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Modeling of complex adaptive systems has revealed a still poorly understood benefit

of unsupervised learning: when neural networks are enabled to form an associative

memory of a large set of their own attractor configurations, they begin to reorganize

their connectivity in a direction that minimizes the coordination constraints posed by

the initial network architecture. This self-optimization process has been replicated in

various neural network formalisms, but it is still unclear whether it can be applied to

biologically more realistic network topologies and scaled up to larger networks. Here

we continue our efforts to respond to these challenges by demonstrating the process

on the connectome of the widely studied nematode worm C. elegans. We extend our

previous work by considering the contributions made by hierarchical partitions of the

connectome that form functional clusters, and we explore possible beneficial effects

of inter-cluster inhibitory connections. We conclude that the self-optimization process

can be applied to neural network topologies characterized by greater biological realism,

and that long-range inhibitory connections can facilitate the generalization capacity of

the process.

Keywords: artificial neural networks, self-organization, Hebbian learning, self-modeling, complex adaptive

systems, Hopfield networks, artificial life, computational neuroscience

1. INTRODUCTION

The brain consists of a vast number of interacting elements. An important research question is
how this complex adaptive system manages to give rise to large-scale coordination in the service
of cognition, especially in the absence of a central controller or explicit knowledge of what would
be the best neural connectivity. A promising approach is therefore the study of self-organization
in artificial neural networks. Watson et al. (2011b) developed a self-optimization algorithm in
Hopfield neural networks able to form associative memory of its attractor configurations through
unsupervised learning of the Hebbian variety. This causes the networks to begin to reorganize their
connectivity in a direction that minimizes the neural coordination constraints posed by the initial
network architecture.

Previous work with this algorithm has been done using fully-connected networks, but without
self-connections, and only with non-directed connections constrained to symmetric weights that
are assigned in a random or highly modular manner (Watson et al., 2011a,c). More recently,
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self-optimization has also been demonstrated in the case of
continuous activation functions (Zarco and Froese, 2018a,b).
This shows that the self-optimization process might be more
generally applicable. Nevertheless, a concern with this work is
that these network topologies are too artificial compared with
those of actual neural networks. Accordingly, we propose that it
would be more meaningful to employ the connectome of a real
organism in order to better assess the scope of self-optimization.

A particularly suitable connectome comes from the nematode
worm, Caenorhabditis elegans. This worm is one-millimeter-long
and consists of only 959 cells, of which 302 belong to the nervous
system. C. elegans is relevant in this research because it is a
reference model in biology (White et al., 1986; Walker et al.,
2000; Girard et al., 2006). It was the first multicellular organism
whose genome has been sequenced in its entirety, as well as the
first animal whose neural connections, called connectome, has
been completed. C. elegans has also been studied in the field of
artificial life using agent-based modeling (Izquierdo and Beer,
2015; Izquierdo, 2018).

In recent work, we demonstrated self-optimization in the C.
elegans connectome (Morales and Froese, 2019), by turning it
into a Hopfield neural network that captures the connectome’s
directed multigraph topology including its self-connections. We
set two simulation experiments: (1) we ran the self-optimization
algorithm with only excitatory (positive) connections, and (2)
with 30% inhibitory (negative) connections arbitrarily assigned
in a homogeneous fashion at the beginning of the algorithm.
Under these conditions the C. elegans connectome showed a
tendency to optimize its own connectivity, but more so in case
(1). The addition of inhibitory synapses increased the difficulty
of learning to find attractors with optimal neural coordination,
and there remained a broader spread of attractors even after
convergence. We hypothesize that this has to do with how
coordination happens in functionally related neurons within
clusters of the connectome.

Here we explore the possibility that this poor performance
can be overcome by making inhibitory connections more
concentrated between clusters, thereby also making our analysis
more biologically plausible. We ran the self-optimization
procedure in the whole C. elegans connectome, but also
separately for each of the hierarchically organized functional
clusters. We performed two sets of simulation experiments:
(1) we arbitrarily assigned 30% inhibitory connections to local
connections within each cluster, and ran self-optimization on
each of the clusters as an independent network, and (2) we
applied 30% of inhibitory connections to the whole connectome
but restricted them to long-range inter-cluster connections, and
ran the process on the entire connectome while also monitoring
neural coordination within clusters.

The key finding of these simulation experiments is that the
poor performance associated with the introduction of inhibitory
connections can be successfully overcome by focusing inhibition
to connections between clusters. This is the case both in terms
of the number of attractors found and their energy levels: the
process tends to converge on a more refined set of more optimal
attractors, including attractors that normally would not be found
by the network prior to self-optimization. Interestingly, while this

capacity to generalize to better attractors is also noticeable in the
clusters when self-optimization is run on them independently,
generalization is less marked when they are evaluated while
embedded into the whole network—even though in the latter
case they tend to converge on lower energy values because they
do not have to overcome the added coordination constraints
introduced by local inhibitory connections. This suggests that
generalization to better attractor configurations is a property
of the whole network, rather than being a simple reflection of
generalization occurring at the level of local clusters.

2. METHODS

2.1. The Connectome
We ran the self-optimization algorithm in the connectome
published by Jarrell et al. (2012). The database contains
hermaphrodite neural system information (because males arise
infrequently, at 0.1%), such as connection direction, type of
connection (synapse or gap junction), and the number of
connections between neurons. We translate the connectome into
a directed multigraph, with neurons as nodes and connections
as edges. Chemical synapses are modeled as single-directed links
between neurons (for example, A → B indicates that neuron
A is presynaptic to neuron B, and B is postsynaptic to A). Gap
junctions are represented in the model as double-linked neurons
(if two neurons,C andD, have a gap junction between them, there
are two links: C → D and D → C).

We assigned binary activation states (−1, 1) to neurons. The
number of connections between neurons was assigned as the
weight of each edge, normalized in the interval (0, 1). Both links
in gap junctions were assigned the same weight, and values vary
between 1 and 81 before normalization (and form a power law).
Therefore, we clip to 1 the 15 high weight values, which we
determine with an arbitrary cut-off of weights greater than 44.
Reduction of this outliers broadens the state-space explorations
during the self-optimization.

We did not also consider pharyngeal neurons because they
belong to another independent neural system (Albertson and
Thompson, 1976). Only 279 neurons are taken into account, with
5,588 connections. This differs from the number in our previous
paper (282 neurons and 5,611 connections) because here we
follow Sohn et al. (2011) in removing the neurons VC6, CANR,
and CANL which do not have obvious connections.

Sohn et al. (2011) proposed a modular organization of the
C. elegans connectome in five clusters based on a constraint
community detection method for directed, weighted networks.
This model shows hierarchical relationships between the clusters
that define systemic cooperation between circuits with identified
biological functions (mechanosensation, chemosensation, and
navigation). This division also considers bilateral neural pairs
present in the connectome so that the members of a pair should
not be assigned to different structural clusters. There are two big
clusters named 1 and 2. Smaller cluster names have hierarchical
branch names: 1 (or 2) represents a big cluster branch in the left
digit and small cluster branching is called 1 (or two rightward)
in the right digit. Table 1 shows the basic information of each
cluster. The authors also observed many ties between the clusters
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TABLE 1 | This table contains cluster information from the partition of Sohn et al.

(2011), including the number of nodes and edges, average degree, and average

shortest path of each cluster.

Cluster

name

No.

nodes

No. edges Average

node

outgoing

degree

Average

shortest

path

Cluster

learning rate

Whole

connectome

279 5,588 (3,392

intra, 2,196

inter-cluster)

20 2.5 0.00001

11 57 665 11.6 2.17 0.0000843

12 79 1,107 14 2.09 0.00005

13 14 115 8.2 1.52 0.0005

21 74 1,109 14.9 1.97 0.00005

22 55 396 7.2 3.08 0.0001416

11 + 12 +13 150 2,704 18 2.23 0.0000207

21 + 22 129 1,980 15.3 2.34 0.0000283

Cluster names have hierarchical branch information: 1 (or 2) represents a former branch

in the left digit and later branching is called 1 (or two rightward) in the right digit. First,

we include information about the whole connectome before the partition, including the

number of inter-cluster connections and intra-cluster ones. Then, we include information

about the main 5 clusters. Finally, we include also information of the big clusters formed

hierarchically from the five main clusters.

depended on hierarchical proximity. Cluster 11, 12, and 13
comprise a big cluster, and cluster 21 and 22 formed another
grand cluster.

2.2. Model Dynamics
Asynchronous state updates are calculated with the following
equation:

si(t + 1) = θ

[

N
∑

j

(

∑

k

wijk

)

sj(t)

]

(1)

where si is the state of neuron i and wijk in the connection weight
between neuron i and neuron j with index k (more than one tie
with the same direction could arise between i and j). In a Hopfield
network, a node i satisfies a constraint with its interaction with
node j with index k if sisjwijk > 0. System energy represents the
constraint satisfaction level in the network:

E = −

N
∑

ijk

wO
ijk(t)si(t)sj(t) (2)

where wO
ijk

is the original weight configuration of wijk, the

Hebbian learning changes during the process are managed in
another variable.

The self-optimization algorithm consists on the repeating the
following sequence of steps, each repetition is called a reset-
convergence cycle:

1. Arbitrary assignment of states for the neurons (reset).
2. Convergence of the network for a certain time period, most

frequently resulting in an attractor.
3. Application of Hebbian learning.

2.3. Introducing Inhibitory Connections
Morales and Froese (2019) explored two different weight
configurations with self-optimization: when all connections
are excitatory (positive), and when 30% are inhibitory
(negative). In order to make the model more realistic,
we introduced the inhibitory connections in the second
weight configuration (Capano et al., 2015). This is because
inhibitory connections are known to have an impact on network
dynamics (Brunel, 2000). We found that the network shows a
tendency to self-optimize when all connections are excitatory,
but the 30% inhibitory connections restrict coordination
and constraint satisfaction. Adding inhibitory connections
will always have the effect of increasing the difficulty of
constraint satisfaction, but it is also likely that this decrease
in performance has to do with the fact that we distributed the
inhibitory connections in a random fashion without taking
the structural organization of the connectome into account.
Therefore, we investigated the extent of self-optimization
within each of the connectome’s functional clusters with 30%
inhibitory connections, and also self-optimization of the whole
connectome when those inhibitory connections are concentrated
between clusters.

More specifically, we run two sets of experiments: (1) self-
optimization is run in each isolated cluster separately, and (2)
we test for self-optimization in the whole connectome with
inhibitory edges only assigned to inter-cluster connections and
wemonitor each embedded cluster. Since self-optimization in the
network is sensitive to its size, we adjusted the learning rate in
each isolated cluster in order to make the comparison fairer (see
Table 1 for the learning rates). Python code of this simulation is
available on GitHub1.

3. RESULTS

Each experiment consists on the following setup (averaged
from 10 different experiments with a different initial random
number seed): the network is set to an initial configuration
with only positive values and then we performed 1,000 reset-
convergence cycles without Hebbian learning. Then, self-
optimization is applied using 1,000 reset-convergence cycles
that include Hebbian learning. Finally, another 1,000 reset-
convergence cycles are applied without Hebbian learning
using the learnt configuration obtained so far in order
to show its stability. Note that these structural changes
accumulated during learning are not directly reflected in
the resulting figures. All the energy results shown in the
figures were obtained by testing state configurations against
the original connectome topology, because this reveals the
extent to which the process was able to satisfy the original
network constraints.

The experiment shown in Figure 1 explored self-optimization
capacity in each isolated cluster, including the big clusters
consisting of the join of smaller clusters. Each network tested
separately show a tendency to self-coordinate during Hebbian
learning, presenting a greater diversity of attractors. Some

1https://github.com/aehecatl/self_opt_c_elegans
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generalization capacity can also be seen, when a network starts
to converge on energy values that were not previously seen
during the initial phase. There are two exceptions: cluster 11
converges on a good energy value but one that was already
included in the original distribution of energy values, and cluster
22 only converges on an average energy value of the ones
previously encountered.

Figure 2 shows the experiments with 30% inhibitory
connections arbitrarily assigned to only inter-cluster
connections. We again find a tendency of the energy to
decrease and the network to self-optimize, but the capacity
for generalization to better previously unseen attractors is
less notable. Nevertheless, the embedded clusters converge on
better energy values compared to the isolated clusters, although

this may be partially because the inhibitory connections were
moved to the inter-cluster domain, thereby also decreasing the
difficulty of intra-cluster coordination. However, we know that
this decrease in intra-cluster complexity is not the whole story
because there is one exception: cluster 13 performs worse under
these embedded conditions compared to isolated conditions.

This leads us to ask about the performance of self-
optimization at the level of the whole connectome. Figure 3
shows that restricting inhibitory connections to the inter-
cluster domain has the effect of facilitating the self-optimization
process: it now consistently generalizes to a more refined set
of energy values that are much lower. This occurs despite the
fact that both conditions feature the same overall number of
inhibitory connections.

FIGURE 1 | Examples of self-optimization in different C. elegans clusters with 30% inhibitory connections; each panel was run separately (independent to the rest of

the connectome). The learning rate in each experiment was proportional (regarding the edges) to the one used with the entire connectome and proved to be suitable

in the previous work of Morales and Froese (2019). (A–E) Correspond to the clusters 11, 12, 13, 21, 22, respectively. (F,G) Belong to the two big clusters formed at a

higher level from the previous: the chemosensory cluster (11 + 12 + 13) and the mechanosensory one (21 + 22). Each panel was averaged from 10 different

experiments and shows the energy of the neuron states in three distinct phases: before learning (1–1,000), during the self-optimization process (1,001–2,000), and

after learning (2,001–3,000). Self-optimization can be observed in almost all panels, but tend to remain a diversity of attractors. The difference in y-scale of each panel

underline the complexity of the problem to be solved by self-optimization. Energy values averaged in (A) before self-optimization produce −25.22 (0.91 SD), during

self-optimization −26.71 (0.61 SD), and after self-optimization −26.98 (0.06 SD). In the case of (E) we have −17.78 (0.5 SD), −18.01 (0.24 SD), and −18.07 (0.07

SD), respectively.
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FIGURE 2 | Examples of self-optimization in different C. elegans clusters monitored in the context of a single experiment. 30% inhibitory neurons were added

arbitrarily only to inter-cluster connections. The learning rate in the experiment was the same to the one used with the entire connectome and proved to be suitable in

the previous work of Morales and Froese (2019). (A-E) Correspond to the clusters 11, 12, 13, 21, 22, respectively. (F,G) Belong to the two big clusters formed at a

higher level from the previous: the chemosensory cluster (11+12+13) and the mechanosensory one (21+22). Each panel was averaged from 10 different experiments

and shows the energy of the neuron states in three distinct phases: before learning (1-1,000), during the self-optimization process (1,001-2,000), and after learning

(2,001-3,000). Self-optimization can be observed in almost all panels, but in this case the global attractors tend to be punctual. Some clusters like 22 represent a

complex case for the algorithm. Energy values averaged in (C) for cluster 13 before self-optimization produce −19.35(1.13 SD), during self-optimization −20.64(0.42

SD), and after self-optimization −20.74(0 SD).

4. DISCUSSION

We successfully demonstrated the capacity of self-optimization
for the case of the C. elegans connectome. Through repeated
reset-convergence cycles, the network managed to generalize to
previously unseen attractors with better coordination constraint
satisfaction. Moreover, we managed to improve on previous
work by showing that inhibitory connections do not hinder
this process as long as they are concentrated to connections
between clusters.

For simplicity, we assigned all inhibitory connections to inter-
cluster connections in an arbitrary way. However, in real neural
networks it is whole neurons, not isolated connections, that
are inhibitory. Future work could therefore further improve

the biological realism of our model by taking into account

the excitatory or inhibitory functions of the neurotransmitters
associated with each of the neurons in the connectome (Riddle
et al., 1997; Pereira et al., 2015).

We also note that here we only explored the dynamics of the
network in an uncoupled mode. Accordingly, an outstanding
challenge is to embed the model of the connectome in whole
worm simulations to explore the relationship between coupled
and uncoupled dynamics (Izquierdo and Bührmann, 2008;
Zarco and Froese, 2018b). So far it is unknown whether
self-optimization can also occur when the network is in a
coupled mode. Nevertheless, it has been speculated that the
uncoupled mode of self-optimization could reflect the prevalent
need for sleep among animals (Woodward et al., 2015). If
this is on the right track, our model could be developed
into a scientific hypothesis to inform current debates about
the function of the quiescent state observed in C. elegans
(Raizen et al., 2008; Trojanowski and Raizen, 2016). Future
modeling work could also explore similarities and differences
between this proposal and other neural network models of
the function of sleep (Hopfield et al., 1983; Fachechi et al.,
2019).
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FIGURE 3 | Self-optimization tested in the whole connectome with two different scenarios. (A) With 30% inhibitory connections arbitrarily assigned at the beginning of

the process. (B) With 30% inhibitory connections arbitrarily assigned only in the inter-cluster connections at the beginning of the process. Each panel was averaged

from 10 different experiments and shows the energy of the neuron states in three distinct phases: before learning (1–1,000), during the self-optimization process

(1,001–2,000), and after learning (2,001–3,000). Both scenarios tend to self-optimize, but the algorithm explores a broader variety of attractors and converges on

more optimal patterns of coordination when inhibitory connections are restricted to inter-cluster connections.

One limitation of our work is that the model is not
sufficiently realistic compared with living systems and their
complex interactions at different levels. We can overcome this
limitations by implementing our model under different attractor
dynamics like heteroclinic or slow and fast dynamics in synapses
(Izhikevich, 2007).
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