystis  symbionts; 

not only are photosymbiotic acantharians highly abundant in oligotrophic surface waters, but 

they also outnumber asymbiotic acantharians in the same regions (Caron et al., 1995) . In 

addition, the energetic benefits gained from symbiont photosynthate are further evidenced by the 

ability of photosymbiotic acantharians to produce more robust skeletons than asymbiotic 

acantharians (Anderson, 1996; Decelle and Not, 2015) . The results from this study indicate that 

Phaeocystis  symbionts are maintained in nutrient replete conditions within hosts. Acantharians 

are, therefore, upholding their end of the bargain, in a sense—they are supplying nutrients in 

return for fixed organic carbon. However, symbiont cell division is blocked, which leads to a 

gross morphological transformation of symbiont cells. It remains possible that symbionts could 

resume cell-cycle progression if they were released or escaped from hosts, but the extent of the 
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morphological transformation may very well make it irreversible and, therefore, permanently 

prevents successful mitosis and cytokinesis. While the results presented here cannot 

unambiguously determine whether Acantharea- Phaeocystis  symbioses are mutualistic, available 

evidence seems to point towards symbiont exploitation.  

 

Figure 3.8. Conceptual model summarizing important processes in symbiotic 
Phaeocystis cordata  cells inferred from gene expression data in this study. GS-GOGAT 
represents glutamine synthetase-glutamate synthetase enzymes, which assimilate ammonium; 
TCA stands for the tricarboxylic acid cycle (a.k.a. the Krebs cycle or the citric acid cycle); PPP 
stands for the pentose phosphate pathway, which occurs both in chloroplasts and in the 
cytoplasm. Shapes are color coded to represent organelles and cell structures as follows: 
chloroplasts are filled with green, the mitochondria is filled with red, the cell nucleus is filled with 
light grey, and transmembrane transporters are filled with dark grey. Solid black arrows indicate 
processes that are upregulated in symbiosis and solid grey arrows indicate processes that are 
downregulated in symbiosis.  
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3.4.6. Conclusions 

Despite some differences in differential gene expression patterns in symbiotic P. cordata 

and P. jahnii, the results generally paint a coherent picture: DNA replication and progression 

through the cell cycle is inhibited in symbiotic Phaeocystis  while chloroplasts continue to divide, 

photosynthetic rate is enhanced, and cells increase in size (Figure 3.8). While in symbiosis, 

Phaeocystis appears to benefit from host-supplied urea and ammonium as nitrogen sources, and 

instead of producing storage carbohydrates or lipids, produces and exports small organic 

nitrogen compounds to the host (Figure 3.8). Key genes in the MAPK signaling pathway are 

significantly downregulated in symbiosis for both species, indicating that hosts may be 

suppressing this important pathway to limit symbiont proliferation. By providing symbionts with 

ample nutrients and utilizing cell-signaling pathways rather than nutrient limitation to manage 

symbiont population sizes, acantharians have finer control over symbionts and ensure that 

symbiont photosynthetic rates are maintained. The results from this study demonstrate strong 

interactions between hosts and symbionts in Acantharea- Phaeocystis  relationships, suggesting an 

exceptionally high level of symbiont integration. Whether symbionts ever regain reproductive 

capacity is still unknown, leaving open the possibility for mutualism in this relationship, but 

available evidence suggests hosts are probably exploiting symbionts. Continued study of such 

strong interactions in a horizontally transferred symbiosis may allow insight into mechanisms 

involved in the earliest stages of secondary or tertiary plastid acquisition among protists. 
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3.5. Supplementary Material 

Table S3.1. GO terms enriched among significantly upregulated genes in symbiotic P. 
cordata . 
https://maggimars.github.io/AcanthSymbiontDGE/Pcordata/enriched_up_GO.html 
 
Table S3.2. GO terms enriched among significantly downregulated genes in symbiotic P. 
cordata . 
https://maggimars.github.io/AcanthSymbiontDGE/Pcordata/enriched_down_GO.html 
 
Table S3.3 GO terms enriched among significantly upregulated genes in symbiotic P. 
jahnii. 
https://maggimars.github.io/AcanthSymbiontDGE/Pjahnii/enriched_up_GO.html 
 
Table S3.4. GO terms enriched among significantly downregulated genes in symbiotic P. 
jahnii. 
https://maggimars.github.io/AcanthSymbiontDGE/Pjahnii/enriched_down_GO.html 
 
Table S3.5. Significantly differentially expressed genes associated with TAG biosynthesis 
in P. cordata 

Protein Pfam ID Number of 
orthologs in 
transcriptome 

Transcriptome contig 
IDs 

Log fold 
change range 
in symbiosis 

Acyl transferase PF01553 4 TRINITY_DN12384_c1_g1_i1, 
TRINITY_DN16956_c0_g1_i1, 
TRINITY_DN198_c0_g1_i3, 
TRINITY_DN579_c1_g1_i4 

−6.1 to −5.4 

Lipase 3 PF01764 5 TRINITY_DN10360_c0_g1_i1, 
TRINITY_DN10733_c0_g1_i1, 
TRINITY_DN35072_c0_g1_i1, 
TRINITY_DN35118_c0_g1_i1, 
TRINITY_DN4009_c0_g1_i1 

−8.1 to −5.1 

Acyl-coa binding 
protein 

PF00887 1 TRINITY_DN2559_c0_g2_i1 −5.0 

DGAT PF03982 2  TRINITY_DN1390_c0_g1_i5, 
TRINITY_DN3220_c0_g1_i1 

−6.7 to −5.5 
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Table S3.6. Significantly differentially expressed genes associated with TAG biosynthesis 
in P. jahnii 

Protein Pfam ID Number of 
orthologs in 
transcriptome 

Transcriptome contig 
IDs 

Log fold 
change range 
in symbiosis 

Acyl transferase PF01553 4 TRINITY_DN3743_c0_g1_i1, 
TRINITY_DN6295_c0_g1_i2, 
TRINITY_DN7813_c0_g1_i1, 
TRINITY_DN9200_c0_g1_i1 

−6.1 to −5.4 

Lipase 3 PF01764 3 TRINITY_DN1182_c0_g1_i2, 
TRINITY_DN19456_c0_g1_i1, 
TRINITY_DN21074_c0_g1_i1 

−8.1 to −5.1 

Acyl-coa binding 
protein 

PF00887 4 TRINITY_DN2863_c0_g1_i1, 
TRINITY_DN3909_c0_g1_i4, 
TRINITY_DN5482_c0_g1_i3, 
TRINITY_DN9118_c0_g1_i2 

−8.5 to −5.8 

DGAT PF03982 3 TRINITY_DN220_c0_g1_i1, 
TRINITY_DN3630_c0_g1_i1, 
TRINITY_DN4330_c0_g1_i1 

−6.6 to −5.1 
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A. P. cordata  

 
 
B. P. jahnii 

 
Figure S3.1. Expression of Alma  and DSYB orthologs in symbiotic (S) and free-living (F) 
Phaeocystis cordata (A) and Phaeocystis jahnii (B). Orthologs were identified by blasting 
DSYB protein sequences from the MMETSP database (Curson et al., 2018) and Alma protein 
sequences from Alcolombri et al. (2015) against the final transcriptome assemblies for P. 
cordata  and P. jahnii . Plot facets are labeled with the protein name and the organism that the 
sequence originated from. TPM refers to Transcripts Per kilobase Million and normalizes for 
gene length and library size, and allows for comparisons in gene expression between different 
samples.  
 

126 

https://paperpile.com/c/tXEF6Q/xhLMq
https://paperpile.com/c/tXEF6Q/aqSWM/?noauthor=1


Chapter 3: Symbiont maintenance and host-control in Acantharea-Phaeocystis photosymbioses 
revealed through single holobiont transcriptomics 
 
 
A. P. cordata 

 
B. P. jahnii  

 
Figure S3.2. Expression of nuclear encoded chloroplast division genes in symbiotic (S) 
and free-living (F) Phaeocystis cordata (A) and Phaeocystis jahnii (B). Nuclear encoded 
chloroplast division genes were found in the P. cordata  and P. jahnii  transcriptomes by blasting 
the gene sequences from Chen et al. (2018) against the two transcriptomes. Many of these 
genes were present as more than one gene copy in the transcriptomes, which is apparent 
where there are more than three data points for the free-living replicates. Chloroplast division 
genes were generally expressed at similar rates in symbiosis as in free-living cells, but not all 
isoforms were expressed in every holobiont sample. 
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A. P. cordata 
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B. P. jahnii 

 
Figure S3.3. Expression of Phosphorus-limitation associated genes in symbiotic (S) and 
free-living (F) Phaeocystis cordata (A) and Phaeocystis jahnii (B). Genes associated with 
phosphorus limitation were identified in the P. cordata  and P. jahnii  transcriptomes by blasting 
protein sequences from the phosphorus limitation cluster in the Emiliania huxleyi  genome 
against both transcriptomes (Read et al., 2013). Many genes were present as more than one 
gene copy, which is apparent where there are more than three data points for the free-living 
replicates.  
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A. P. cordata 

 
B. P. jahnii 

 
Figure S3.4. Expression of Nitrogen metabolism genes in symbiotic (S) and free-living (F) 
Phaeocystis cordata (A) and Phaeocystis jahnii (B). Genes associated with nitrogen 
metabolism were identified in the P. cordata  and P. jahnii  transcriptomes by blasting the protein 
sequences from the nitrogen metabolism cluster in the Emiliania huxleyi  genome against the 
two transcriptomes (Read et al., 2013). Many of these genes were present as more than one 
gene copy in the transcriptomes, which is apparent where there are more than three data points 
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for the free-living replicates. A urea transporter gene was expressed at similar levels in 
symbiotic and free-living cells for both species and ammonium transporter genes were also 
expressed at similar levels in the two sample types for P. jahnii, but were less consistently 
expressed by symbiotic P. cordata.  
 
 
A. P. cordata

 
 
B. P. jahnii 

 
 
Figure S3.5. Nitrogen metabolism genes significantly up- and downregulated in symbiotic 
P. cordata  (A) and P. jahnii (B). Proteins for which  genes were significantly upregulated in 
symbiosis (log2FC > 1 and padj ≤ 0.05) are shaded red and proteins for which genes were 
significantly downregulated in symbiosis (log2FC < −1 and padj ≤ 0.05) are shaded blue. The 
genes for proteins in grey shaded boxes were not significantly differentially expressed in 
symbiosis. 
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A. P. cordata 

 
 
B. P. jahnii 

 
Figure S3.6. DNA replication genes significantly downregulated in symbiotic P. cordata 
(A) and P. jahnii (B). Proteins for which genes were significantly downregulated in symbiosis 
(log2FC < −1 and padj ≤ 0.05) are shaded blue. No genes for DNA replication complex subunits 
were significantly downregulated in symbiosis for either species. Genes for subunits shaded 
grey were not significantly differentially expressed in symbiosis. If genes for the protein were not 
annotated in the transcriptome, the subunit is white. 
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A. P. cordata 

 
B. P. jahnii

 
Figure S3.7. Genes in the Cell Cycle  KEGG pathway significantly up- and downregulated 
in symbiotic P. cordata (A) and P. jahnii (B). Proteins for which  genes were significantly 
upregulated in symbiosis (log2FC > 1 and padj ≤ 0.05) are shaded red and proteins for which 
genes were significantly downregulated in symbiosis (log2FC < −1 and padj ≤ 0.05) are shaded 
blue. Genes for proteins shaded grey were not significantly differentially expressed in symbiosis. 
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If genes for the protein were not annotated in the transcriptome, it is unshaded. Black lines 
indicate activation interactions and grey lines indicate inhibitory interactions. The majority of 
genes in the pathway are significantly downregulated for both species. Upregulated genes in 
symbiotic P. jahnii are involved in progression from G1 to S phase, but no genes involved in 
progression past S phase are upregulated in symbiosis.  
 

 
 
Figure S3.8. Calvin-Benson cycle (carbon fixation) genes significantly up- and 
downregulated in symbiotic P. cordata (A) and P. jahnii (B). Enzymes for which  genes were 
significantly upregulated in symbiosis (log2FC > 1 and padj ≤ 0.05) are shaded red and 
enzymes for which genes were significantly downregulated in symbiosis (log2FC < −1 and padj 
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≤ 0.05) are shaded blue. The genes for enzymes in grey shaded boxes were not significantly 
differentially expressed in symbiosis. 
 
A. P. cordata 
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B. P. jahnii 

 
Figure S3.8. Mitogen Activated Protein Kinase (MAPK) Signaling Pathway KEGG graphs 
with genes significantly up- and downregulated in symbiotic P. cordata  (A) and P. jahnii 
(B). Genes significantly upregulated are colored red and genes significantly downregulated are 
colored green. Color intensity maxes out at a log fold change of -1 or 1, but log fold changes for 
genes in the plot may be higher (upregulated) or lower (downregulated) than these values. 
Genes represented by open boxes are not significantly differentially expressed or are not 
annotated in the transcriptome. Key genes in the chemical MAP kinase pathway are significantly 
downregulated in both species: Ras and ERK in P. cordata  and RSK2 in  P. jahnii. In addition, 
key genes in the JNK and p38 kinase pathway (MEKK and AKT) are significantly downregulated 
in symbiotic P. jahnii .  
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This thesis aimed to characterize key ecological and biological traits of 

Acantharea- Phaeocystis photosymbioses—relationships that have been historically understudied, 

despite being of high ecological and evolutionary significance. By pairing non-destructive, 

in-situ observations with environmental DNA sampling, high acantharian abundances were 

measured in the low-nutrient surface waters of the western North Pacific, demonstrating that 

acantharian abundances have been consistent across time and space. Moreover, results from 

these methodologies provided new evidence regarding acantharian vertical distributions that 

challenges current hypotheses about photosymbiotic acantharian life cycles by presenting the 

possibility that, like asymbiotic acantharians, photosymbiotic acantharians may also migrate to 

deep water reproduce. By taking advantage of advances in culture-independent, single-cell 

sequencing, individual acantharians were revealed to harbor diverse symbiont communities, thus 

demonstrating that acantharians recruit symbionts on more than one occasion. These results 

suggest that symbionts do not divide within hosts and that hosts may be exploiting symbionts. By 

further analyzing symbiont gene expression within individual hosts, it was shown that symbiont 

photosynthesis is enhanced in hospite and that symbiont cell division is indeed repressed. 

Together, these findings represent major advances in understanding both the current ecological 

significance of Acantharea- Phaeocystis  photosymbioses and their functioning at the molecular 

level. 

Earlier studies established that photosymbiotic acantharians were very abundant in the 

low-nutrient surface waters of the North Atlantic Subtropical Gyre (NASG), the eastern North 
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Pacific Subtropical Gyre (NPSG), and the equatorial Pacific (Michaels, 1988, 1991; Caron et al., 

1995; Michaels et al., 1995; Stoecker et al., 1996) . These studies also demonstrated that 

sampling methodology severely affected recorded abundances and that studies using traditional 

plankton sampling techniques underestimated acantharian abundance. The results presented here 

showed that acantharians were present in the low nutrient surface waters at the western edge of 

the NPSG at comparable abundances as were reported for the eastern NPSG, NASG and 

equatorial Pacific several decades ago, demonstrating that their abundance has been sustained in 

time and space and confirming that acantharians continue to be major contributors to primary 

production in the global ocean. These results are significant in the context of global climate 

change—photosymbiotic acantharians can be important to carbon sequestration and their 

skeletons are less susceptible to increased dissolution with rising pCO 2 than other 

photosymbiotic hosts (Hallock, 2000; Fox et al., 2020) —and continued targeted monitoring will 

help delineate how acantharian relative and absolute abundance is affected by changing ocean 

chemistry and temperatures. Importantly, the images annotated for this thesis will facilitate 

continued monitoring of acantharian abundance using high-throughput imaging.  

Many aspects of acantharian biology are still only hypothesized, including their life 

cycles and even their morphology for some clades. The in-situ imaging performed for this thesis 

was able to provide additional evidence for and against existing hypotheses regarding 

acantharian biology. First, opposing trends in imaged cell abundance and relative abundance of 

sequencing reads from basal clades with unknown morphology supports hypotheses based on 

evolutionary relationships that acantharians in these basal clades do not possess the characteristic 

star-shaped skeletons usually used to identify acantharians. Second, the lack of differentiation in 
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sequence abundances deriving from asymbiotic versus symbiotic acantharians in deep waters 

challenges the idea that only asymbiotic clades sink into deep water to reproduce. Better 

understanding of acantharian life-cycles and morphologies is important to interpreting 

acantharian contributions to biogeochemical cycles. For instance, if basal clades do not 

biomineralize, sequences deriving from these clades should be excluded if researchers are 

relating environmental sequencing data with strontium and barium budgets (Bernstein et al., 

1992) . Furthermore, if photosymbiotic acantharians do in fact use buoyancy control to sink and 

release reproductive cells at depth, they actively transport surface production below the photic 

zone, thus increasing their contribution to carbon sequestration. Higher resolution camera 

systems that can image smaller cells and can better discriminate between different types of 

acantharians will be useful in more thoroughly characterizing these aspects of acantharian 

biology in the future. 

It was previously discovered that acantharians host different species of Phaeocystis as 

their dominant symbiont depending on the location from which they are sampled (Decelle et al., 

2012a) , but the work presented in this thesis was the first to investigate intra-acantharian 

symbiont community compositions and to compare them to environmental availability of 

symbionts. Results revealed that individual acantharians host multiple symbiont strains, species, 

and genera, showing that hosts must collect new symbionts more than once. The intra-host 

symbiont communities did not directly reflect environmental communities, which could mean 

that hosts were selective in their symbiont uptake or that hosts maintain symbionts for extended 

periods of time—at least long enough for environmental communities to shift outside of hosts. 

Several lines of evidence—including the presence of symbionts within hosts that were not 
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present in the waters where hosts were sampled and confocal fluorescence microscopy 

demonstrating hosts do not systematically digest symbionts—point towards extended symbiont 

maintenance. The combination of multiple symbiont uptake events and extended maintenance 

suggest that symbionts are not dividing within hosts. Hosts need to keep recruiting new 

symbionts as their metabolic needs increase because symbionts are not dividing, and since 

symbionts are not dividing, hosts do not need to digest symbionts to prevent overgrowth (and 

digesting symbionts would mean they have to recruit more often). Results from differential gene 

expression analysis confirmed that symbiont cell division is inhibited within hosts.  

Differential gene expression between Phaeocystis  symbionts within individual hosts and 

free-living Phaeocystis showed that symbionts are actively photosynthesizing in hosts and rather 

than producing storage lipids or carbohydrates, symbionts seem to be exporting excess fixed 

carbon as small organonitrogen compounds. In return, hosts do seem to maintain symbionts in 

nutrient replete conditions; symbiont gene expression revealed no evidence for nitrogen or 

phosphorus limitation. Instead of limiting access to nutrients, it appears that hosts stall symbiont 

cell cycles by manipulating the MAPK signaling pathway, either through chemical or 

mechanical signaling. By influencing symbionts in this way, hosts have much finer control over 

symbiont populations and simultaneously ensure that symbionts maintain photosynthetic output. 

The data presented in this thesis cannot determine whether symbiont transformation is reversible, 

but it seems improbable that symbionts could overcome the extreme remodeling that occurs 

within hosts, which would rule out mutualism in this relationship. Overall, these results show 

that Acantharea- Phaeocystis photosymbioses are rather unique among better-studied symbioses, 

such as Cnidaria-dinoflagellate relationships, in which hosts limit nutrient availability to slow 
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symbiont division but as symbionts nevertheless continue to divide, hosts digest or expel excess 

symbionts (Titlyanov et al., 1996; Xiang et al., 2020) . Moreover, the more complex interactions 

between acantharians and Phaeocystis  indicate a higher level of symbiont integration and could 

be evidence that the relationship is advancing towards a more complete integration of algal cells 

as plastids. For example, the diatoms that are now obligate, permanent tertiary endosymbionts to 

a group of dinoflagellates (i.e. dinotoms) exhibit similar traits to symbiotic Phaeocystis : they 

have lost their distinctive cell wall, motility, and ability to divide mitotically, but have retained 

their full nucleus, voluminous cytoplasm, and independent mitochondria (Imanian et al., 2012) . 

Considering the uniqueness of Acantharea- Phaeocystis  photosymbioses along with the 

high level of symbiont integration that was demonstrated in this thesis, further study of the 

system is clearly warranted. Looking forward, follow-up work should further assess seasonal 

cycles and long-term changes in photosymbiotic acantharian abundances and distributions and  

should consider adaptations in photosymbiotic acantharians that allow them to select and 

manipulate Phaeocystis  symbionts. This thesis necessarily focused on differential gene 

expression in symbionts because a comparison for hosts does not yet exist. As sequencing 

technologies continue to advance, comparative genomics and transcriptomics between symbiotic 

and asymbiotic acantharians will help uncover whether any gene transfer has occurred from 

symbionts to photosymbiotic hosts and to what extent hosts have evolved adaptations specific for 

symbiosis. In conclusion, this thesis showed that acantharians are abundant and important 

contributors to primary production in the western North Pacific and demonstrated that 

photosymbioses between acantharian hosts and Phaeocystis  symbionts are unique, 

141 

https://paperpile.com/c/tXEF6Q/Dnw2Y+x2mCX
https://paperpile.com/c/tXEF6Q/YOct


Thesis Conclusions 

highly-integrated relationships, whose further study can improve understanding of chloroplast 

evolution.  

 

142 



 

References 

Alcolombri, U., Ben-Dor, S., Feldmesser, E., Levin, Y., Tawfik, D. S., and Vardi, A. (2015). 
Identification of the algal dimethyl sulfide–releasing enzyme: A missing link in the marine 
sulfur cycle. Science  348, 1466–1469. 

Alipanah, L., Rohloff, J., Winge, P., Bones, A. M., and Brembu, T. (2015). Whole-cell response 
to nitrogen deprivation in the diatom Phaeodactylum tricornutum. J. Exp. Bot.  66, 
6281–6296. 

Alipanah, L., Winge, P., Rohloff, J., Najafi, J., Brembu, T., and Bones, A. M. (2018). Molecular 
adaptations to phosphorus deprivation and comparison with nitrogen deprivation responses 
in the diatom Phaeodactylum tricornutum. PLoS One 13, e0193335. 

Anderson, O. R. (1996). The Physiological Ecology of Planktonic Sarcodines with Applications 
to Paleoecology: Patterns in Space and Time. J. Eukaryot. Microbiol.  43, 261–274. 

Andersson, B., and Barber, J. (1994). “Composition, Organization, and Dynamics of Thylakoid 
Membranes,” in Advances in Molecular and Cell Biology , eds. E. E. Bittar and J. Barber 
(Elsevier), 1–53. 

Annis, E. R., and Cook, C. B. (2002). Alkaline phosphatase activity in symbiotic dinoflagellates 
(zooxanthellae) as a biological indicator of environmental phosphate exposure. Mar. Ecol. 
Prog. Ser. 245, 11–20. 

Archibald, J. M. (2015). Endosymbiosis and Eukaryotic Cell Evolution. Curr. Biol. 25, 
R911–21. 

Bae, S. Y., Kim, G. D., Jeon, J.-E., Shin, J., and Lee, S. K. (2013). Anti-proliferative effect of 
(19Z)-halichondramide, a novel marine macrolide isolated from the sponge Chondrosia 
corticata, is associated with G2/M cell cycle arrest and suppression of mTOR signaling in 
human lung cancer cells. Toxicol. In Vitro  27, 694–699. 

Balzano, S., Corre, E., Decelle, J., Sierra, R., Wincker, P., Da Silva, C., et al. (2015). 
Transcriptome analyses to investigate symbiotic relationships between marine protists. 
Front. Microbiol.  6, 98. 

Becker, K. W., Collins, J. R., Durham, B. P., Groussman, R. D., White, A. E., Fredricks, H. F., et 
al. (2018). Daily changes in phytoplankton lipidomes reveal mechanisms of energy storage 
in the open ocean. Nat. Commun. 9, 5179. 

Beinart, R. A. (2019). The Significance of Microbial Symbionts in Ecosystem Processes. 
mSystems  4. doi:10.1128/mSystems.00127-19 . 

143 

http://paperpile.com/b/tXEF6Q/aqSWM
http://paperpile.com/b/tXEF6Q/aqSWM
http://paperpile.com/b/tXEF6Q/aqSWM
http://paperpile.com/b/tXEF6Q/aqSWM
http://paperpile.com/b/tXEF6Q/aqSWM
http://paperpile.com/b/tXEF6Q/EMpYF
http://paperpile.com/b/tXEF6Q/EMpYF
http://paperpile.com/b/tXEF6Q/EMpYF
http://paperpile.com/b/tXEF6Q/EMpYF
http://paperpile.com/b/tXEF6Q/EMpYF
http://paperpile.com/b/tXEF6Q/dtVVe
http://paperpile.com/b/tXEF6Q/dtVVe
http://paperpile.com/b/tXEF6Q/dtVVe
http://paperpile.com/b/tXEF6Q/dtVVe
http://paperpile.com/b/tXEF6Q/dtVVe
http://paperpile.com/b/tXEF6Q/JAfn
http://paperpile.com/b/tXEF6Q/JAfn
http://paperpile.com/b/tXEF6Q/JAfn
http://paperpile.com/b/tXEF6Q/JAfn
http://paperpile.com/b/tXEF6Q/ETfCc
http://paperpile.com/b/tXEF6Q/ETfCc
http://paperpile.com/b/tXEF6Q/ETfCc
http://paperpile.com/b/tXEF6Q/ETfCc
http://paperpile.com/b/tXEF6Q/ETfCc
http://paperpile.com/b/tXEF6Q/m5V5j
http://paperpile.com/b/tXEF6Q/m5V5j
http://paperpile.com/b/tXEF6Q/m5V5j
http://paperpile.com/b/tXEF6Q/m5V5j
http://paperpile.com/b/tXEF6Q/m5V5j
http://paperpile.com/b/tXEF6Q/SAxgj
http://paperpile.com/b/tXEF6Q/SAxgj
http://paperpile.com/b/tXEF6Q/SAxgj
http://paperpile.com/b/tXEF6Q/SAxgj
http://paperpile.com/b/tXEF6Q/1xaWo
http://paperpile.com/b/tXEF6Q/1xaWo
http://paperpile.com/b/tXEF6Q/1xaWo
http://paperpile.com/b/tXEF6Q/1xaWo
http://paperpile.com/b/tXEF6Q/1xaWo
http://paperpile.com/b/tXEF6Q/1xaWo
http://paperpile.com/b/tXEF6Q/O0ewp
http://paperpile.com/b/tXEF6Q/O0ewp
http://paperpile.com/b/tXEF6Q/O0ewp
http://paperpile.com/b/tXEF6Q/O0ewp
http://paperpile.com/b/tXEF6Q/3q00P
http://paperpile.com/b/tXEF6Q/3q00P
http://paperpile.com/b/tXEF6Q/3q00P
http://paperpile.com/b/tXEF6Q/3q00P
http://paperpile.com/b/tXEF6Q/3q00P
http://paperpile.com/b/tXEF6Q/BMsD
http://paperpile.com/b/tXEF6Q/BMsD
http://paperpile.com/b/tXEF6Q/BMsD
http://dx.doi.org/10.1128/mSystems.00127-19
http://paperpile.com/b/tXEF6Q/BMsD


 

Belcher, A., Manno, C., Thorpe, S., and Tarling, G. (2018). Acantharian cysts: high flux 
occurrence in the bathypelagic zone of the Scotia Sea, Southern Ocean. Mar. Biol.  165, 117. 

Benson, D. A., Karsch-Mizrachi, I., Clark, K., Lipman, D. J., Ostell, J., and Sayers, E. W. 
(2012). GenBank. Nucleic Acids Res.  40, D48–53. 

Béraud, E., Gevaert, F., Rottier, C., and Ferrier-Pagès, C. (2013). The response of the 
scleractinian coral Turbinaria reniformis to thermal stress depends on the nitrogen status of 
the coral holobiont. J. Exp. Biol.  216, 2665–2674. 

Bernstein, R. E., Byrne, R. H., Betzer, P. R., and Greco, A. M. (1992). Morphologies and 
transformations of celestite in seawater: The role of acantharians in strontium and barium 
geochemistry. Geochim. Cosmochim. Acta  56, 3273–3279. 

Biard, T., and Ohman, M. D. (2019). Vertical niche definition of test-bearing protists (Rhizaria) 
into the twilight zone revealed by in situ imaging. bioRxiv , 573410. doi:10.1101/573410 . 

Biard, T., Stemmann, L., Picheral, M., Mayot, N., Vandromme, P., Hauss, H., et al. (2016). In 
situ imaging reveals the biomass of giant protists in the global ocean. Nature 532, 504–507. 

Blank, R. J. (1987). Cell architecture of the dinoflagellate Symbiodinium sp. inhabiting the 
Hawaiian stony coral Montipora verrucosa. Mar. Biol.  94, 143–155. 

Boettcher, K. J., Ruby, E. G., and McFall-Ngai, M. J. (1996). Bioluminescence in the symbiotic 
squid Euprymna scolopes is controlled by a daily biological rhythm. Journal of 
Comparative Physiology A  179, 65–73. 

Bokulich, N. A., Kaehler, B. D., Rideout, J. R., Dillon, M., Bolyen, E., Knight, R., et al. (2018). 
Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s 
q2-feature-classifier plugin. Microbiome 6, 90. 

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina 
sequence data. Bioinformatics  30, 2114–2120. 

Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., et al. 
(2019). Reproducible, interactive, scalable and extensible microbiome data science using 
QIIME 2. Nat. Biotechnol.  doi:10.1038/s41587-019-0209-9 . 

Bråte, J., Krabberød, A. K., Dolven, J. K., Ose, R. F., Kristensen, T., Bjørklund, K. R., et al. 
(2012). Radiolaria associated with large diversity of marine alveolates. Protist 163, 
767–777. 

Burki, F., and Keeling, P. J. (2014). Rhizaria. Curr. Biol. 24, R103–7. 

Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and Holmes, S. P. 
(2016a). DADA2: High-resolution sample inference from Illumina amplicon data. Nat. 

144 

http://paperpile.com/b/tXEF6Q/zbDLN
http://paperpile.com/b/tXEF6Q/zbDLN
http://paperpile.com/b/tXEF6Q/zbDLN
http://paperpile.com/b/tXEF6Q/zbDLN
http://paperpile.com/b/tXEF6Q/J0VU
http://paperpile.com/b/tXEF6Q/J0VU
http://paperpile.com/b/tXEF6Q/J0VU
http://paperpile.com/b/tXEF6Q/J0VU
http://paperpile.com/b/tXEF6Q/Ahl05
http://paperpile.com/b/tXEF6Q/Ahl05
http://paperpile.com/b/tXEF6Q/Ahl05
http://paperpile.com/b/tXEF6Q/Ahl05
http://paperpile.com/b/tXEF6Q/Ahl05
http://paperpile.com/b/tXEF6Q/Ib465
http://paperpile.com/b/tXEF6Q/Ib465
http://paperpile.com/b/tXEF6Q/Ib465
http://paperpile.com/b/tXEF6Q/Ib465
http://paperpile.com/b/tXEF6Q/Ib465
http://paperpile.com/b/tXEF6Q/iNdde
http://paperpile.com/b/tXEF6Q/iNdde
http://paperpile.com/b/tXEF6Q/iNdde
http://paperpile.com/b/tXEF6Q/iNdde
http://dx.doi.org/10.1101/573410
http://paperpile.com/b/tXEF6Q/iNdde
http://paperpile.com/b/tXEF6Q/baK1d
http://paperpile.com/b/tXEF6Q/baK1d
http://paperpile.com/b/tXEF6Q/baK1d
http://paperpile.com/b/tXEF6Q/baK1d
http://paperpile.com/b/tXEF6Q/cfDmX
http://paperpile.com/b/tXEF6Q/cfDmX
http://paperpile.com/b/tXEF6Q/cfDmX
http://paperpile.com/b/tXEF6Q/cfDmX
http://paperpile.com/b/tXEF6Q/oi13Y
http://paperpile.com/b/tXEF6Q/oi13Y
http://paperpile.com/b/tXEF6Q/oi13Y
http://paperpile.com/b/tXEF6Q/oi13Y
http://paperpile.com/b/tXEF6Q/oi13Y
http://paperpile.com/b/tXEF6Q/hMKCT
http://paperpile.com/b/tXEF6Q/hMKCT
http://paperpile.com/b/tXEF6Q/hMKCT
http://paperpile.com/b/tXEF6Q/hMKCT
http://paperpile.com/b/tXEF6Q/hMKCT
http://paperpile.com/b/tXEF6Q/wsRsl
http://paperpile.com/b/tXEF6Q/wsRsl
http://paperpile.com/b/tXEF6Q/wsRsl
http://paperpile.com/b/tXEF6Q/wsRsl
http://paperpile.com/b/tXEF6Q/Ma60M
http://paperpile.com/b/tXEF6Q/Ma60M
http://paperpile.com/b/tXEF6Q/Ma60M
http://paperpile.com/b/tXEF6Q/Ma60M
http://paperpile.com/b/tXEF6Q/Ma60M
http://dx.doi.org/10.1038/s41587-019-0209-9
http://paperpile.com/b/tXEF6Q/Ma60M
http://paperpile.com/b/tXEF6Q/tWai
http://paperpile.com/b/tXEF6Q/tWai
http://paperpile.com/b/tXEF6Q/tWai
http://paperpile.com/b/tXEF6Q/tWai
http://paperpile.com/b/tXEF6Q/tWai
http://paperpile.com/b/tXEF6Q/B3IK
http://paperpile.com/b/tXEF6Q/B3IK
http://paperpile.com/b/tXEF6Q/B3IK
http://paperpile.com/b/tXEF6Q/WiTKn
http://paperpile.com/b/tXEF6Q/WiTKn
http://paperpile.com/b/tXEF6Q/WiTKn


 

Methods  13, 581–583. 

Callahan, B. J., Sankaran, K., Fukuyama, J. A., McMurdie, P. J., and Holmes, S. P. (2016b). 
Bioconductor Workflow for Microbiome Data Analysis: from raw reads to community 
analyses. F1000Res.  5, 1492. 

Callahan, B., McMurdie, P., Rosen, M., Han, A., Johnson, A., and Holmes, S. (2016c). 
DADA2:High-resulution sample inference from illumina amplicon data. Nat. Methods  13. 

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., et al. (2009). 
BLAST+: architecture and applications. BMC Bioinformatics  10, 421. 

Caron, D. A., Michaels, A. F., Swanberg, N. R., and Howse, F. A. (1995). Primary productivity 
by symbiont-bearing planktonic sarcodines (Acantharia, Radiolaria, Foraminifera) in 
surface waters near Bermuda. J. Plankton Res.  17, 103–129. 

Chen, C., MacCready, J. S., Ducat, D. C., and Osteryoung, K. W. (2018). The Molecular 
Machinery of Chloroplast Division. Plant Physiol.  176, 138–151. 

Countway, P. D., Caron, D. A., Gast, R. J., and Savai, P. (2007). Comparison of protistan 
diversity in deep (2500 m) vs euphotic zone assemblages in the Sargasso Sea and Gulf 
Stream (N. Atlantic). Environ. Microbiol.  9, 1219–1232. 

Countway, P. D., Vigil, P. D., Schnetzer, A., Moorthi, S. D., and Caron, D. A. (2010). Seasonal 
analysis of protistan community structure and diversity at the USC Microbial Observatory 
(San Pedro Channel, North Pacific Ocean). Limnol. Oceanogr. 55, 2381–2396. 

Cronin, M., Ghosh, K., Sistare, F., Quackenbush, J., Vilker, V., and O’Connell, C. (2004). 
Universal RNA reference materials for gene expression. Clin. Chem.  50, 1464–1471. 

Curson, A., Williams, B., Pinchbeck, B., Sims, L., Martínez, A., Rivera, P., et al. (2018). DSYB 
catalyses the key step of dimethylsulfoniopropionate biosynthesis in many phytoplankton, 
Nat. Microbiol., 3, 430--439. 

Decelle, J. (2013). New perspectives on the functioning and evolution of photosymbiosis in 
plankton. Communicative & Integrative Biology  6, e24560. doi:10.4161/cib.24560 . 

Decelle, J., Colin, S., and Foster, R. A. (2015). “Photosymbiosis in Marine Planktonic Protists,” 
in Marine Protists: Diversity and Dynamics , eds. S. Ohtsuka, T. Suzaki, T. Horiguchi, N. 
Suzuki, and F. Not (Tokyo: Springer Japan), 465–500. 

Decelle, J., Martin, P., Paborstava, K., Pond, D. W., Tarling, G., Mahé, F., et al. (2013). 
Diversity, ecology and biogeochemistry of cyst-forming acantharia (radiolaria) in the 
oceans. PLoS One 8, e53598. 

Decelle, J., and Not, F. (2015). Acantharia. eLS  59, 1–10. 

145 

http://paperpile.com/b/tXEF6Q/WiTKn
http://paperpile.com/b/tXEF6Q/WiTKn
http://paperpile.com/b/tXEF6Q/YQ2v
http://paperpile.com/b/tXEF6Q/YQ2v
http://paperpile.com/b/tXEF6Q/YQ2v
http://paperpile.com/b/tXEF6Q/YQ2v
http://paperpile.com/b/tXEF6Q/YQ2v
http://paperpile.com/b/tXEF6Q/4Pph
http://paperpile.com/b/tXEF6Q/4Pph
http://paperpile.com/b/tXEF6Q/4Pph
http://paperpile.com/b/tXEF6Q/4Pph
http://paperpile.com/b/tXEF6Q/Jnb5
http://paperpile.com/b/tXEF6Q/Jnb5
http://paperpile.com/b/tXEF6Q/Jnb5
http://paperpile.com/b/tXEF6Q/Jnb5
http://paperpile.com/b/tXEF6Q/bOhK
http://paperpile.com/b/tXEF6Q/bOhK
http://paperpile.com/b/tXEF6Q/bOhK
http://paperpile.com/b/tXEF6Q/bOhK
http://paperpile.com/b/tXEF6Q/bOhK
http://paperpile.com/b/tXEF6Q/1T2tW
http://paperpile.com/b/tXEF6Q/1T2tW
http://paperpile.com/b/tXEF6Q/1T2tW
http://paperpile.com/b/tXEF6Q/1T2tW
http://paperpile.com/b/tXEF6Q/7AVjM
http://paperpile.com/b/tXEF6Q/7AVjM
http://paperpile.com/b/tXEF6Q/7AVjM
http://paperpile.com/b/tXEF6Q/7AVjM
http://paperpile.com/b/tXEF6Q/7AVjM
http://paperpile.com/b/tXEF6Q/XslQR
http://paperpile.com/b/tXEF6Q/XslQR
http://paperpile.com/b/tXEF6Q/XslQR
http://paperpile.com/b/tXEF6Q/XslQR
http://paperpile.com/b/tXEF6Q/XslQR
http://paperpile.com/b/tXEF6Q/CKCQ9
http://paperpile.com/b/tXEF6Q/CKCQ9
http://paperpile.com/b/tXEF6Q/CKCQ9
http://paperpile.com/b/tXEF6Q/CKCQ9
http://paperpile.com/b/tXEF6Q/xhLMq
http://paperpile.com/b/tXEF6Q/xhLMq
http://paperpile.com/b/tXEF6Q/xhLMq
http://paperpile.com/b/tXEF6Q/Xwbb
http://paperpile.com/b/tXEF6Q/Xwbb
http://paperpile.com/b/tXEF6Q/Xwbb
http://paperpile.com/b/tXEF6Q/Xwbb
http://dx.doi.org/10.4161/cib.24560
http://paperpile.com/b/tXEF6Q/Xwbb
http://paperpile.com/b/tXEF6Q/yL3V
http://paperpile.com/b/tXEF6Q/yL3V
http://paperpile.com/b/tXEF6Q/yL3V
http://paperpile.com/b/tXEF6Q/yL3V
http://paperpile.com/b/tXEF6Q/yL3V
http://paperpile.com/b/tXEF6Q/E99kd
http://paperpile.com/b/tXEF6Q/E99kd
http://paperpile.com/b/tXEF6Q/E99kd
http://paperpile.com/b/tXEF6Q/E99kd
http://paperpile.com/b/tXEF6Q/E99kd
http://paperpile.com/b/tXEF6Q/lUq3z
http://paperpile.com/b/tXEF6Q/lUq3z
http://paperpile.com/b/tXEF6Q/lUq3z


 

Decelle, J., Probert, I., Bittner, L., Desdevises, Y., Colin, S., de Vargas, C., et al. (2012a). An 
original mode of symbiosis in open ocean plankton. Proc. Natl. Acad. Sci. U. S. A.  109, 
18000–18005. 

Decelle, J., Siano, R., Probert, I., Poirier, C., and Not, F. (2012b). Multiple microalgal partners in 
symbiosis with the acantharian Acanthochiasma sp. (Radiolaria). Symbiosis  58, 233–244. 

Decelle, J., Stryhanyuk, H., Gallet, B., Veronesi, G., Schmidt, M., Balzano, S., et al. (2019). 
Algal Remodeling in a Ubiquitous Planktonic Photosymbiosis. Curr. Biol.  29, 968–978.e4. 

Decelle, J., Suzuki, N., Mahé, F., de Vargas, C., and Not, F. (2012c). Molecular phylogeny and 
morphological evolution of the Acantharia (Radiolaria). Protist 163, 435–450. 

Dennett, M. R., Caron, D. A., Michaels, A. F., Gallager, S. M., and Davis, C. S. (2002). Video 
plankton recorder reveals high abundances of colonial Radiolaria in surface waters of the 
central North Pacific. J. Plankton Res.  24, 797–805. 

de Vargas, C., Audic, S., Henry, N., Decelle, J., Mahé, F., Logares, R., et al. (2015). Ocean 
plankton. Eukaryotic plankton diversity in the sunlit ocean. Science  348, 1261605. 

Dolan, J. R. (1997). Phosphorus and ammonia excretion by planktonic protists. Mar. Geol.  139, 
109–122. 

Douglas, A. E. (1998). Host benefit and the evolution of specialization in symbiosis. Heredity  
81, 599–603. 

Douglas, A. E. (2010). The Symbiotic Habit . Princeton University Press. 

Eddy, S. (2010). HMMER3: a new generation of sequence homology search software. URL: 
http://hmmer. janelia. Org . 

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high 
throughput. Nucleic Acids Res.  32, 1792–1797. 

Edgcomb, V. P., Kysela, D. T., Teske, A., de Vera Gomez, A., and Sogin, M. L. (2002). Benthic 
eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proc. Natl. 
Acad. Sci. U. S. A.  99, 7658–7662. 

Falcon, S., and Gentleman, R. (2007). Using GOstats to test gene lists for GO term association. 
Bioinformatics  23, 257–258. 

Febvre, J., and Febvre-Chevalier, C. (1979). Ultrastructural study of zooxanthellae of three 
species of Acantharia (Protozoa: Actinopoda), with details of their taxonomic position in 
the prymnesiales (Prymnesiophyceae, Hibberd, 1976). Journal of the Marine Biological 
Association of the United Kingdom  59, 215–226. doi:10.1017/s0025315400046294. 

146 

http://paperpile.com/b/tXEF6Q/yexe
http://paperpile.com/b/tXEF6Q/yexe
http://paperpile.com/b/tXEF6Q/yexe
http://paperpile.com/b/tXEF6Q/yexe
http://paperpile.com/b/tXEF6Q/yexe
http://paperpile.com/b/tXEF6Q/96DE
http://paperpile.com/b/tXEF6Q/96DE
http://paperpile.com/b/tXEF6Q/96DE
http://paperpile.com/b/tXEF6Q/96DE
http://paperpile.com/b/tXEF6Q/ba8Mk
http://paperpile.com/b/tXEF6Q/ba8Mk
http://paperpile.com/b/tXEF6Q/ba8Mk
http://paperpile.com/b/tXEF6Q/ba8Mk
http://paperpile.com/b/tXEF6Q/ZxDDa
http://paperpile.com/b/tXEF6Q/ZxDDa
http://paperpile.com/b/tXEF6Q/ZxDDa
http://paperpile.com/b/tXEF6Q/ZxDDa
http://paperpile.com/b/tXEF6Q/5nHwU
http://paperpile.com/b/tXEF6Q/5nHwU
http://paperpile.com/b/tXEF6Q/5nHwU
http://paperpile.com/b/tXEF6Q/5nHwU
http://paperpile.com/b/tXEF6Q/5nHwU
http://paperpile.com/b/tXEF6Q/f6J4F
http://paperpile.com/b/tXEF6Q/f6J4F
http://paperpile.com/b/tXEF6Q/f6J4F
http://paperpile.com/b/tXEF6Q/f6J4F
http://paperpile.com/b/tXEF6Q/Rwquw
http://paperpile.com/b/tXEF6Q/Rwquw
http://paperpile.com/b/tXEF6Q/Rwquw
http://paperpile.com/b/tXEF6Q/Rwquw
http://paperpile.com/b/tXEF6Q/5DV4
http://paperpile.com/b/tXEF6Q/5DV4
http://paperpile.com/b/tXEF6Q/5DV4
http://paperpile.com/b/tXEF6Q/5DV4
http://paperpile.com/b/tXEF6Q/LcJ8
http://paperpile.com/b/tXEF6Q/LcJ8
http://paperpile.com/b/tXEF6Q/LcJ8
http://paperpile.com/b/tXEF6Q/V5mu8
http://paperpile.com/b/tXEF6Q/V5mu8
http://paperpile.com/b/tXEF6Q/V5mu8
http://paperpile.com/b/tXEF6Q/V5mu8
http://paperpile.com/b/tXEF6Q/D2nd
http://paperpile.com/b/tXEF6Q/D2nd
http://paperpile.com/b/tXEF6Q/D2nd
http://paperpile.com/b/tXEF6Q/D2nd
http://paperpile.com/b/tXEF6Q/iXsYa
http://paperpile.com/b/tXEF6Q/iXsYa
http://paperpile.com/b/tXEF6Q/iXsYa
http://paperpile.com/b/tXEF6Q/iXsYa
http://paperpile.com/b/tXEF6Q/iXsYa
http://paperpile.com/b/tXEF6Q/tcRzN
http://paperpile.com/b/tXEF6Q/tcRzN
http://paperpile.com/b/tXEF6Q/tcRzN
http://paperpile.com/b/tXEF6Q/9bNO
http://paperpile.com/b/tXEF6Q/9bNO
http://paperpile.com/b/tXEF6Q/9bNO
http://paperpile.com/b/tXEF6Q/9bNO
http://paperpile.com/b/tXEF6Q/9bNO
http://paperpile.com/b/tXEF6Q/9bNO
http://dx.doi.org/10.1017/s0025315400046294
http://paperpile.com/b/tXEF6Q/9bNO


 

Febvre, J., and Febvre-Chevalier, C. (2001). Acantharia. eLS  32, 211. 

Finn, R. D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R. Y., Eddy, S. R., et al. (2014). 
Pfam: the protein families database. Nucleic Acids Res.  42, D222–30. 

Fisher, M., Liu, B., Glennon, P. E., Southgate, K. M., Sale, E. M., Sale, G. J., et al. (2001). 
Downregulation of the ERK 1 and 2 mitogen activated protein kinases using antisense 
oligonucleotides inhibits proliferation of porcine vascular smooth muscle cells. 
Atherosclerosis  156, 289–295. 

Fishman, Y., Zlotkin, E., and Sher, D. (2008). Expulsion of Symbiotic Algae during Feeding by 
the Green Hydra – a Mechanism for Regulating Symbiont Density? PLoS ONE 3, e2603. 
doi:10.1371/journal.pone.0002603 . 

Fontanez, K. M., Eppley, J. M., Samo, T. J., Karl, D. M., and DeLong, E. F. (2015). Microbial 
community structure and function on sinking particles in the North Pacific Subtropical 
Gyre. Front. Microbiol.  6, 469. 

Fox, L., Stukins, S., Hill, T., and Miller, C. G. (2020). Quantifying the Effect of Anthropogenic 
Climate Change on Calcifying Plankton. Sci. Rep.  10, 1620. 

Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W. (2012). CD-HIT: accelerated for clustering the 
next-generation sequencing data. Bioinformatics  28, 3150–3152. 

Garcia, J. R., and Gerardo, N. M. (2014). The symbiont side of symbiosis: do microbes really 
benefit? Frontiers in Microbiology  5. doi:10.3389/fmicb.2014.00510 . 

Gast, R. J., and Caron, D. A. (1996). Molecular phylogeny of symbiotic dinoflagellates from 
planktonic foraminifera and radiolaria. Mol. Biol. Evol.  13, 1192–1197. 

Gast, R. J., and Caron, D. A. (2001). Photosymbiotic associations in planktonic foraminifera and 
radiolaria. Hydrobiologia  461, 1–7. 

Gates, R. D., Hoegh-Guldberg, O., McFall-Ngai, M. J., Bil, K. Y., and Muscatine, L. (1995). 
Free amino acids exhibit anthozoan “host factor” activity: they induce the release of 
photosynthate from symbiotic dinoflagellates in vitro. Proc. Natl. Acad. Sci. U. S. A.  92, 
7430–7434. 

Gérard, C., and Goldbeter, A. (2014). The balance between cell cycle arrest and cell 
proliferation: control by the extracellular matrix and by contact inhibition. Interface Focus 
4, 20130075. 

Gilg, I. C., Amaral-Zettler, L. A., Countway, P. D., Moorthi, S., Schnetzer, A., and Caron, D. A. 
(2010). Phylogenetic affiliations of mesopelagic acantharia and acantharian-like 
environmental 18S rRNA genes off the southern California coast. Protist 161, 197–211. 

Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V., and Egozcue, J. J. (2017). Microbiome 

147 

http://paperpile.com/b/tXEF6Q/pWKVR
http://paperpile.com/b/tXEF6Q/pWKVR
http://paperpile.com/b/tXEF6Q/pWKVR
http://paperpile.com/b/tXEF6Q/kvUHd
http://paperpile.com/b/tXEF6Q/kvUHd
http://paperpile.com/b/tXEF6Q/kvUHd
http://paperpile.com/b/tXEF6Q/kvUHd
http://paperpile.com/b/tXEF6Q/TXdY6
http://paperpile.com/b/tXEF6Q/TXdY6
http://paperpile.com/b/tXEF6Q/TXdY6
http://paperpile.com/b/tXEF6Q/TXdY6
http://paperpile.com/b/tXEF6Q/TXdY6
http://paperpile.com/b/tXEF6Q/SncyT
http://paperpile.com/b/tXEF6Q/SncyT
http://paperpile.com/b/tXEF6Q/SncyT
http://paperpile.com/b/tXEF6Q/SncyT
http://paperpile.com/b/tXEF6Q/SncyT
http://dx.doi.org/10.1371/journal.pone.0002603
http://paperpile.com/b/tXEF6Q/SncyT
http://paperpile.com/b/tXEF6Q/8KOuE
http://paperpile.com/b/tXEF6Q/8KOuE
http://paperpile.com/b/tXEF6Q/8KOuE
http://paperpile.com/b/tXEF6Q/8KOuE
http://paperpile.com/b/tXEF6Q/8KOuE
http://paperpile.com/b/tXEF6Q/d7aO
http://paperpile.com/b/tXEF6Q/d7aO
http://paperpile.com/b/tXEF6Q/d7aO
http://paperpile.com/b/tXEF6Q/d7aO
http://paperpile.com/b/tXEF6Q/Nw5Oi
http://paperpile.com/b/tXEF6Q/Nw5Oi
http://paperpile.com/b/tXEF6Q/Nw5Oi
http://paperpile.com/b/tXEF6Q/Nw5Oi
http://paperpile.com/b/tXEF6Q/eJJh
http://paperpile.com/b/tXEF6Q/eJJh
http://paperpile.com/b/tXEF6Q/eJJh
http://paperpile.com/b/tXEF6Q/eJJh
http://dx.doi.org/10.3389/fmicb.2014.00510
http://paperpile.com/b/tXEF6Q/eJJh
http://paperpile.com/b/tXEF6Q/7Cage
http://paperpile.com/b/tXEF6Q/7Cage
http://paperpile.com/b/tXEF6Q/7Cage
http://paperpile.com/b/tXEF6Q/7Cage
http://paperpile.com/b/tXEF6Q/mKFx
http://paperpile.com/b/tXEF6Q/mKFx
http://paperpile.com/b/tXEF6Q/mKFx
http://paperpile.com/b/tXEF6Q/mKFx
http://paperpile.com/b/tXEF6Q/RDbFh
http://paperpile.com/b/tXEF6Q/RDbFh
http://paperpile.com/b/tXEF6Q/RDbFh
http://paperpile.com/b/tXEF6Q/RDbFh
http://paperpile.com/b/tXEF6Q/RDbFh
http://paperpile.com/b/tXEF6Q/RDbFh
http://paperpile.com/b/tXEF6Q/m1OAa
http://paperpile.com/b/tXEF6Q/m1OAa
http://paperpile.com/b/tXEF6Q/m1OAa
http://paperpile.com/b/tXEF6Q/m1OAa
http://paperpile.com/b/tXEF6Q/m1OAa
http://paperpile.com/b/tXEF6Q/5mIMG
http://paperpile.com/b/tXEF6Q/5mIMG
http://paperpile.com/b/tXEF6Q/5mIMG
http://paperpile.com/b/tXEF6Q/5mIMG
http://paperpile.com/b/tXEF6Q/5mIMG
http://paperpile.com/b/tXEF6Q/MayFj


 

Datasets Are Compositional: And This Is Not Optional. Front. Microbiol.  8, 2224. 

Gong, J., Dong, J., Liu, X., and Massana, R. (2013). Extremely high copy numbers and 
polymorphisms of the rDNA operon estimated from single cell analysis of oligotrich and 
peritrich ciliates. Protist 164, 369–379. 

Gong, W., and Marchetti, A. (2019). Estimation of 18S gene copy number in marine eukaryotic 
plankton using a next-generation sequencing approach. Frontiers in Marine Science . 
Available at: 
https://pdfs.semanticscholar.org/4589/e20d3cbd666d8fd0b35a383f87d6cf4d4e05.pdf . 

Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., et al. (2011). 
Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. 
Biotechnol.  29, 644–652. 

Greer, A. T., Cowen, R. K., Guigand, C. M., McManus, M. A., Sevadjian, J. C., and 
Timmerman, A. H. V. (2013). Relationships between phytoplankton thin layers and the 
fine-scale vertical distributions of two trophic levels of zooplankton. J. Plankton Res.  35, 
939–956. 

Grossmann, M. M., Gallager, S. M., and Mitarai, S. (2015). Continuous monitoring of 
near-bottom mesoplankton communities in the East China Sea during a series of typhoons. 
J. Oceanogr.  71, 115–124. 

Guillou, L., Bachar, D., Audic, S., Bass, D., Berney, C., Bittner, L., et al. (2013). The Protist 
Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit 
rRNA sequences with curated taxonomy. Nucleic Acids Res.  41, D597–604. 

Gutierrez-Rodriguez, A., Stukel, M. R., Lopes Dos Santos, A., Biard, T., Scharek, R., Vaulot, D., 
et al. (2019). High contribution of Rhizaria (Radiolaria) to vertical export in the California 
Current Ecosystem revealed by DNA metabarcoding. ISME J.  13, 964–976. 

Haas, B., Papanicolaou, A., and Others (2016). TransDecoder (find coding regions within 
transcripts). Google Scholar . 

Hallock, P. (2000). Symbiont-Bearing Foraminifera: Harbingers of Global Change? 
Micropaleontology  46, 95–104. 

Hamm, C. E. (2000). Architecture, ecology and biogeochemistry of Phaeocystis colonies. J. Sea 
Res.  43, 307–315. 

Hamm, C. E., Simson, D. A., Merkel, R., and Smetacek, V. (1999). Colonies of Phaeocystis 
globosa are protected by a thin but tough skin. Mar. Ecol. Prog. Ser.  187, 101–111. 

Hinde, R., and Trautman, D. A. (2001). Symbiosomes. Symbiosis Mech. Model Syst. , 207–220. 

Hirose, K., and Kamiya, H. (2003). Vertical Nutrient Distributions in the Western North Pacific 

148 

http://paperpile.com/b/tXEF6Q/MayFj
http://paperpile.com/b/tXEF6Q/MayFj
http://paperpile.com/b/tXEF6Q/MayFj
http://paperpile.com/b/tXEF6Q/rKeaz
http://paperpile.com/b/tXEF6Q/rKeaz
http://paperpile.com/b/tXEF6Q/rKeaz
http://paperpile.com/b/tXEF6Q/rKeaz
http://paperpile.com/b/tXEF6Q/rKeaz
http://paperpile.com/b/tXEF6Q/uJ84e
http://paperpile.com/b/tXEF6Q/uJ84e
http://paperpile.com/b/tXEF6Q/uJ84e
http://paperpile.com/b/tXEF6Q/uJ84e
http://paperpile.com/b/tXEF6Q/uJ84e
https://pdfs.semanticscholar.org/4589/e20d3cbd666d8fd0b35a383f87d6cf4d4e05.pdf
http://paperpile.com/b/tXEF6Q/uJ84e
http://paperpile.com/b/tXEF6Q/1eR00
http://paperpile.com/b/tXEF6Q/1eR00
http://paperpile.com/b/tXEF6Q/1eR00
http://paperpile.com/b/tXEF6Q/1eR00
http://paperpile.com/b/tXEF6Q/1eR00
http://paperpile.com/b/tXEF6Q/MVxkI
http://paperpile.com/b/tXEF6Q/MVxkI
http://paperpile.com/b/tXEF6Q/MVxkI
http://paperpile.com/b/tXEF6Q/MVxkI
http://paperpile.com/b/tXEF6Q/MVxkI
http://paperpile.com/b/tXEF6Q/MVxkI
http://paperpile.com/b/tXEF6Q/Ujcdw
http://paperpile.com/b/tXEF6Q/Ujcdw
http://paperpile.com/b/tXEF6Q/Ujcdw
http://paperpile.com/b/tXEF6Q/Ujcdw
http://paperpile.com/b/tXEF6Q/CFvhz
http://paperpile.com/b/tXEF6Q/CFvhz
http://paperpile.com/b/tXEF6Q/CFvhz
http://paperpile.com/b/tXEF6Q/CFvhz
http://paperpile.com/b/tXEF6Q/CFvhz
http://paperpile.com/b/tXEF6Q/BpLSO
http://paperpile.com/b/tXEF6Q/BpLSO
http://paperpile.com/b/tXEF6Q/BpLSO
http://paperpile.com/b/tXEF6Q/BpLSO
http://paperpile.com/b/tXEF6Q/BpLSO
http://paperpile.com/b/tXEF6Q/pPpQM
http://paperpile.com/b/tXEF6Q/pPpQM
http://paperpile.com/b/tXEF6Q/pPpQM
http://paperpile.com/b/tXEF6Q/pPpQM
http://paperpile.com/b/tXEF6Q/aAS9
http://paperpile.com/b/tXEF6Q/aAS9
http://paperpile.com/b/tXEF6Q/aAS9
http://paperpile.com/b/tXEF6Q/SKgrA
http://paperpile.com/b/tXEF6Q/SKgrA
http://paperpile.com/b/tXEF6Q/SKgrA
http://paperpile.com/b/tXEF6Q/SKgrA
http://paperpile.com/b/tXEF6Q/n2YxB
http://paperpile.com/b/tXEF6Q/n2YxB
http://paperpile.com/b/tXEF6Q/n2YxB
http://paperpile.com/b/tXEF6Q/n2YxB
http://paperpile.com/b/tXEF6Q/2zKl
http://paperpile.com/b/tXEF6Q/2zKl
http://paperpile.com/b/tXEF6Q/2zKl
http://paperpile.com/b/tXEF6Q/OUYGI


 

Ocean: Simple Model for Estimating Nutrient Upwelling, Export Flux and Consumption 
Rates. J. Oceanogr.  59, 149–161. 

Hohman, T. C., McNeil, P. L., and Muscatine, L. (1982). Phagosome-lysosome fusion inhibited 
by algal symbionts of Hydra viridis. J. Cell Biol.  94, 56–63. 

Hu, S. K., Connell, P. E., Mesrop, L. Y., and Caron, D. A. (2018). A Hard Day’s Night: Diel 
Shifts in Microbial Eukaryotic Activity in the North Pacific Subtropical Gyre. 
doi:10.3389/fmars.2018.00351 . 

Imanian, B., Pombert, J.-F., Dorrell, R. G., Burki, F., and Keeling, P. J. (2012). Tertiary 
endosymbiosis in two dinotoms has generated little change in the mitochondrial genomes of 
their dinoflagellate hosts and diatom endosymbionts. PLoS One 7, e43763. 

Itoh, R., Takahashi, H., Toda, K., Kuroiwa, H., and Kuroiwa, T. (1996). Aphidicolin uncouples 
the chloroplast division cycle from the mitotic cycle in the unicellular red alga 
Cyanidioschyzon merolae. Eur. J. Cell Biol.  71, 303–310. 

Jahnke, J. (1989). The light and temperature dependence of growth rate and elemental 
composition of Phaeocystis globosa scherffel and P. Pouchetii (HAR.) Lagerh. in batch 
cultures. Neth. J. Sea Res.  23, 15–21. 

Jamwal, S. V., Mehrotra, P., Singh, A., Siddiqui, Z., Basu, A., and Rao, K. V. S. (2016). 
Mycobacterial escape from macrophage phagosomes to the cytoplasm represents an 
alternate adaptation mechanism. Sci. Rep.  6, 23089. 

Janse, I., van Rijssel, M., Gottschal, J. C., Lancelot, C., and Gieskes, W. W. C. (1996). 
Carbohydrates in the North Sea during spring blooms of Phaeocystis: a specific fingerprint. 
Aquat. Microb. Ecol.  10, 97–103. 

Kanehisa, M., Sato, Y., and Morishima, K. (2016). BlastKOALA and GhostKOALA: KEGG 
Tools for Functional Characterization of Genome and Metagenome Sequences. J. Mol. Biol. 
428, 726–731. 

Keeling, P. J. (2004). Diversity and evolutionary history of plastids and their hosts. Am. J. Bot. 
91, 1481–1493. 

Keeling, P. J., Burki, F., Wilcox, H. M., Allam, B., Allen, E. E., Amaral-Zettler, L. A., et al. 
(2014). The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): 
illuminating the functional diversity of eukaryotic life in the oceans through transcriptome 
sequencing. PLoS Biol.  12, e1001889. 

Keeling, P. J., and McCutcheon, J. P. (2017). Endosymbiosis: The feeling is not mutual. J. 
Theor. Biol.  434, 75–79. 

Kodama, Y., Inouye, I., and Fujishima, M. (2011). Symbiotic Chlorella vulgaris of the ciliate 
Paramecium bursaria plays an important role in maintaining perialgal vacuole membrane 

149 

http://paperpile.com/b/tXEF6Q/OUYGI
http://paperpile.com/b/tXEF6Q/OUYGI
http://paperpile.com/b/tXEF6Q/OUYGI
http://paperpile.com/b/tXEF6Q/OUYGI
http://paperpile.com/b/tXEF6Q/qCpE
http://paperpile.com/b/tXEF6Q/qCpE
http://paperpile.com/b/tXEF6Q/qCpE
http://paperpile.com/b/tXEF6Q/qCpE
http://paperpile.com/b/tXEF6Q/T0x8V
http://paperpile.com/b/tXEF6Q/T0x8V
http://paperpile.com/b/tXEF6Q/T0x8V
http://dx.doi.org/10.3389/fmars.2018.00351
http://paperpile.com/b/tXEF6Q/T0x8V
http://paperpile.com/b/tXEF6Q/YOct
http://paperpile.com/b/tXEF6Q/YOct
http://paperpile.com/b/tXEF6Q/YOct
http://paperpile.com/b/tXEF6Q/YOct
http://paperpile.com/b/tXEF6Q/YOct
http://paperpile.com/b/tXEF6Q/2aNN3
http://paperpile.com/b/tXEF6Q/2aNN3
http://paperpile.com/b/tXEF6Q/2aNN3
http://paperpile.com/b/tXEF6Q/2aNN3
http://paperpile.com/b/tXEF6Q/2aNN3
http://paperpile.com/b/tXEF6Q/4pDt
http://paperpile.com/b/tXEF6Q/4pDt
http://paperpile.com/b/tXEF6Q/4pDt
http://paperpile.com/b/tXEF6Q/4pDt
http://paperpile.com/b/tXEF6Q/4pDt
http://paperpile.com/b/tXEF6Q/4sre
http://paperpile.com/b/tXEF6Q/4sre
http://paperpile.com/b/tXEF6Q/4sre
http://paperpile.com/b/tXEF6Q/4sre
http://paperpile.com/b/tXEF6Q/4sre
http://paperpile.com/b/tXEF6Q/XmqLH
http://paperpile.com/b/tXEF6Q/XmqLH
http://paperpile.com/b/tXEF6Q/XmqLH
http://paperpile.com/b/tXEF6Q/XmqLH
http://paperpile.com/b/tXEF6Q/66FNz
http://paperpile.com/b/tXEF6Q/66FNz
http://paperpile.com/b/tXEF6Q/66FNz
http://paperpile.com/b/tXEF6Q/66FNz
http://paperpile.com/b/tXEF6Q/66FNz
http://paperpile.com/b/tXEF6Q/Ci8N
http://paperpile.com/b/tXEF6Q/Ci8N
http://paperpile.com/b/tXEF6Q/Ci8N
http://paperpile.com/b/tXEF6Q/Ci8N
http://paperpile.com/b/tXEF6Q/Cxnjr
http://paperpile.com/b/tXEF6Q/Cxnjr
http://paperpile.com/b/tXEF6Q/Cxnjr
http://paperpile.com/b/tXEF6Q/Cxnjr
http://paperpile.com/b/tXEF6Q/Cxnjr
http://paperpile.com/b/tXEF6Q/Cxnjr
http://paperpile.com/b/tXEF6Q/DObj
http://paperpile.com/b/tXEF6Q/DObj
http://paperpile.com/b/tXEF6Q/DObj
http://paperpile.com/b/tXEF6Q/DObj
http://paperpile.com/b/tXEF6Q/ZOWe
http://paperpile.com/b/tXEF6Q/ZOWe


 

functions. Protist 162, 288–303. 

Koike, K., Jimbo, M., Sakai, R., Kaeriyama, M., Muramoto, K., Ogata, T., et al. (2004). 
Octocoral chemical signaling selects and controls dinoflagellate symbionts. Biol. Bull.  207, 
80–86. 

Li, B., and Dewey, C. N. (2011). RSEM: accurate transcript quantification from RNA-Seq data 
with or without a reference genome. BMC Bioinformatics  12, 323. 

Li, M., Shi, X., Guo, C., and Lin, S. (2016). Phosphorus Deficiency Inhibits Cell Division But 
Not Growth in the Dinoflagellate Amphidinium carterae. Front. Microbiol.  7, 826. 

Lindehoff, E., Granéli, E., and Glibert, P. M. (2011). Nitrogen uptake kinetics of Prymnesium 
parvum (Haptophyte). Harmful Algae 12, 70–76. 

Liss, P. S., Malin, G., Turner, S. M., and Holligan, P. M. (1994). Dimethyl sulphide and 
Phaeocystis: A review. J. Mar. Syst.  5, 41–53. 

Li, T., Guo, C., Zhang, Y., Wang, C., Lin, X., and Lin, S. (2018). Identification and Expression 
Analysis of an Atypical Alkaline Phosphatase in Emiliania huxleyi. Front. Microbiol.  9, 
2156. 

Liu, Z., Mesrop, L. Y., Hu, S. K., and Caron, D. A. (2019). Transcriptome of Thalassicolla 
nucleata holobiont reveals details of a radiolarian symbiotic relationship. Frontiers in 
Marine Science . Available at: 
https://pdfs.semanticscholar.org/62de/73521d55b6183ac41c32ae8d71324648efb8.pdf . 

Lombard, F., Boss, E., Waite, A. M., Vogt, M., Uitz, J., Stemmann, L., et al. (2019). Globally 
Consistent Quantitative Observations of Planktonic Ecosystems. Front. Mar. Sci.  6, 1705. 

López-García, P., Rodríguez-Valera, F., Pedrós-Alió, C., and Moreira, D. (2001). Unexpected 
diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409, 603–607. 

Lowe, C. D., Minter, E. J., Cameron, D. D., and Brockhurst, M. A. (2016). Shining a Light on 
Exploitative Host Control in a Photosynthetic Endosymbiosis. Curr. Biol.  26, 207–211. 

Lumpkin, R., Grodsky, S. A., Centurioni, L., Rio, M.-H., Carton, J. A., and Lee, D. (2013). 
Removing Spurious Low-Frequency Variability in Drifter Velocities. Journal of 
Atmospheric and Oceanic Technology  30, 353–360. doi:10.1175/jtech-d-12-00139.1 . 

Mars Brisbin, M., Mesrop, L. Y., Grossmann, M. M., and Mitarai, S. (2018). Intra-host Symbiont 
Diversity and Extended Symbiont Maintenance in Photosymbiotic Acantharea (Clade F). 
Front. Microbiol.  9, 1998. 

Mars Brisbin, M., and Mitarai, S. (2019). Differential Gene Expression Supports a 
Resource-Intensive, Defensive Role for Colony Production in the Bloom-Forming 

150 

http://paperpile.com/b/tXEF6Q/ZOWe
http://paperpile.com/b/tXEF6Q/ZOWe
http://paperpile.com/b/tXEF6Q/ZOWe
http://paperpile.com/b/tXEF6Q/gjvDL
http://paperpile.com/b/tXEF6Q/gjvDL
http://paperpile.com/b/tXEF6Q/gjvDL
http://paperpile.com/b/tXEF6Q/gjvDL
http://paperpile.com/b/tXEF6Q/gjvDL
http://paperpile.com/b/tXEF6Q/felu6
http://paperpile.com/b/tXEF6Q/felu6
http://paperpile.com/b/tXEF6Q/felu6
http://paperpile.com/b/tXEF6Q/felu6
http://paperpile.com/b/tXEF6Q/iLR3G
http://paperpile.com/b/tXEF6Q/iLR3G
http://paperpile.com/b/tXEF6Q/iLR3G
http://paperpile.com/b/tXEF6Q/iLR3G
http://paperpile.com/b/tXEF6Q/pSqGN
http://paperpile.com/b/tXEF6Q/pSqGN
http://paperpile.com/b/tXEF6Q/pSqGN
http://paperpile.com/b/tXEF6Q/pSqGN
http://paperpile.com/b/tXEF6Q/epdwL
http://paperpile.com/b/tXEF6Q/epdwL
http://paperpile.com/b/tXEF6Q/epdwL
http://paperpile.com/b/tXEF6Q/epdwL
http://paperpile.com/b/tXEF6Q/MxXHO
http://paperpile.com/b/tXEF6Q/MxXHO
http://paperpile.com/b/tXEF6Q/MxXHO
http://paperpile.com/b/tXEF6Q/MxXHO
http://paperpile.com/b/tXEF6Q/MxXHO
http://paperpile.com/b/tXEF6Q/7fdf0
http://paperpile.com/b/tXEF6Q/7fdf0
http://paperpile.com/b/tXEF6Q/7fdf0
http://paperpile.com/b/tXEF6Q/7fdf0
http://paperpile.com/b/tXEF6Q/7fdf0
https://pdfs.semanticscholar.org/62de/73521d55b6183ac41c32ae8d71324648efb8.pdf
http://paperpile.com/b/tXEF6Q/7fdf0
http://paperpile.com/b/tXEF6Q/8CcB6
http://paperpile.com/b/tXEF6Q/8CcB6
http://paperpile.com/b/tXEF6Q/8CcB6
http://paperpile.com/b/tXEF6Q/8CcB6
http://paperpile.com/b/tXEF6Q/uhs17
http://paperpile.com/b/tXEF6Q/uhs17
http://paperpile.com/b/tXEF6Q/uhs17
http://paperpile.com/b/tXEF6Q/uhs17
http://paperpile.com/b/tXEF6Q/SeKW
http://paperpile.com/b/tXEF6Q/SeKW
http://paperpile.com/b/tXEF6Q/SeKW
http://paperpile.com/b/tXEF6Q/SeKW
http://paperpile.com/b/tXEF6Q/ZN1A
http://paperpile.com/b/tXEF6Q/ZN1A
http://paperpile.com/b/tXEF6Q/ZN1A
http://paperpile.com/b/tXEF6Q/ZN1A
http://paperpile.com/b/tXEF6Q/ZN1A
http://dx.doi.org/10.1175/jtech-d-12-00139.1
http://paperpile.com/b/tXEF6Q/ZN1A
http://paperpile.com/b/tXEF6Q/2T0YZ
http://paperpile.com/b/tXEF6Q/2T0YZ
http://paperpile.com/b/tXEF6Q/2T0YZ
http://paperpile.com/b/tXEF6Q/2T0YZ
http://paperpile.com/b/tXEF6Q/qJXWn
http://paperpile.com/b/tXEF6Q/qJXWn


 

Haptophyte, Phaeocystis globosa. J. Eukaryot. Microbiol.  66, 788–801. 

Marte, B. M., and Downward, J. (1997). PKB/Akt: connecting phosphoinositide 3-kinase to cell 
survival and beyond. Trends Biochem. Sci.  22, 355–358. 

Martin, P., Allen, J. T., Cooper, M. J., Johns, D. G., Lampitt, R. S., Sanders, R., et al. (2010). 
Sedimentation of acantharian cysts in the Iceland Basin: Strontium as a ballast for deep 
ocean particle flux, and implications for acantharian reproductive strategies. Limnol. 
Oceanogr. 55, 604–614. 

McFadden, G. I. (2014). Origin and evolution of plastids and photosynthesis in eukaryotes. Cold 
Spring Harb. Perspect. Biol.  6, a016105. 

McMurdie, P. J., and Holmes, S. (2013). phyloseq: an R package for reproducible interactive 
analysis and graphics of microbiome census data. PLoS One 8, e61217. 

Medlin, L., and Edvardsen, B. (2007). Molecular systematics of Haptophyta. Unravelling the 
algae, 183–196. doi:10.1201/9780849379901.ch10 . 

Michaels, A. F. (1988). Vertical distribution and abundance of Acantharia and their symbionts. 
Mar. Biol.  97, 559–569. 

Michaels, A. F. (1991). Acantharian abundance and symbiont productivity at the VERTEX 
seasonal station. J. Plankton Res.  13, 399–418. 

Michaels, A. F., Caron, D. A., Swanberg, N. R., Howse, F. A., and Michaels, C. M. (1995). 
Planktonic sarcodines (Acantharia, Radiolaria, Foraminifera) in surface waters near 
Bermuda: abundance, biomass and vertical flux. J. Plankton Res.  17, 131–163. 

Mitchell, A., Chang, H.-Y., Daugherty, L., Fraser, M., Hunter, S., Lopez, R., et al. (2015). The 
InterPro protein families database: the classification resource after 15 years. Nucleic Acids 
Res.  43, D213–21. 

Mitra, A., Flynn, K. J., Burkholder, J. M., Berge, T., Calbet, A., Raven, J. A., et al. (2014). The 
role of mixotrophic protists in the biological carbon pump. Biogeosciences  11, 995–1005. 
doi:10.5194/bg-11-995-2014 . 

Möller, K. O., John, M. S., Temming, A., Floeter, J., Sell, A. F., Herrmann, J.-P., et al. (2012). 
Marine snow, zooplankton and thin layers: indications of a trophic link from small-scale 
sampling with the Video Plankton Recorder. Mar. Ecol. Prog. Ser.  468, 57–69. 

Moon-van der Staay, S. Y., van der Staay, G. W. M., Guillou, L., Vaulot, D., Claustre, H., and 
Medlin, L. K. (2000). Abundance and diversity of prymnesiophytes in the picoplankton 
coμmunity from the equatorial Pacific Ocean inferred from 18S rDNA sequences. Limnol. 
Oceanogr. 45, 98–109. 

Morrison, D. K. (2012). MAP kinase pathways. Cold Spring Harb. Perspect. Biol.  4. 

151 

http://paperpile.com/b/tXEF6Q/qJXWn
http://paperpile.com/b/tXEF6Q/qJXWn
http://paperpile.com/b/tXEF6Q/qJXWn
http://paperpile.com/b/tXEF6Q/lC3Kd
http://paperpile.com/b/tXEF6Q/lC3Kd
http://paperpile.com/b/tXEF6Q/lC3Kd
http://paperpile.com/b/tXEF6Q/lC3Kd
http://paperpile.com/b/tXEF6Q/b8i7o
http://paperpile.com/b/tXEF6Q/b8i7o
http://paperpile.com/b/tXEF6Q/b8i7o
http://paperpile.com/b/tXEF6Q/b8i7o
http://paperpile.com/b/tXEF6Q/b8i7o
http://paperpile.com/b/tXEF6Q/b8i7o
http://paperpile.com/b/tXEF6Q/AC4J4
http://paperpile.com/b/tXEF6Q/AC4J4
http://paperpile.com/b/tXEF6Q/AC4J4
http://paperpile.com/b/tXEF6Q/AC4J4
http://paperpile.com/b/tXEF6Q/VyheX
http://paperpile.com/b/tXEF6Q/VyheX
http://paperpile.com/b/tXEF6Q/VyheX
http://paperpile.com/b/tXEF6Q/VyheX
http://paperpile.com/b/tXEF6Q/trRB
http://paperpile.com/b/tXEF6Q/trRB
http://paperpile.com/b/tXEF6Q/trRB
http://paperpile.com/b/tXEF6Q/trRB
http://dx.doi.org/10.1201/9780849379901.ch10
http://paperpile.com/b/tXEF6Q/trRB
http://paperpile.com/b/tXEF6Q/fnSVE
http://paperpile.com/b/tXEF6Q/fnSVE
http://paperpile.com/b/tXEF6Q/fnSVE
http://paperpile.com/b/tXEF6Q/A0V2
http://paperpile.com/b/tXEF6Q/A0V2
http://paperpile.com/b/tXEF6Q/A0V2
http://paperpile.com/b/tXEF6Q/A0V2
http://paperpile.com/b/tXEF6Q/YIU8
http://paperpile.com/b/tXEF6Q/YIU8
http://paperpile.com/b/tXEF6Q/YIU8
http://paperpile.com/b/tXEF6Q/YIU8
http://paperpile.com/b/tXEF6Q/YIU8
http://paperpile.com/b/tXEF6Q/xNf9W
http://paperpile.com/b/tXEF6Q/xNf9W
http://paperpile.com/b/tXEF6Q/xNf9W
http://paperpile.com/b/tXEF6Q/xNf9W
http://paperpile.com/b/tXEF6Q/xNf9W
http://paperpile.com/b/tXEF6Q/u0eGP
http://paperpile.com/b/tXEF6Q/u0eGP
http://paperpile.com/b/tXEF6Q/u0eGP
http://paperpile.com/b/tXEF6Q/u0eGP
http://paperpile.com/b/tXEF6Q/u0eGP
http://dx.doi.org/10.5194/bg-11-995-2014
http://paperpile.com/b/tXEF6Q/u0eGP
http://paperpile.com/b/tXEF6Q/qy2eA
http://paperpile.com/b/tXEF6Q/qy2eA
http://paperpile.com/b/tXEF6Q/qy2eA
http://paperpile.com/b/tXEF6Q/qy2eA
http://paperpile.com/b/tXEF6Q/qy2eA
http://paperpile.com/b/tXEF6Q/ZeCR
http://paperpile.com/b/tXEF6Q/ZeCR
http://paperpile.com/b/tXEF6Q/ZeCR
http://paperpile.com/b/tXEF6Q/ZeCR
http://paperpile.com/b/tXEF6Q/ZeCR
http://paperpile.com/b/tXEF6Q/ZeCR
http://paperpile.com/b/tXEF6Q/2gdwC
http://paperpile.com/b/tXEF6Q/2gdwC
http://paperpile.com/b/tXEF6Q/2gdwC


 

doi:10.1101/cshperspect.a011254 . 

Nigg, E. A. (1995). Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. 
Bioessays  17, 471–480. 

Not, F., Gausling, R., Azam, F., Heidelberg, J. F., and Worden, A. Z. (2007). Vertical 
distribution of picoeukaryotic diversity in the Sargasso Sea. Environ. Microbiol.  9, 
1233–1252. 

Not, F., Probert, I., Gerikas Ribeiro, C., Crenn, K., Guillou, L., Jeanthon, C., et al. (2016). 
“Photosymbiosis in Marine Pelagic Environments,” in The Marine Microbiome: An 
Untapped Source of Biodiversity and Biotechnological Potential , eds. L. J. Stal and M. S. 
Cretoiu (Cham: Springer International Publishing), 305–332. 

Oksanen, J., Guillaume Blanchet, F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., et al. 
(2019). vegan: Community Ecology Package. R package version 2.5-4. Available at: 
https://CRAN.R-project.org/package=vegan . 

Orenstein, E. C., Beijbom, O., Peacock, E. E., and Sosik, H. M. (2015). WHOI-Plankton- A 
Large Scale Fine Grained Visual Recognition Benchmark Dataset for Plankton 
Classification. arXiv [cs.CV] . Available at: http://arxiv.org/abs/1510.00745 . 

Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., and Kingsford, C. (2017). Salmon provides 
fast and bias-aware quantification of transcript expression. Nat. Methods  14, 417–419. 

Peacock, E. E., Olson, R. J., and Sosik, H. M. (2014). Parasitic infection of the diatom Guinardia 
delicatula, a recurrent and ecologically important phenomenon on the New England Shelf. 
Mar. Ecol. Prog. Ser.  503, 1–10. 

Pernice, M. C., Giner, C. R., Logares, R., Perera-Bel, J., Acinas, S. G., Duarte, C. M., et al. 
(2016). Large variability of bathypelagic microbial eukaryotic communities across the 
world’s oceans. ISME J.  10, 945–958. 

Phipps, D. W., and Pardy, R. L. (1982). HOST ENHANCEMENT OF SYMBIONT 
PHOTOSYNTHESIS IN THE HYDRA-ALGAE SYMBIOSIS. Biol. Bull.  162, 83–94. 

Probert, I., Siano, R., Poirier, C., Decelle, J., Biard, T., Tuji, A., et al. (2014). Brandtodinium 
gen. nov. and B. nutricula comb. Nov. (Dinophyceae), a dinoflagellate commonly found in 
symbiosis with polycystine radiolarians. J. Phycol.  50, 388–399. 

Quaiser, A., Zivanovic, Y., Moreira, D., and López-García, P. (2011). Comparative 
metagenomics of bathypelagic plankton and bottom sediment from the Sea of Marmara. 
ISME J.  5, 285–304. 

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Glo, F. O., et al. (2013). The SILVA 
ribosomal RNA gene database project : improved data processing and web-based tools. 41, 

152 

http://paperpile.com/b/tXEF6Q/2gdwC
http://dx.doi.org/10.1101/cshperspect.a011254
http://paperpile.com/b/tXEF6Q/2gdwC
http://paperpile.com/b/tXEF6Q/6yLIJ
http://paperpile.com/b/tXEF6Q/6yLIJ
http://paperpile.com/b/tXEF6Q/6yLIJ
http://paperpile.com/b/tXEF6Q/12nr3
http://paperpile.com/b/tXEF6Q/12nr3
http://paperpile.com/b/tXEF6Q/12nr3
http://paperpile.com/b/tXEF6Q/12nr3
http://paperpile.com/b/tXEF6Q/12nr3
http://paperpile.com/b/tXEF6Q/FAwG
http://paperpile.com/b/tXEF6Q/FAwG
http://paperpile.com/b/tXEF6Q/FAwG
http://paperpile.com/b/tXEF6Q/FAwG
http://paperpile.com/b/tXEF6Q/FAwG
http://paperpile.com/b/tXEF6Q/FAwG
http://paperpile.com/b/tXEF6Q/Outo
http://paperpile.com/b/tXEF6Q/Outo
https://cran.r-project.org/package=vegan
http://paperpile.com/b/tXEF6Q/Outo
http://paperpile.com/b/tXEF6Q/QDegP
http://paperpile.com/b/tXEF6Q/QDegP
http://paperpile.com/b/tXEF6Q/QDegP
http://paperpile.com/b/tXEF6Q/QDegP
http://paperpile.com/b/tXEF6Q/QDegP
http://arxiv.org/abs/1510.00745
http://paperpile.com/b/tXEF6Q/QDegP
http://paperpile.com/b/tXEF6Q/DdLn6
http://paperpile.com/b/tXEF6Q/DdLn6
http://paperpile.com/b/tXEF6Q/DdLn6
http://paperpile.com/b/tXEF6Q/DdLn6
http://paperpile.com/b/tXEF6Q/R8LSV
http://paperpile.com/b/tXEF6Q/R8LSV
http://paperpile.com/b/tXEF6Q/R8LSV
http://paperpile.com/b/tXEF6Q/R8LSV
http://paperpile.com/b/tXEF6Q/P7mNH
http://paperpile.com/b/tXEF6Q/P7mNH
http://paperpile.com/b/tXEF6Q/P7mNH
http://paperpile.com/b/tXEF6Q/P7mNH
http://paperpile.com/b/tXEF6Q/P7mNH
http://paperpile.com/b/tXEF6Q/RwJGg
http://paperpile.com/b/tXEF6Q/RwJGg
http://paperpile.com/b/tXEF6Q/RwJGg
http://paperpile.com/b/tXEF6Q/RwJGg
http://paperpile.com/b/tXEF6Q/kRqN
http://paperpile.com/b/tXEF6Q/kRqN
http://paperpile.com/b/tXEF6Q/kRqN
http://paperpile.com/b/tXEF6Q/kRqN
http://paperpile.com/b/tXEF6Q/kRqN
http://paperpile.com/b/tXEF6Q/LAPge
http://paperpile.com/b/tXEF6Q/LAPge
http://paperpile.com/b/tXEF6Q/LAPge
http://paperpile.com/b/tXEF6Q/LAPge
http://paperpile.com/b/tXEF6Q/jEtB
http://paperpile.com/b/tXEF6Q/jEtB


 

590–596. 

Quesada, I., Chin, W.-C., and Verdugo, P. (2006). Mechanisms of signal transduction in 
photo-stimulated secretion in Phaeocystis globosa. FEBS Lett.  580, 2201–2206. 

Raina, J.-B., Tapiolas, D. M., Forêt, S., Lutz, A., Abrego, D., Ceh, J., et al. (2013). DMSP 
biosynthesis by an animal and its role in coral thermal stress response. Nature 502, 
677–680. 

R Core Team (2018). R: A language and environment for statistical computing. Available at: 
https://www.R-project.org/ . 

Read, B. A., Kegel, J., Klute, M. J., Kuo, A., Lefebvre, S. C., Maumus, F., et al. (2013). Pan 
genome of the phytoplankton Emiliania underpins its global distribution. Nature 499, 
209–213. 

Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2010). edgeR: a Bioconductor package for 
differential expression analysis of digital gene expression data. Bioinformatics  26, 139–140. 

Rodrigues, F. C. M., Hirata, N. S. T., Abello, A. A., Leandro, T., La Cruz, D., Lopes, R. M., et 
al. (2018). Evaluation of Transfer Learning Scenarios in Plankton Image Classification. in 
VISIGRAPP (5: VISAPP) , 359–366. 

Ronkin, R. R. (1959). MOTILITY AND POWER DISSIPATION IN FLAGELLATED CELLS, 
ESPECIALLY CHLAMYDOMONAS. Biol. Bull.  116, 285–293. 

Ronquist, F., and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under 
mixed models. Bioinformatics  19, 1572–1574. 

Sanz-Luque, E., Chamizo-Ampudia, A., Llamas, A., Galvan, A., and Fernandez, E. (2015). 
Understanding nitrate assimilation and its regulation in microalgae. Front. Plant Sci.  6, 899. 

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., et al. 
(2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods  9, 
676–682. 

Schnetzer, A., Moorthi, S. D., Countway, P. D., Gast, R. J., Gilg, I. C., and Caron, D. A. (2011). 
Depth matters: Microbial eukaryote diversity and community structure in the eastern North 
Pacific revealed through environmental gene libraries. Deep Sea Res. Part I  58, 16–26. 

Schoemann, V., Becquevort, S., Stefels, J., Rousseau, V., and Lancelot, C. (2005). Phaeocystis 
blooms in the global ocean and their controlling mechanisms: a review. J. Sea Res.  53, 
43–66. 

Shaked, Y., and de Vargas, C. (2006). Pelagic photosymbiosis: rDNA assessment of diversity 
and evolution of dinoflagellate symbionts and planktonic foraminiferal hosts. Mar. Ecol. 

153 

http://paperpile.com/b/tXEF6Q/jEtB
http://paperpile.com/b/tXEF6Q/cR3Lf
http://paperpile.com/b/tXEF6Q/cR3Lf
http://paperpile.com/b/tXEF6Q/cR3Lf
http://paperpile.com/b/tXEF6Q/cR3Lf
http://paperpile.com/b/tXEF6Q/dhj8F
http://paperpile.com/b/tXEF6Q/dhj8F
http://paperpile.com/b/tXEF6Q/dhj8F
http://paperpile.com/b/tXEF6Q/dhj8F
http://paperpile.com/b/tXEF6Q/dhj8F
http://paperpile.com/b/tXEF6Q/4IXPj
https://www.r-project.org/
http://paperpile.com/b/tXEF6Q/4IXPj
http://paperpile.com/b/tXEF6Q/ElW8e
http://paperpile.com/b/tXEF6Q/ElW8e
http://paperpile.com/b/tXEF6Q/ElW8e
http://paperpile.com/b/tXEF6Q/ElW8e
http://paperpile.com/b/tXEF6Q/ElW8e
http://paperpile.com/b/tXEF6Q/1fnp9
http://paperpile.com/b/tXEF6Q/1fnp9
http://paperpile.com/b/tXEF6Q/1fnp9
http://paperpile.com/b/tXEF6Q/1fnp9
http://paperpile.com/b/tXEF6Q/0vfY5
http://paperpile.com/b/tXEF6Q/0vfY5
http://paperpile.com/b/tXEF6Q/0vfY5
http://paperpile.com/b/tXEF6Q/0vfY5
http://paperpile.com/b/tXEF6Q/4a4tB
http://paperpile.com/b/tXEF6Q/4a4tB
http://paperpile.com/b/tXEF6Q/4a4tB
http://paperpile.com/b/tXEF6Q/4a4tB
http://paperpile.com/b/tXEF6Q/Hrkn
http://paperpile.com/b/tXEF6Q/Hrkn
http://paperpile.com/b/tXEF6Q/Hrkn
http://paperpile.com/b/tXEF6Q/Hrkn
http://paperpile.com/b/tXEF6Q/sdffP
http://paperpile.com/b/tXEF6Q/sdffP
http://paperpile.com/b/tXEF6Q/sdffP
http://paperpile.com/b/tXEF6Q/sdffP
http://paperpile.com/b/tXEF6Q/hD0V
http://paperpile.com/b/tXEF6Q/hD0V
http://paperpile.com/b/tXEF6Q/hD0V
http://paperpile.com/b/tXEF6Q/hD0V
http://paperpile.com/b/tXEF6Q/hD0V
http://paperpile.com/b/tXEF6Q/yLFCL
http://paperpile.com/b/tXEF6Q/yLFCL
http://paperpile.com/b/tXEF6Q/yLFCL
http://paperpile.com/b/tXEF6Q/yLFCL
http://paperpile.com/b/tXEF6Q/yLFCL
http://paperpile.com/b/tXEF6Q/eCVp
http://paperpile.com/b/tXEF6Q/eCVp
http://paperpile.com/b/tXEF6Q/eCVp
http://paperpile.com/b/tXEF6Q/eCVp
http://paperpile.com/b/tXEF6Q/eCVp
http://paperpile.com/b/tXEF6Q/wKBlr
http://paperpile.com/b/tXEF6Q/wKBlr
http://paperpile.com/b/tXEF6Q/wKBlr


 

Prog. Ser. 325, 59–71. 

Shaul, Y. D., and Seger, R. (2007). The MEK/ERK cascade: from signaling specificity to diverse 
functions. Biochim. Biophys. Acta  1773, 1213–1226. 

Sherr, B. F., Sherr, E. B., Caron, D. A., Vaulot, D., and Worden, A. Z. (2007). Oceanic Protists. 
Oceanography  20, 130–134. 

Sibley, L. D., Weidner, E., and Krahenbuhl, J. L. (1985). Phagosome acidification blocked by 
intracellular Toxoplasma gondii. Nature 315, 416–419. 

Sieracki, M. E., Benfield, M., Hanson, A., Davis, C., Pilskaln, C. H., Checkley, D., et al. (2010). 
Optical plankton imaging and analysis systems for ocean observation. Proceedings of ocean 
Obs  9, 21–25. 

Sieracki, M. E., Poulton, N. J., Jaillon, O., Wincker, P., de Vargas, C., Rubinat-Ripoll, L., et al. 
(2019). Single cell genomics yields a wide diversity of small planktonic protists across 
major ocean ecosystems. Sci. Rep.  9, 6025. 

Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., and Zdobnov, E. M. (2015). 
BUSCO: assessing genome assembly and annotation completeness with single-copy 
orthologs. Bioinformatics  31, 3210–3212. 

Solomon, C. M., Lessard, E. J., Keil, R. G., and Foy, M. S. (2003). Characterization of 
extracellular polymers of Phaeocystis globosa and P. antarctica. Mar. Ecol. Prog. Ser.  250, 
81–89. 

Soneson, C., Love, M. I., and Robinson, M. D. (2015). Differential analyses for RNA-seq: 
transcript-level estimates improve gene-level inferences. F1000Res.  4, 1521. 

Stoecker, D. K., Gustafson, D. E., and Verity, P. G. (1996). Micro-and mesoprotozooplankton at 
140* W in the equatorial Pacific: heterotrophs and mixotrophs. Aquat. Microb. Ecol.  10, 
273–282. 

Stoeck, T., Bass, D., Nebel, M., Christen, R., Jones, M. D. M., Breiner, H.-W., et al. (2010). 
Multiple marker parallel tag environmental DNA sequencing reveals a highly complex 
eukaryotic community in marine anoxic water. Mol. Ecol.  19 Suppl 1, 21–31. 

Sumiya, N. (2018). Mechanism of coordination between cell and chloroplast division in 
unicellular algae. PLANT MORPHOLOGY  30, 83–89. 

Supek, F., Bošnjak, M., Škunca, N., and Šmuc, T. (2011). REVIGO summarizes and visualizes 
long lists of gene ontology terms. PLoS One 6, e21800. 

Suzuki, N., and Not, F. (2015). “Biology and Ecology of Radiolaria,” in Marine Protists: 
Diversity and Dynamics , eds. S. Ohtsuka, T. Suzaki, T. Horiguchi, N. Suzuki, and F. Not 

154 

http://paperpile.com/b/tXEF6Q/wKBlr
http://paperpile.com/b/tXEF6Q/wKBlr
http://paperpile.com/b/tXEF6Q/bP3Vn
http://paperpile.com/b/tXEF6Q/bP3Vn
http://paperpile.com/b/tXEF6Q/bP3Vn
http://paperpile.com/b/tXEF6Q/bP3Vn
http://paperpile.com/b/tXEF6Q/naNLS
http://paperpile.com/b/tXEF6Q/naNLS
http://paperpile.com/b/tXEF6Q/naNLS
http://paperpile.com/b/tXEF6Q/jMc5
http://paperpile.com/b/tXEF6Q/jMc5
http://paperpile.com/b/tXEF6Q/jMc5
http://paperpile.com/b/tXEF6Q/jMc5
http://paperpile.com/b/tXEF6Q/FvYxW
http://paperpile.com/b/tXEF6Q/FvYxW
http://paperpile.com/b/tXEF6Q/FvYxW
http://paperpile.com/b/tXEF6Q/FvYxW
http://paperpile.com/b/tXEF6Q/FvYxW
http://paperpile.com/b/tXEF6Q/F7qDa
http://paperpile.com/b/tXEF6Q/F7qDa
http://paperpile.com/b/tXEF6Q/F7qDa
http://paperpile.com/b/tXEF6Q/F7qDa
http://paperpile.com/b/tXEF6Q/F7qDa
http://paperpile.com/b/tXEF6Q/PBpL9
http://paperpile.com/b/tXEF6Q/PBpL9
http://paperpile.com/b/tXEF6Q/PBpL9
http://paperpile.com/b/tXEF6Q/PBpL9
http://paperpile.com/b/tXEF6Q/PBpL9
http://paperpile.com/b/tXEF6Q/4rJir
http://paperpile.com/b/tXEF6Q/4rJir
http://paperpile.com/b/tXEF6Q/4rJir
http://paperpile.com/b/tXEF6Q/4rJir
http://paperpile.com/b/tXEF6Q/4rJir
http://paperpile.com/b/tXEF6Q/yM6vJ
http://paperpile.com/b/tXEF6Q/yM6vJ
http://paperpile.com/b/tXEF6Q/yM6vJ
http://paperpile.com/b/tXEF6Q/yM6vJ
http://paperpile.com/b/tXEF6Q/gkXY2
http://paperpile.com/b/tXEF6Q/gkXY2
http://paperpile.com/b/tXEF6Q/gkXY2
http://paperpile.com/b/tXEF6Q/gkXY2
http://paperpile.com/b/tXEF6Q/gkXY2
http://paperpile.com/b/tXEF6Q/sKuUK
http://paperpile.com/b/tXEF6Q/sKuUK
http://paperpile.com/b/tXEF6Q/sKuUK
http://paperpile.com/b/tXEF6Q/sKuUK
http://paperpile.com/b/tXEF6Q/sKuUK
http://paperpile.com/b/tXEF6Q/xiwdb
http://paperpile.com/b/tXEF6Q/xiwdb
http://paperpile.com/b/tXEF6Q/xiwdb
http://paperpile.com/b/tXEF6Q/xiwdb
http://paperpile.com/b/tXEF6Q/cyVpi
http://paperpile.com/b/tXEF6Q/cyVpi
http://paperpile.com/b/tXEF6Q/cyVpi
http://paperpile.com/b/tXEF6Q/cyVpi
http://paperpile.com/b/tXEF6Q/vinK
http://paperpile.com/b/tXEF6Q/vinK
http://paperpile.com/b/tXEF6Q/vinK
http://paperpile.com/b/tXEF6Q/vinK


 

(Tokyo: Springer Japan), 179–222. 

Swanberg, N. R., and Caron, D. A. (1991). Patterns of sarcodine feeding in epipelagic oceanic 
plankton. J. Plankton Res.  13, 287–312. 

Syrett, P. J., and Leftley, J. W. (2016). Nitrate and urea assimilation by algae. Perspectives in 
experimental biology  2, 221–234. 

Takagi, H., Kimoto, K., Fujiki, T., Kurasawa, A., Moriya, K., and Hirano, H. (2016). 
Ontogenetic dynamics of photosymbiosis in cultured planktic foraminifers revealed by fast 
repetition rate fluorometry. Mar. Micropaleontol.  122, 44–52. 

Takagi, H., Kimoto, K., Fujiki, T., Saito, H., Schmidt, C., Kucera, M., et al. (2019). 
Characterizing photosymbiosis in modern planktonic foraminifera. Biogeosciences  16, 
3377–3396. 

Tanabe, A. S., Nagai, S., Hida, K., Yasuike, M., Fujiwara, A., Nakamura, Y., et al. (2016). 
Comparative study of the validity of three regions of the 18S-rRNA gene for massively 
parallel sequencing-based monitoring of the planktonic eukaryote community. Mol. Ecol. 
Resour. 16, 402–414. 

Terrado, R., Vincent, W. F., and Lovejoy, C. (2009). Mesopelagic protists: diversity and 
succession in a coastal Arctic ecosystem. Aquat. Microb. Ecol.  Available at: 
https://www.int-res.com/abstracts/ame/v56/n1/p25-39/ . 

Titlyanov, E. A., Titlyanova, T. V., Leletkin, V. A., Tsukahara, J., van Woesik, R., and 
Yamazato, K. (1996). Degradation of zooxanthellae and regulation of their density in 
hermatypic corals. Marine Ecology Progress Series  139, 167–178. 
doi:10.3354/meps139167 . 

Torti, A., Lever, M. A., and Jørgensen, B. B. (2015). Origin, dynamics, and implications of 
extracellular DNA pools in marine sediments. Mar. Genomics  24 Pt 3, 185–196. 

Trombetta, J. J., Gennert, D., Lu, D., Satija, R., Shalek, A. K., and Regev, A. (2014). Preparation 
of Single-Cell RNA-Seq Libraries for Next Generation Sequencing. Curr. Protoc. Mol. 
Biol.  107. doi:10.1002/0471142727.mb0422s107 . 

Vaidyanathan, H., Opoku-Ansah, J., Pastorino, S., Renganathan, H., Matter, M. L., and Ramos, 
J. W. (2007). ERK MAP kinase is targeted to RSK2 by the phosphoprotein PEA-15. Proc. 
Natl. Acad. Sci. U. S. A.  104, 19837–19842. 

VanHook, A. M. (2019). Putting the squeeze on ERK signaling. Sci. Signal.  12. 
doi:10.1126/scisignal.aaw6857 . 

Waldbauer, J. R., Rodrigue, S., Coleman, M. L., and Chisholm, S. W. (2012). Transcriptome and 
proteome dynamics of a light-dark synchronized bacterial cell cycle. PLoS One 7, e43432. 

155 

http://paperpile.com/b/tXEF6Q/vinK
http://paperpile.com/b/tXEF6Q/S7tM4
http://paperpile.com/b/tXEF6Q/S7tM4
http://paperpile.com/b/tXEF6Q/S7tM4
http://paperpile.com/b/tXEF6Q/S7tM4
http://paperpile.com/b/tXEF6Q/BEQ8m
http://paperpile.com/b/tXEF6Q/BEQ8m
http://paperpile.com/b/tXEF6Q/BEQ8m
http://paperpile.com/b/tXEF6Q/BEQ8m
http://paperpile.com/b/tXEF6Q/qdQ8
http://paperpile.com/b/tXEF6Q/qdQ8
http://paperpile.com/b/tXEF6Q/qdQ8
http://paperpile.com/b/tXEF6Q/qdQ8
http://paperpile.com/b/tXEF6Q/qdQ8
http://paperpile.com/b/tXEF6Q/PsjOV
http://paperpile.com/b/tXEF6Q/PsjOV
http://paperpile.com/b/tXEF6Q/PsjOV
http://paperpile.com/b/tXEF6Q/PsjOV
http://paperpile.com/b/tXEF6Q/PsjOV
http://paperpile.com/b/tXEF6Q/bbil
http://paperpile.com/b/tXEF6Q/bbil
http://paperpile.com/b/tXEF6Q/bbil
http://paperpile.com/b/tXEF6Q/bbil
http://paperpile.com/b/tXEF6Q/bbil
http://paperpile.com/b/tXEF6Q/bbil
http://paperpile.com/b/tXEF6Q/luFPR
http://paperpile.com/b/tXEF6Q/luFPR
http://paperpile.com/b/tXEF6Q/luFPR
http://paperpile.com/b/tXEF6Q/luFPR
https://www.int-res.com/abstracts/ame/v56/n1/p25-39/
http://paperpile.com/b/tXEF6Q/luFPR
http://paperpile.com/b/tXEF6Q/Dnw2Y
http://paperpile.com/b/tXEF6Q/Dnw2Y
http://paperpile.com/b/tXEF6Q/Dnw2Y
http://paperpile.com/b/tXEF6Q/Dnw2Y
http://paperpile.com/b/tXEF6Q/Dnw2Y
http://paperpile.com/b/tXEF6Q/Dnw2Y
http://dx.doi.org/10.3354/meps139167
http://paperpile.com/b/tXEF6Q/Dnw2Y
http://paperpile.com/b/tXEF6Q/ScjEU
http://paperpile.com/b/tXEF6Q/ScjEU
http://paperpile.com/b/tXEF6Q/ScjEU
http://paperpile.com/b/tXEF6Q/ScjEU
http://paperpile.com/b/tXEF6Q/PakLg
http://paperpile.com/b/tXEF6Q/PakLg
http://paperpile.com/b/tXEF6Q/PakLg
http://paperpile.com/b/tXEF6Q/PakLg
http://paperpile.com/b/tXEF6Q/PakLg
http://dx.doi.org/10.1002/0471142727.mb0422s107
http://paperpile.com/b/tXEF6Q/PakLg
http://paperpile.com/b/tXEF6Q/LT7Rf
http://paperpile.com/b/tXEF6Q/LT7Rf
http://paperpile.com/b/tXEF6Q/LT7Rf
http://paperpile.com/b/tXEF6Q/LT7Rf
http://paperpile.com/b/tXEF6Q/LT7Rf
http://paperpile.com/b/tXEF6Q/sXNDz
http://paperpile.com/b/tXEF6Q/sXNDz
http://paperpile.com/b/tXEF6Q/sXNDz
http://paperpile.com/b/tXEF6Q/sXNDz
http://dx.doi.org/10.1126/scisignal.aaw6857
http://paperpile.com/b/tXEF6Q/sXNDz
http://paperpile.com/b/tXEF6Q/8hY6J
http://paperpile.com/b/tXEF6Q/8hY6J
http://paperpile.com/b/tXEF6Q/8hY6J
http://paperpile.com/b/tXEF6Q/8hY6J


 

Wang, X., Wang, Y., and Smith, W. O. (2011). The role of nitrogen on the growth and colony 
development of Phaeocystis globosa (Prymnesiophyceae). Eur. J. Phycol.  46, 305–314. 

Weatherby, J. H. (1929). Excretion of Nitrogenous Substances in Protozoa. Physiol. Zool.  2, 
375–394. 

Wickham, H. (2010). ggplot2: elegant graphics for data analysis. J. Stat. Softw.  Available at: 
https://www.researchgate.net/profile/Virgilio_Gomez_Rubio/publication/315785562_Book
_review_ggplot2_-_Elegant_Graphics_for_Data_Analysis_2nd_Edition/links/58e4b7f8aca2
72d62977aaab/Book-review-ggplot2-Elegant-Graphics-for-Data-Analysis-2nd-Edition.pdf . 

Worden, A. Z., Follows, M. J., Giovannoni, S. J., Wilken, S., Zimmerman, A. E., and Keeling, P. 
J. (2015). Environmental science. Rethinking the marine carbon cycle: factoring in the 
multifarious lifestyles of microbes. Science  347, 1257594. 

Xiang, T., Lehnert, E., Jinkerson, R. E., Clowez, S., Kim, R. G., DeNofrio, J. C., et al. (2020). 
Symbiont population control by host-symbiont metabolic interaction in 
Symbiodiniaceae-cnidarian associations. Nat. Commun. 11, 108. 

Yuasa, T., and Takahashi, O. (2016). Light and electron microscopic observations of the 
reproductive swarmer cells of nassellarian and spumellarian polycystines (Radiolaria). Eur. 
J. Protistol.  54, 19–32. 

Zingone, A., Chrétiennot-Dinet, M.-J., Lange, M., and Medlin, L. (1999). MORPHOLOGICAL 
AND GENETIC CHARACTERIZATION OF PHAEOCYSTIS CORDATA AND P. 
JAHNII (PRYMNESIOPHYCEAE), TWO NEW SPECIES FROM THE 
MEDITERRANEAN SEA. Journal of Phycology  35, 1322–1337. 
doi:10.1046/j.1529-8817.1999.3561322.x . 

 

156 

http://paperpile.com/b/tXEF6Q/fBvv
http://paperpile.com/b/tXEF6Q/fBvv
http://paperpile.com/b/tXEF6Q/fBvv
http://paperpile.com/b/tXEF6Q/fBvv
http://paperpile.com/b/tXEF6Q/HDtil
http://paperpile.com/b/tXEF6Q/HDtil
http://paperpile.com/b/tXEF6Q/HDtil
http://paperpile.com/b/tXEF6Q/HDtil
http://paperpile.com/b/tXEF6Q/oq1S
http://paperpile.com/b/tXEF6Q/oq1S
http://paperpile.com/b/tXEF6Q/oq1S
https://www.researchgate.net/profile/Virgilio_Gomez_Rubio/publication/315785562_Book_review_ggplot2_-_Elegant_Graphics_for_Data_Analysis_2nd_Edition/links/58e4b7f8aca272d62977aaab/Book-review-ggplot2-Elegant-Graphics-for-Data-Analysis-2nd-Edition.pdf
https://www.researchgate.net/profile/Virgilio_Gomez_Rubio/publication/315785562_Book_review_ggplot2_-_Elegant_Graphics_for_Data_Analysis_2nd_Edition/links/58e4b7f8aca272d62977aaab/Book-review-ggplot2-Elegant-Graphics-for-Data-Analysis-2nd-Edition.pdf
https://www.researchgate.net/profile/Virgilio_Gomez_Rubio/publication/315785562_Book_review_ggplot2_-_Elegant_Graphics_for_Data_Analysis_2nd_Edition/links/58e4b7f8aca272d62977aaab/Book-review-ggplot2-Elegant-Graphics-for-Data-Analysis-2nd-Edition.pdf
http://paperpile.com/b/tXEF6Q/oq1S
http://paperpile.com/b/tXEF6Q/9fqbj
http://paperpile.com/b/tXEF6Q/9fqbj
http://paperpile.com/b/tXEF6Q/9fqbj
http://paperpile.com/b/tXEF6Q/9fqbj
http://paperpile.com/b/tXEF6Q/9fqbj
http://paperpile.com/b/tXEF6Q/x2mCX
http://paperpile.com/b/tXEF6Q/x2mCX
http://paperpile.com/b/tXEF6Q/x2mCX
http://paperpile.com/b/tXEF6Q/x2mCX
http://paperpile.com/b/tXEF6Q/x2mCX
http://paperpile.com/b/tXEF6Q/1kXA
http://paperpile.com/b/tXEF6Q/1kXA
http://paperpile.com/b/tXEF6Q/1kXA
http://paperpile.com/b/tXEF6Q/1kXA
http://paperpile.com/b/tXEF6Q/1kXA
http://paperpile.com/b/tXEF6Q/brhSM
http://paperpile.com/b/tXEF6Q/brhSM
http://paperpile.com/b/tXEF6Q/brhSM
http://paperpile.com/b/tXEF6Q/brhSM
http://paperpile.com/b/tXEF6Q/brhSM
http://paperpile.com/b/tXEF6Q/brhSM
http://paperpile.com/b/tXEF6Q/brhSM
http://dx.doi.org/10.1046/j.1529-8817.1999.3561322.x
http://paperpile.com/b/tXEF6Q/brhSM

