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SUMMARY  

The histone H3 variant CENP-A is a crucial epigenetic marker for centromere 

specification. CENP-A forms a characteristic nucleosome and dictates the higher-order 

configuration of centromeric chromatin. However, little is known about how the CENP-

A nucleosome affects the architecture of centromeric chromatin. In the present study, we 

reconstituted tri-nucleosomes mimicking a centromeric nucleosome arrangement 

containing the CENP-A nucleosome, and determined their three-dimensional structures 

by cryo-electron microscopy. The H3-CENP-A-H3 tri-nucleosomes adopt an untwisted 

architecture, with an outward-facing linker DNA path between nucleosomes. This is 

distinct from the H3-H3-H3 tri-nucleosome architecture, with an inward-facing DNA 

path. Intriguingly, the untwisted architecture may allow the CENP-A nucleosome to be 

exposed to the solvent in the condensed chromatin model. These results provide a 

structural basis for understanding the three-dimensional configuration of CENP-A-

containing chromatin, and may explain how centromeric proteins can specifically target 

the CENP-A nucleosomes buried in the robust amounts of H3 nucleosomes in 

centromeres.  

 

Keywords (up to 10): centromere; CENP-A; chromatin; cryo-EM; nucleosome; histone 
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INTRODUCTION 

Centromeres are chromosome regions for kinetochore assembly, and their positions are 

epigenetically defined and maintained through cell division (Cheeseman and Desai, 

2008; Santaguida and Musacchio, 2009; Fukagawa and Earnshaw, 2014). Many proteins 

participate in the formation and maintenance of the kinetochore structure on 

centromeres (Obuse et al., 2004; Cheeseman et al., 2004; Minoshima et al., 2005; Foltz 

et al., 2006; Meraldi et al., 2006; Okada et al., 2006; Hori et al., 2008; Amano et al., 

2009). CENP-A (also named CenH3) is a highly conserved centromere-specific histone 

H3 variant (Palmer et al., 1987) that is essential for designating centromeres as sites for 

kinetochore assembly (Fukagawa and Earnshaw, 2014; McKinley and Cheeseman, 

2016; Müller and Almouzni, 2017; Musacchio and Desai, 2017; Hara and Fukagawa, 

2018). In fact, CENP-A functions as an epigenetic mark for centromere specification 

(Black and Cleveland, 2011).  

If the CENP-A level is decreased in cells, then kinetochore assembly is severely 

impaired (Howman et al., 2000; Régnier et al., 2005; Fachinetti et al., 2013). On the 

other hand, the overproduction of CENP-A has been found in several types of cancer 

(Tomonaga et al., 2003; Li et al., 2011; Rajput et al., 2011; McGovern et al., 2012; 

Stangeland et al., 2015; Sun et al., 2016). In fact, the inappropriate assembly of the 

CENP-A nucleosome at ectopic loci may lead to a higher incidence of cancer (Lacoste 

et al., 2014; Shrestha et al., 2017). These findings suggest that proper CENP-A 

assembly in centromeres ensures cellular homeostasis.  

The CENP-A nucleosome recruits additional centromeric proteins to its 

assembly sites. This occurs even if CENP-A is artificially positioned at a non-

centromere locus on a chromosome (Mendiburo et al., 2011; Logsdon et al., 2015; 

Tachiwana et al., 2015). Thus, the CENP-A nucleosome functions as a structural hub for 

the assembly of other centromeric proteins. Consistent with these cell biological 

findings, biochemical and structural analyses demonstrated that some centromeric 

proteins, including CENP-B, CENP-C, and CENP-N, directly bind to the CENP-A 

nucleosome (Tanaka et al., 2005; Carroll et al., 2009; 2010; Guse et al., 2011; 

Tachiwana et al., 2013; Kato et al., 2013; Arimura et al., 2014; Fujita et al., 2015; 

Fachinetti et al., 2015; Falk et al., 2015; Chittori et al., 2018; Pentakota et al., 2017; 

Tian et al., 2018). To ensure the specific binding of centromeric proteins to the CENP-A 
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nucleosome, it must have distinct features as compared to the canonical H3 nucleosome 

in centromeric chromatin.  

The CENP-A nucleosome contains several unique structural attributes, such as 

the L1 loop (also called RG loop) protrusion (Sekulic et al., 2010; Tachiwana et al., 

2011) and flexible DNA ends (Conde e Silva et al., 2007; Sekulic et al., 2010; 

Tachiwana et al., 2011; Kingston et al., 2011; Dechassa et al., 2011; Panchenko et al., 

2011; Arimura et al., 2014; Kono et al., 2015; Arimura et al., 2019). Cryo-electron 

microscopy (cryo-EM) structures revealed that the RG loop directly binds to CENP-N 

(Chittori et al., 2018; Pentakota et al., 2018; Tian et al., 2018). The flexible DNA ends 

of the CENP-A nucleosome may have a strong impact on the higher-order chromatin 

architecture. The structural organization of the DNA ends could be the mechanism that 

enhances the accessibility of the CENP-A nucleosome to its binding partners, as 

compared to the H3 nucleosome. Consistent with this model, the enhanced flexibility of 

the DNA ends in the CENP-A nucleosome has been observed in human cells, based on 

native chromatin immunoprecipitation coupled with massively parallel sequencing 

(ChIP-seq) (Hasson et al., 2013; Lacoste et al., 2014). In addition, the loss of the 

flexibility of the DNA ends in the CENP-A nucleosome abrogates kinetochore assembly 

(Roulland et al., 2016). These observations strongly suggest that the flexible nature of 

the DNA segments in the CENP-A nucleosome may play important roles to facilitate 

the assembly of centromeric proteins. However, it remains unclear how the flexible 

DNA segments of the CENP-A nucleosome contribute to the establishment of the 

higher-order structure of the centromeric chromatin.  

To address this question, we prepared tri-nucleosomes mimicking a centromeric 

nucleosome arrangement, in which the CENP-A nucleosome is flanked by two H3 

nucleosomes (H3-CA-H3). We also prepared tri-nucleosomes without CENP-A (H3-

H3-H3). We then determined the structures of these tri-nucleosomes by cryo-EM. The 

higher-order structures of the H3-CA-H3 tri-nucleosomes provide a structural model for 

the role of CENP-A as a platform for kinetochore assembly sites on chromosomes.  

 

RESULTS 

Reconstitution of the H3-CA-H3 Tri-nucleosome 

In higher eukaryotes, the CENP-A nucleosomes are interspersed throughout the 
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centromeric chromatin and primarily have H3 nucleosomes as neighbors (Ribeiro et al., 

2010; Fukagawa and Earnshaw, 2014; Müller and Almouzni, 2017; Musacchio and 

Desai, 2017; Nishimura et al., 2019). To study the higher-order structure of centromeric 

chromatin containing CENP-A nucleosomes, we reconstituted a tri-nucleosome 

mimicking a centromeric nucleosome arrangement, in which one CENP-A nucleosome 

is flanked by two H3 nucleosomes (Figure 1A). We prepared the CENP-A nucleosome 

with cohesive sites at both DNA ends (Figure 1A-b, 1B). H3 nucleosomes with a single 

cohesive end were also reconstituted, and the CENP-A nucleosome was then connected 

to two H3 nucleosomes with linker DNAs by T4 DNA ligase (Figure 1A-a,c, 1B, 1C). 

The resulting H3-CA-H3 tri-nucleosome was purified by native polyacrylamide gel 

electrophoresis (Figure 1A-right, 1D, 1E). For comparison with non-centromeric 

chromatin, the conventional H3-H3-H3 tri-nucleosome was also generated by the same 

procedure (Figure 1A-right, 1D, 1E). In these tri-nucleosomes, the nucleosomes were 

connected by 22 base-pair linker DNAs, which correspond to the predicted linker DNA 

length in human centromeric alphoid DNA repeats (Masumoto et al., 1989a; Masumoto 

et al., 1989b). An SDS-PAGE analysis confirmed that both the CENP-A and H3 

molecules were properly incorporated into the tri-nucleosomes with the appropriate 

stoichiometry (Figure 1D).  

 

Imaging of the Tri-nucleosomes by Cryo-EM 

The reconstituted H3-CA-H3 and H3-H3-H3 tri-nucleosomes were visualized by cryo-

EM, using a Volta phase plate for in-focus phase contrast. As expected, the images 

showed the three nucleosomes connected by linker DNAs, and the tri-nucleosome 

conformation appeared flexible in both the H3-CA-H3 and H3-H3-H3 nucleosomes in 

the absence of Mg2+ ions (Figure 2A). Interestingly, the addition of a physiological 

concentration (1mM) of Mg2+ ion drastically changed the conformations of both the H3-

CA-H3 and H3-H3-H3 tri-nucleosomes, resulting in face-to-face stacking of the 

peripheral H3 nucleosomes against each other on their histone surfaces (Figure 2B).  

 

The Linker DNA Paths of the Tri-nucleosomes 

We processed the cryo-EM images of the H3-CA-H3 and H3-H3-H3 tri-nucleosomes in 

the presence of Mg2+, and obtained 2D class average images (Figure 3 and Figure S1). 
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Interestingly, in the H3-H3-H3 tri-nucleosome with the 22 base-pair linker DNAs, two 

different linker DNA conformations were observed. In the inward-path conformation, 

the linker DNAs of the central nucleosome were connected to the inward-facing strands 

of the stacked nucleosomes (Figure 3A, blue circles), while another population of H3-

H3-H3 tri-nucleosomes adopted a conformation in which the linker DNAs were 

connected to the outward-facing strands of the stacked nucleosomes in the outward-path 

conformation (Figure 3A, red circles). Interestingly, the outward-path conformation of 

the H3-H3-H3 tri-nucleosome was not observed when the linker DNA length was 

elongated to 30 base pairs (Figure 3B). Therefore, the outward-path structural 

conformation may not be favorable in H3-H3-H3 tri-nucleosomes when the linker DNA 

length extends beyond a certain length. 

 In contrast, we found that the H3-CA-H3 tri-nucleosome only formed the 

outward-path conformation with the 22 base-pair linker DNAs (Figure 3C), a linker 

length that closely corresponds to the predicted linker DNA length in human 

centromeric chromatin (Masumoto et al., 1989a; Masumoto et al., 1989b). This 

outward-path conformation was still observed even in H3-CA-H3 tri-nucleosomes with 

30 base-pair linker DNAs (Figure 3D). These results indicate that the CENP-A 

nucleosome has the potential to form the outward-path conformation in chromatin.  

The adoption of the outward-path conformation may be enhanced by the DNA 

end flexibility observed in the CENP-A nucleosome located at the center of the tri-

nucleosome (Tachiwana et al., 2011; Arimura et al., 2014). The DNA end flexibility is 

induced by the N helix of CENP-A (Roulland et al., 2016; Arimura et al., 2019). 

Interestingly, the CENP-A nucleosome did not adopt the outward-path conformation 

when it was located on both sides of the central H3 nucleosome in the CA-H3-CA tri-

nucleosome with 30 base-pair linker DNAs (Figure S2). In addition, the CENP-A 

nucleosomes were stacked in the CA-H3-CA tri-nucleosome, as in the H3 nucleosome. 

Therefore, the proper localization of the CENP-A nucleosome may be important for the 

outward-path conformation in chromatin. 

 

Cryo-EM Structures of Tri-nucleosomes with 22 base-pair Linker DNAs 

We reconstructed the 3D structures of the H3-CA-H3 and H3-H3-H3 tri-nucleosomes 

with the 22 base-pair linker DNAs in the outward path conformation. For comparison, 
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the H3-H3-H3 tri-nucleosome structure (outward path) with the 22 base-pair linker 

DNAs was reconstructed (Figure 4A). An H3-H3-H3 tri-nucleosome structure, in which 

the two stacked H3 nucleosomes were slightly shifted, was also obtained (Figure S6). 

This could reflect the dynamic nature of the stacked di-nucleosome within the tri-

nucleosome. However, the orientation of the central H3 nucleosome relative to the 

stacked di-nucleosome was quite similar in both H3-H3-H3 tri-nucleosome structures.  

 Interestingly, in the H3-CA-H3 tri-nucleosome, the orientation of the central 

CENP-A nucleosome relative to the stacked H3 di-nucleosome was essentially 

untwisted, as compared to that of the central H3 nucleosome (Figure 4B). This may be a 

consequence of the flexible DNA ends of the CENP-A nucleosome. In fact, the linker 

DNAs of the CENP-A nucleosome did not fit the linker DNA orientation of the H3 

nucleosome model (Figure 4C). Therefore, the CENP-A nucleosome with the linker 

DNA length corresponding to human centromeric alphoid DNA repeats has a strong 

propensity to change the nucleosome alignment in chromatin.  

 

The Linker DNA Length May Not Affect the CENP-A Configuration in the Tri-

nucleosome 

We next tested whether this characteristic orientation of the CENP-A nucleosome 

relative to the stacked H3 di-nucleosome is observed in a situation with a longer linker 

DNA. We reconstructed the 3D structure of the outward-path conformation of the H3-

CA-H3 tri-nucleosome with 30 base-pair linker DNAs, which correspond to the 

predicted linker DNA length of centromeric alphoid DNA repeats in plants (Henikoff et 

al., 2001). In this structure, the CENP-A nucleosome orientation relative to the stacked 

H3 di-nucleosome was quite similar to that in the tri-nucleosome with 22 base-pair 

linker DNAs (Figures 3D and 5A). In contrast, the 3D structure of the H3-H3-H3 tri-

nucleosome with 30 base-pair linker DNAs formed the inward-linker DNA path, 

consistent with the 2D class averages (Figures 3B and 5B). This structure is essentially 

the same as the cryo-EM structure of the poly-nucleosome containing the linker histone 

H1 (Song et al., 2014), although our structure did not contain histone H1 (Figure S7). 

These results suggest that the untwisted chromatin conformation induced by the CENP-

A nucleosome is a common feature that may define the platform chromatin architecture 

for subsequent assembly of centromeric proteins.  
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DISCUSSION 

CENP-A is a crucial epigenetic marker for centromere specification and kinetochore 

assembly. The CENP-A nucleosomes buried in centromeric chromatin must specifically 

bind to centromeric proteins, such as CENP-B, CENP-C, and CENP-N (Cheeseman and 

Desai, 2008; Santaguida and Musacchio, 2009; Fukagawa and Earnshaw, 2014; Müller 

and Almouzni, 2017; Musacchio and Desai, 2017). CENP-B enhances CENP-A stability 

on human artificial chromosomes (Fujita et al., 2015). CENP-N and CENP-C also 

stabilize the CENP-A nucleosome in vitro, although they have minimal effects on 

centromeric CENP-A stability in vivo (Cao et al., 2018). The CENP-A nucleosome 

bound with CENP-B, CENP-C, and CENP-N leads to the subsequent assembly of 

additional centromeric proteins, such as the components of the constitutive centromere-

associated network (CCAN), followed by the formation of functional kinetochores 

(McAinsh and Meraldi, 2011; Fukagawa and Earnshaw, 2014; McKinley and 

Cheeseman, 2015; Müller and Almouzni, 2017; Musacchio and Desai, 2017; Hara and 

Fukagawa, 2018).  

CENP-B binds to the specific DNA sequence (CENP-B box) of alphoid DNA 

within the CENP-A nucleosome, and also directly interacts with the nucleosomal 

CENP-A protein (Tanaka et al., 2005; Tachiwana et al., 2013; Fujita et al., 2015; 

Fachinetti et al., 2015). CENP-C is a key protein for kinetochore assembly (Saitoh et 

al., 1992; Kwon et al., 2007; Hori et al., 2008; Klare at al., 2015), and binds directly to 

the CENP-A C-terminal tail and the acidic patch formed with H2A and H2B in the 

CENP-A nucleosome (Carroll et al., 2010; Guse et al., 2011; Kato et al., 2013; Arimura 

et al., 2014). CENP-N binds to the CENP-A specific L1 (RG) loop region, together with 

DNA, in the CENP-A nucleosome (Carroll et al., 2009; Fang et al., 2015; Chittori et al., 

2018; Pentakota et al., 2018; Tian et al., 2018). Although structural analyses have 

revealed the binding modes of CENP-B, CENP-C, and CENP-N to the CENP-A 

nucleosome, the molecular basis how these centromeric proteins specifically recognize 

the CENP-A nucleosomes buried in the large amounts of H3 nucleosomes within the 

centromeric chromatin have remained enigmatic. 

It has been suggested that the CENP-A nucleosomes become clustered in the 

centromeric chromatin (Allshire and Karpen, 2008). This allows the centromeric 
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proteins to find their target CENP-A nucleosome in the centromeric chromatin. On the 

other hand, it is difficult to target the single CENP-A nucleosome buried in the H3 

nucleosome cluster in the centromeric chromatin. Therefore, in the present study, we 

focused on understanding the structural consequences when a single CENP-A 

nucleosome is embedded in the H3 nucleosome array. Supporting this idea, recent 

reports have suggested that the CENP-A nucleosomes are interspersed with the H3 

nucleosomes as neighbors in higher eukaryotes (Ribeiro et al., 2010; Fukagawa and 

Earnshaw, 2014; Müller and Almouzni, 2017; Musacchio and Desai, 2017; Nishimura et 

al., 2019). 

One plausible model is that the CENP-A nucleosome is targeted by the 

centromeric proteins, if it protrudes and becomes more accessible within the 

centromeric chromatin. This could be accomplished if the CENP-A nucleosome favors a 

specific chromatin conformation. Consistent with this idea, previous studies revealed 

that the CENP-A nucleosome has distinct structural properties in vitro and in vivo, as 

compared with the H3 nucleosome (Conde e Silva et al., 2007; Sekulic et al., 2010; 

Tachiwana et al., 2011; Kingston et al., 2011; Dechassa et al., 2011; Panchenko et al., 

2011; Hasson et al., 2013; Lacoste et al., 2014; Arimura et al., 2014; Kono et al., 2015; 

Arimura et al., 2019).  

In addition to these previous studies, the present study clearly demonstrates how 

the CENP-A nucleosome adopts a centromere-specific chromatin conformation, using 

the H3-CA-H3 tri-nucleosomes mimicking the centromeric nucleosome array. In the 

absence of Mg2+ ions, the tri-nucleosome conformation was quite flexible, and no 

obvious difference was found between the H3-CA-H3 and H3-H3-H3 tri-nucleosomes 

(Figure 2A). The physiological Mg2+ ion concentration reportedly compacts poly-

nucleosome fibers (Schwarz and Hansen, 1994). Therefore, we added physiological 

amounts of Mg2+ ion to the tri-nucleosome samples. We surprisingly found that the 

peripheral two H3 nucleosomes in the tri-nucleosomes were stacked and formed the 

characteristic tri-nucleosome architecture under the conditions with a physiological 

Mg2+ concentration (Figure 2B). This allowed us to perform the 3D reconstruction of 

the tri-nucleosomes (Figure 4), which revealed that the CENP-A nucleosome induces 

the characteristic conformation in tri-nucleosomes. 

In the present study, we employed the Widom601 DNA sequence for the tri-
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nucleosome reconstitution (Lowary and Widom, 1998). The Widom601 DNA fixes the 

nucleosome in a single position, thus facilitating the structural analysis. Since the 

centromeric -satellite DNA sequence also possesses the propensity for fixing the 

nucleosome position (Tanaka et al., 2005; Fujita et al., 2015), the overall architectures 

of the tri-nucleosomes presented here may mimic the centromeric chromatin 

architecture.  

We built chromatin fiber models with the H3-H3-H3 and H3-CA-H3 tri-

nucleosome structures (outward path) with 22 base-pair linker DNAs (Figure 6). In the 

model with the H3-H3-H3 tri-nucleosome structure, the nucleosomes are aligned and 

form a condensed chromatin fiber without steric clashes (Figure 6A, top panel). 

Intriguingly, when the H3-CA-H3 tri-nucleosome structure is embedded in the H3-H3-

H3 chromatin fiber model, the CENP-A nucleosome is clearly exposed (Figure 6A, 

bottom panel). In this model, the untwisted CENP-A nucleosome conformation deforms 

the continuous alignment of the H3 nucleosomes and becomes more accessible than the 

H3 nucleosome (Figure 6B). Actually, the CENP-A-binding domains of CENP-C and 

CENP-N and the DNA-binding domain of CENP-B are accessible to the CENP-A 

nucleosome in the fiber model (Figure 6B). The present chromatin fiber models provide 

a vision for how the CENP-A nucleosome is exposed for recognition by centromeric 

proteins in centromeric chromatin, and insights into the mechanisms by which 

centromere proteins are efficiently assembled in CENP-A containing chromatin. It 

should be noted that the chromatin fiber model presented in this study was created with 

the tri-nucleosome structures containing the Widom601 DNA that stably fixes the 

nucleosome position, and thus the CENP-A nucleosome becomes more accessible on 

the chromatin fiber with the native centromeric -satellite DNA sequence. Further 

studies are awaited. 
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FIGURE LEGENDS  

 

Figure 1. Tri-Nucleosome Reconstitutions.  

(A) Scheme for preparing specific tri-nucleosomes (H3-H3-H3 and H3-CA-H3), using 

the ligation method. Three kinds of DNA fragments were prepared: two had one 

cohesive end and one blunt end (a and c), and one had two cohesive ends (b). Mono-

nucleosomes were reconstituted on histone octamers containing either histone H3 (blue) 

or CENP-A (CA) (red). After purification of the mono-nucleosomes, the tri-

nucleosomes were prepared by connecting their linker DNAs with DNA ligase and 

purified. (B) Reconstituted mono-nucleosomes for the tri-nucleosome preparation were 

analyzed by 18% SDS-PAGE with Coomassie Brilliant Blue staining. Lane 1, H3 

nucleosome(a); Lane 2, H3 nucleosome(c); Lane 3, H3 nucleosome(b); Lane 4, CENP-

A nucleosome(b). (C) 4% non-denaturing polyacrylamide gel electrophoresis with 

ethidium bromide staining for the reconstituted mono-nucleosomes. (D) Reconstituted 

tri-nucleosomes were analyzed by 18% SDS- polyacrylamide gel electrophoresis with 

Coomassie Brilliant Blue staining. Lane 1, H3-H3- H3 tri-nucleosome (H3-H3-H3); 

Lane 2, H3-CA-H3 tri-nucleosome (H3-CA-H3). (E) 4% non-denaturing 

polyacrylamide gel electrophoresis of the reconstituted tri-nucleosomes with ethidium 

bromide staining.  

 

Figure 2. Mg2+-Dependent Compaction of Tri-nucleosomes.  

(A and B) Representative cryo-EM images of the tri-nucleosomes in the absence (A) or 

presence (B) of Mg2+. Raw digital micrographs of the tri-nucleosomes (upper) were 

obtained with a Titan Krios cryo-electron microscope using a Volta phase plate (VPP). 

Scale bar, 50 nm. Particles of the tri-nucleosomes (lower) were boxed out from the VPP 

images. Box size, 40 nm. 

 

Figure 3. Two-Dimensional Class Averages of the Tri-nucleosomes containing 

Different Linker DNA Length.  

(A-B) Representative 2D class averages of the H3-H3-H3 tri-nucleosomes containing 

22 base-pair (A), and 30 base-pair (B) linker DNAs. (C-D) Representative 2D class 

averages of the H3-CA-H3 tri-nucleosomes containing 22 base-pair (C) and 30 base-
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pair (D) linker DNAs. Red and blue circles indicate the classes with the DNA linker in 

the outward and inward paths, respectively. 3D-distributions of particle orientations for 

each class are shown in Figure S1. 

 

Figure 4. Three-Dimensional Structures of the Tri-nucleosomes containing 22 base-

pair Linker DNA.  

(A) Semi-transparent iso-surface representation of the reconstructed electron potential 

of the H3-H3-H3 tri-nucleosome, contoured at 6.1 sigma above mean density. Models 

of the H3-H3-H3 tri-nucleosome, with the crystal structure of the H3 mono-nucleosome 

(PDB: 3LZ0) colored light blue, were placed into the cryo-EM map. Modeled linker 

DNAs are shown in light green.  (B) Semi-transparent iso-surface representation of the 

reconstructed electron potential of the H3-CA-H3 tri-nucleosome, contoured at 4.0 

sigma above mean density. Models of the H3-CA-H3 tri-nucleosome with the crystal 

structures of H3 (PDB: 3LZ0) colored light blue and the CENP-A mono-nucleosomes 

(PDB: 3AN2) colored red were placed into the cryo-EM map. Modeled linker DNAs 

are shown in light green. Scale bar, 50 Å for both panels. (C) Close-up views of the 

central nucleosomes of the H3-H3-H3 (left) and the H3-CA-H3 tri-nucleosomes (right).  

 

Figure 5. Three-Dimensional Structures of the Tri-nucleosomes containing the 30 

base-pair Linker DNA.  

(A) Semi-transparent iso-surface representation of the reconstructed electron potential 

of the H3-CA-H3 tri-nucleosome, contoured at 2.6 sigma above mean density. Models 

of the crystal structures of the CENP-A nucleosome (PDB: 3AN2) and the H3 

nucleosome (PDB: 3LZ0) were placed into the cryo-EM map. (B) Iso-surface 

representation of the reconstructed electron potential of the H3-H3-H3 tri-nucleosome, 

contoured at 3.6 sigma above mean density, placed in the cryo-EM map. A model of the 

crystal structure of the H3 nucleosome (PDB: 3LZ0) was placed in the cryo-EM map. 

Scale bar, 50 Å.  

 

Figure 6.  A model of the Centromere Chromatin Configuration.  

(A) Poly-nucleosome model containing the 22 base-pair DNA, based on the H3-H3-H3 

and the H3-CA-H3 tri-nucleosome structures. The CENP-A nucleosome is shown in 
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pink. The number indicates the assembly order of the nucleosomes. (B) A cartoon model 

for the centromeric chromatin, based on the cryo-EM structures of the H3-H3-H3 and 

H3-CA-H3 tri-nucleosomes. The DNA-binding domain of CENP-B (yellow, PDB: 

1HLV), the CENP-A nucleosome binding domain of CENP-C (blue, PDB: 4X23), and 

the CENP-A nucleosome binding domain of CENP-N (green, EMD-7326) are 

superimposed on the CENP-A nucleosome (pink, PDB: 6C0W). A close-up view of the 

CENP-A nucleosome model with these CENP-A nucleosome binding domains is 

presented in the right panel.   

 

 

Table 1. DNA Sequences for Reconstitution of the Tri-nucleosomes 

 
Name DNA sequences 

DNA (a) 
ATCAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTCTAGCACCGCTTAAACGCACGTACGCGC

TGTCCCCCGCGTTTTAACCGCCAAGGGGATTACTCCCTAGTCTCCAGGCACGTGTCAGATATATACATCGATT

GGATAGGCCC 

DNA (b) 22 bp 
GGACGGCCTGGATAATCAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTCTAGCACCGCTTAA

ACGCACGTACGCGCTGTCCCCCGCGTTTTAACCGCCAAGGGGATTACTCCCTAGTCTCCAGGCACGTGTCAGA

TATATACATCGATTGGATAGGCCCCAA 

DNA (b) 30 bp 
GGACGGCCATCTATATTGGATAATCAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTCTAGCA

CCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCGCCAAGGGGATTACTCCCTAGTCTCCAGGCAC

GTGTCAGATATATACATCGATTGGATATATATCTAGGCCCCAA 

DNA (c) 
CGGCCTGGATAATCAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTCTAGCACCGCTTAAACG

CACGTACGCGCTGTCCCCCGCGTTTTAACCGCCAAGGGGATTACTCCCTAGTCTCCAGGCACGTGTCAGATAT

ATACATCGAT 

 
Table 2. Cryo-EM Data Collection and Image Processing for the Tri-nucleosomes. 

 

Sample 

H3-CA-H3              

with 22 bp 

（EMD-0768） 

H3-H3-H3               

with 22 bp 

（EMD-0770） 

（EMD-0771） 

H3-CA-H3             

with 30 bp 

（EMD-0769） 

H3-H3-H3              

with 30 bp 

（EMD-0772） 

CA-H3-CA              
with 30 bp 

Electron microscope Talos Arctica Talos Arctica Talos Arctica Talos Arctica Titan Krios 

Camera Falcon2 Falcon3 Falcon3 Falcon3 Falcon3 

Pixel size (A/pix) 1.40 1.40 1.40 1.40 1.39 

Exposure time (second) 1 2 2 2 2 

Total dose (e/A2) 25 80 80 80 68 

Movie frames (no.) 17 79 79 79 40 

Micrographs (no.) 4,515 4,512 10,351 8,035 808 

Particles for 2D class (no.) 92,674 118,395 63,365 109,525 39,060 

Particles for 3D class (no.) 43,008 100,725 22,515 20,953 - 

Particles in the final map 

(no.) 
4,999 

7,312 (class1)        

3,777 (class2) 
4,574 4,534 - 

Symmetry C2 C2 C1 C2 - 

Final resolution (Å) 18.7 Å 
Class1: 12.3Å          

Class2: 15.1Å 
19.6 Å 15.7 Å - 
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STAR METHODS 

CONTACT FOR REAGENT AND RESOUCE SHARING 

Further information and requests for resources and reagents should be directed to and 

will be fulfilled by the Lead Contact Hitoshi Kurumizaka (kurumizaka@iam.u-

tokyo.ac.jp). 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Human histones H2A, H2B, and H3 were expressed in the E. coli BL21 (DE3) strain. 

Human histones H4 and CENP-A were expressed in the E. coli JM109 (DE3), and 

DH5 strains. 

 

METHOD DETAILS  

Reconstitution of Tri-nucleosomes 

Histones H2A, H2B, H3.1, H4, and CENP-A were prepared as described previously 

(Tanaka et al., 2004; Kujirai et al., 2018). Three different DNA fragments (DNA(a)-(c) 

in Fig. 1A) were used for the reconstitution of mono-nucleosomes. The DNA sequences 

for the tri-nucleosome reconstitution, which were based on the Widom601 sequence, 

are listed in Supplementary Table 1 (Lowary and Widom, 1998). The DNA(a)-(c) 

fragments were tandemly inserted into the pGEM-T Easy vector (Promega). After 

amplification and purification of the plasmids, each fragment was excised with EcoRV, 

and the fragment was separated from the linearized plasmid by the PEG precipitation 

method. The purified DNA(a) and DNA(c) fragments were dephosphorylated with calf 

intestine alkaline phosphatase and then digested by BglI. The purified DNA(b) 

fragments (for the 22 and 30 base-pair linker DNAs) were digested by BglI. After the 

restriction enzyme reactions, the fragments were purified by chromatography on a 

TSKgel DEAE-5PW column (Tosoh Bioscience).  

The ligated tri-nucleosomes were reconstituted by the method described 

previously (Kobayashi et al., 2016). Three mono-nucleosomes with different cohesive 

ends were reconstituted by salt dialysis, and were purified by 6% polyacrylamide gel 

electrophoresis, using a Prep Cell apparatus (Bio-Rad). These mono-nucleosomes 
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contained DNA(a), DNA(b), and DNA(c), and are named nucleosome(a), 

nucleosome(b), and nucleosome(c), respectively. The tri-nucleosome was prepared by 

the ligation of nucleosome(a), nucleosome(b) (22 or 30 base-pair), and nucleosome(c) 

(0.1 mg DNA/ml) in the ratio of 1:0.9:1, with T4 DNA ligase in 0.12-0.2 ligation 

buffer (50 mM Tris-HCl (pH 7.5), 10 mM MgCl2, 20 mM DTT, and 1 mM ATP) for 18 

hr at 16°C. The resulting tri-nucleosomes were further purified by 4% polyacrylamide 

gel electrophoresis, using a Prep Cell apparatus. The H3-H3-H3, H3-CA-H3, and CA-

H3-CA tri-nucleosomes were stored at 4°C in 20 mM HEPES-KOH (pH 7.8) buffer. 

The DNA sequences are listed in Supplementary Table 1. 

 

Sample Preparation for Cryo-electron Microscopy 

For the tri-nucleosomes formed in the absence of 1 mM MgCl2, the tri-nucleosomes 

(2.5 µL of 1 mg/mL) were applied to C-flat 2/1 400-mesh grids (Protochips, USA), 

which were plasma cleaned for 10 seconds at 20W in a 23% H2, 77% O2 gas mix, using 

a Solarus Plasma Cleaner (Gatan, Pleasanton, CA, USA). The grids were blotted for 3 

seconds at 16°C at 100% humidity in a Vitrobot Mark IV (Thermo Fisher Scientific 

(TFS), USA), and immediately plunged into liquid ethane. For the tri-nucleosomes 

formed in the presence of 1 mM MgCl2, the tri-nucleosomes (0.06 mg/mL, in 20 mM 

HEPES-KOH buffer (pH 7.8)) were mixed with 20 mM HEPES-KOH buffer (pH 7.8) 

containing 2 mM MgCl2 at a 1:1 ratio, resulting in 0.03 mg/mL of the tri-nucleosome in 

20 mM HEPES-KOH buffer (pH 7.8) containing 1 mM MgCl2. The tri-nucleosome 

sample was applied to the same grids with the tri-nucleosomes in the absence of 1 mM 

MgCl2. The sample was removed and applied to the grids again, and then the grids were 

blotted for 3 seconds at 16°C at 100% humidity in a Vitrobot Mark IV and immediately 

plunged into liquid ethane.   

 

Cryo-Electron Microscopy 

For in-focus phase plate imaging, vitrified samples of the tri-nucleosomes, H3-H3-H3 

with 22 base-pair linker DNAs, H3-CA-H3 with 22 base-pair linker DNAs, and CA-

H3-CA with 30 base-pair linker DNAs, in the absence or the presence of 1 mM MgCl2, 

were observed at liquid nitrogen temperature with a Titan Krios cryo-transmission 

electron microscope (TFS) operated at 300 kV and equipped with a Quantum GIF 
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imaging filter (Gatan) in the energy-filtered transmission electron microscopy 

(EFTEM) mode, using a slit width of 20 eV at a calibrated magnification of 35,971x. 

Digital micrographs were captured with a K2 Summit direct electron detector in the 

counting mode, at a pixel size of 1.39 Å/pixel at the specimen level. Images were 

manually collected with a Volta phase plate (VPP) in-focus, as described previously 

(Machida et al., 2018). Images of CA-H3-CA with 30 base-pair linker DNAs were 

automatically collected using the EPU software (TFS). A 50 µm C2 condenser aperture 

was used, and the illumination was set up in the nanoprobe mode within the parallel 

beam range. For defocused data collection without the phase plate, the vitrified tri-

nucleosome samples, the H3-H3-H3 with the 22 base-pair linker DNA, the H3-H3-H3 

with the 30 base-pair linker DNA, the H3-CA-H3 with the 22 base-pair linker DNA, 

and the H3-CA-H3 with the 30 base-pair linker DNA, were observed in the presence of 

1 mM MgCl2 at liquid nitrogen temperature with a Talos Arctica cryo-transmission 

electron microscope (TFS), operated at 200 kV and equipped with a Falcon 2 direct 

electron detector for the H3-CA-H3 with the 22 base-pair linker DNA or a Falcon 3 

detector in the linear mode for the others. Cryo-EM images were automatically 

collected using the EPU software (TFS). Details of data collection for the tri-

nucleosomes are denoted in Table 2. 

 

Image Processing 

All frames of the tri-nucleosomes were aligned using MOTIONCOR2 (Zheng et al., 

2016) with dose weighting. For the defocused images, the values for defocus and 

objective lens astigmatism were estimated by fitting the phase contrast transfer function 

(CTF) with CTFFIND4 (Mindel et al., 2003) from digital micrographs without dose 

weighting. RELION 2.1 (Scheres, 2016) was used for all subsequent image processing 

operations. The particles of the tri-nucleosomes were picked semi-automatically with a 

box-size of 280 x 280 pixels, followed by a few rounds of 2D classification, which 

discarded junk particles. For the H3-CA-H3 with the 22 base-pair linker DNA, the H3-

H3-H3 with the 22 base-pair linker DNA, the H3-CA-H3 with the 30 base-pair linker 

DNA, and the H3-H3-H3 with the 30 base-pair linker DNA, the selected particles were 

used for 3D classification. A cylinder generated with SPIDER (Frank et al., 1996) was 

used as the initial alignment model. After a few rounds of 3D classification, the best 
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classes were selected for 3D refinement. C2 symmetry was applied to the 3D 

reconstructions for the H3-CA-H3 with the 22 base-pair linker DNA, the H3-H3-H3 

with the 22 base-pair linker DNA, and the H3-H3-H3 with the 30 base-pair linker 

DNA. The 3D reconstruction of the H3-CA-H3 with the 30 base-pair linker DNA was 

unsuccessful when C2 symmetry was applied, probably due to the flexibility of the 

structure. Therefore, C2 symmetry was not applied to the 3D reconstruction for the H3-

CA-H3 with the 30 base-pair linker DNA. Final 3D map resolutions were estimated 

from independent datasets at an FSC=0.143 (Scheres, 2016). The local resolution of the 

tri-nucleosomes was calculated with RELION 2.1 (Scheres, 2016). The maps of the tri-

nucleosomes were normalized with MAPMAN (Kleywegt et al., 2004) and visualized 

with UCSF Chimera (Pettersen et al., 2004). Detailed processing statistics for the tri-

nucleosomes are listed in Table 2.  

 

Model Building 

For the H3-CA-H3 with the 22 base-pair linker DNA, two copies of the nucleosome 

(PDB: 3LZ0) and a single copy of the CENP-A nucleosome (PDB: 3AN2) were 

manually fitted into the 20.8-Å-resolution cryo-EM map by UCSF Chimera (Pettersen 

et al., 2004), and positionally refined with rigid-body docking with colors, 

using  the SITUS program package (Chacón and Wriggers, 2002). The linker DNA 

regions missing in the partial model were modeled as double-stranded DNA, and the 

gaps were manually modeled by COOT (Emsley and Cowtan, 2004) with real-space 

refinement and regularization. For the H3-H3-H3 with the 22 base-pair linker DNA, 

three copies of the nucleosome (PDB: 3LZ0) were manually fitted into the 12.4-Å-

resolution cryoEM map by UCSF Chimera (Pettersen et al., 2004), and were 

positionally refined by rigid-body docking with colors, using the SITUS program 

package (Chacón and Wriggers, 2002). The linker DNA regions missing in the partial 

model were built as described above. The amino acid sequence and coordinates of the 

crystal structure of the Xenopus laevis nucleosome (PDB: 3LZ0) were replaced with 

those of human histones.  

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

The cryo-EM single particle analysis was performed within published software as 
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described in Image Processing Method Details section. 

 

DATA AND SOFTWARE AVAILABILITY 

The cryo-EM reconstructions of the tri-nucleosomes have been deposited in the 

Electron Microscopy Data Bank, under the accession codes EMD-0768 (Figure 4B), 

EMD-0769 (Figure 5A), EMD-0770 (Figure 4A), EMD-0771 (Figure S6), and EMD-

0772 (Figure 5B). The cryo-EM models of the tri-nucleosomes have been deposited in 

the Protein Data Bank, under the accession codes 6L4A (Figure 4A) and 6L49 (Figure 

4B). Original gel scans of purified tri-nucleosomes have been deposited in the 

Mendeley Data repository (http://dx.doi.org/10.17632/72rdvsvs2r.1). 
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