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ARTICLE

Nucleosome positioning stability is a modulator
of germline mutation rate variation across
the human genome
Cai Li 1,4✉ & Nicholas M. Luscombe 1,2,3

Nucleosome organization has been suggested to affect local mutation rates in the genome.

However, the lack of de novo mutation and high-resolution nucleosome data has limited the

investigation of this hypothesis. Additionally, analyses using indirect mutation rate mea-

surements have yielded contradictory and potentially confounding results. Here, we combine

data on >300,000 human de novo mutations with high-resolution nucleosome maps and find

substantially elevated mutation rates around translationally stable (‘strong’) nucleosomes.

We show that the mutational mechanisms affected by strong nucleosomes are low-fidelity

replication, insufficient mismatch repair and increased double-strand breaks. Strong

nucleosomes preferentially locate within young SINE/LINE transposons, suggesting that

when subject to increased mutation rates, transposons are then more rapidly inactivated.

Depletion of strong nucleosomes in older transposons suggests frequent positioning changes

during evolution. The findings have important implications for human genetics and genome

evolution.
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Germline de novo mutations, which can be passed to off-
spring, are the primary source of genetic variations in
multicellular organisms, contributing substantially to

biological diversity and evolution. De novo mutations are also
thought to play significant roles in early-onset genetic disorders
such as intellectual disability, autism spectrum disorder, and
developmental diseases1,2. Thus, investigating the patterns and
genesis of de novo mutations in the germline is important for
understanding genome evolution and human diseases.

Germline and somatic mutation rates vary across the human
genome at diverse scales ranging from nucleotide to chromo-
somal resolution3,4. Studies revealed factors linked to local
mutation rate variation, including sequence context5, replica-
tion timing6, recombination rate7–9, DNA accessibility10, and
histone modifications5,11. However, genomic features identified
so far explain less than 40% of the observed germline mutation
rate variation (at 100 Kb–1 Mb resolution)12,13. Therefore,
important factors remain to be found. Moreover, due to the
limited availability of de novo mutation datasets, studies
focused on coarse-grained mutation rate variation (typically ≥
1 Kb windows for germline data), or used within-species
polymorphisms and interspecies divergence whose observa-
tions are potentially confounded by natural selection and other
evolutionary processes.

Moreover, the underlying mutational processes causing the
observed mutation rate variation are poorly understood, though
recent studies have highlighted the contributions of error-
prone replicative processes14–18 and differential DNA repair
efficiencies10,19–21. Despite these advances, many details of the
molecular mechanisms associated with mutation rate variation
remain to be uncovered, particularly in the germline.

Here, we focus on the role of nucleosomes in modulating
germline mutation rates. Chromatin is considered important
because structural constraints could affect the mutability of
genomic sequences22. Nucleosome organization (including posi-
tioning and occupancy) has been reported as a significant factor
in humans and other eukaryotes5,17,23–26. Studies in different
lineages17,23,24 reported increased substitution rates around the
centers of nucleosomal sequences and increased insertion/dele-
tion rates in linker DNA. However, there are also disagreements
between published studies. For example, Michaelson et al.5 sug-
gested that high nucleosome occupancy tends to suppress de
novo mutations, but Smith et al.13 found that a comparative
analysis using datasets from different studies resulted in opposing
conclusions. Due to few available de novo mutations for humans,
analysis of many studies was based on variant data from within-
species polymorphisms or interspecies divergence, which can be
affected by natural selection and nonadaptive processes such as
GC-biased gene conversion. Furthermore, because of the limita-
tion of available nucleosome maps, some previous studies treated
all annotated nucleosomes equally, ignoring the diverse contexts
in which they form. Therefore, combined with the scarcity of de
novo mutation datasets, the effects of nucleosome organization
on germline mutation rate variation, particularly at high resolu-
tion, remain to be elucidated.

Here, we take advantage of the rapid increase in the number of
de novo mutation datasets and better understanding of nucleo-
some organization in the human genome to perform a systematic
analysis of this topic. We reveal increased mutation rates around
strongly positioned nucleosomes and suggest that low-fidelity
replication, insufficient mismatch repair (MMR), and increased
double-strand breaks (DSB) are potential mutational mechanisms
linked to strong nucleosomes. Finally, we show that strong
nucleosomes are particularly enriched in young transposons,
implying an interesting relationship between nucleosomes, trans-
posons, and mutation rates.

Results
Datasets used for analysis. We used >300,000 human de novo
single-nucleotide variants (SNVs) and >30,000 short insertions/
deletions (INDELs), having removed genomic regions that could
confound downstream analysis (Fig. 1a, Supplementary Fig. 1a;
see Methods). Most data come from three large-scale trio
sequencing projects that contribute about 100,000 mutations
each27–29. We also examined extremely rare variants (allele fre-
quency ≤ 0.0001) from the gnomAD database30, which are
approximated to de novo mutations because they are thought
to undergo limited selection and nonadaptive evolutionary
processes31.

Nucleosome positioning on the genome is described by the
translational setting, which defines the location of the nucleoso-
mal midpoint (also called “dyad”) and the rotational setting,
which defines the orientation of the DNA helix on the histone
surface32. Using MNase-seq measurements, Gaffney et al.32

identified ~1 million strong nucleosomes that adopt highly stable
translational positioning across seven lymphoblastoid cell lines.
Rotationally stable nucleosomes were previously identified from
DNase-seq measurements across 43 cell types33, covering 892Mb
of the genome. There is a ~50Mb overlap between regions bound
by strong nucleosomes and rotationally stable nucleosomes.
Using these data, we classified the genome into three groups of
regions (Fig. 1b; sex chromosomes excluded): (i) those containing
translationally stable, “strong” nucleosomes (198Mb); (ii) those
with rotationally but not translationally stable nucleosomes
(796 Mb); and (iii) all other non-N base genomic regions
(1703 Mb). West et al.34 reported that with the exception of a
few specific loci such as transcription start sites, overall
nucleosome positioning varies little between cell types. None
of the nucleosomal datasets were produced using germ cells,
therefore as a precaution we excluded nucleosomes that differ
in positioning between cell types (~23 Mb; see Methods).

De novo SNVs and INDELs are enriched in strong nucleo-
somes. Genomic regions containing strong nucleosomes have
~30% more de novo SNVs (Fig. 1c) and ~15% more de novo
INDELs (Fig. 1d) than expected (without considering the
sequence composition and other genomic features). Similar
increases are also apparent for extremely rare variants (Supple-
mentary Fig. 1b, c), though effect sizes are smaller than for de
novo mutations, probably due to the fact that highly mutable sites
are underrepresented among extremely rare variants35. When
dividing strong nucleosomes by translational stability (based on S
(i) scores from Gaffney et al.), we found that those with higher
translational stability scores also exhibit higher mutation rates
(Fig. 1c, d). These results suggest that translational stability, a
previously unappreciated aspect, is associated with local variation
in mutation rates, which may affect not only strong nucleosomes
but also other parts of the genome. Regions containing rota-
tionally stable nucleosomes, in contrast, are slightly depleted of
both mutation types; we did not perform further analysis on this,
as effects of rotational positioning have been comprehensively
discussed recently by Pich et al.26. A more detailed view with
meta-profiles clearly depicts increased SNV and reduced INDEL
densities around dyad regions of strong nucleosomes compared
with flanking linker regions (Fig. 1e), in line with observations
made using polymorphism data24.

Interestingly, ~80% of strong nucleosomes overlap with repeats
(Fig. 1f, Supplementary Fig. 1d), especially SINE/Alu (~44%) and
LINE/L1 elements (~26%). Genetic variations in repeats are
traditionally hard to detect because of poor mappability and so
analyses have tended to be cautious in calling variants, resulting
in many false negatives (though, few false positives; see Lee and
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Schatz36). Therefore, the above observations may underestimate
the true enrichment of de novo mutations in strong nucleosomes.
We subdivided strong nucleosomes into three groups: (i) Alu-
associated, (ii) L1-associated, and (iii) others. Alu-associated
nucleosomes display increased SNV rates around the dyads, as
seen in the meta-profiles for all strong nucleosomes (Supple-
mentary Fig. 1e), whereas non-Alu nucleosomes show increased
SNV rates ~60 bp away from the dyads, close to the nucleosome

edges. Such differences may be due to the different local sequence
composition (discussed in next section). In contrast, the patterns
of INDEL densities are relatively similar among different groups
(Supplementary Fig. 1e).

Genome-wide assessment and controlling for other factors.
Many factors are associated with mutation rate variation. One of
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Fig. 1 De novo mutations are enriched in strong nucleosomes. a Summary of germline de novo mutation data included in study. b Summary of
nucleosome positioning data analyzed in study. Observed vs. expected occurrence and fold enrichments of de novo c SNVs and d INDELs in the three
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the most important is local sequence context— for example, CpG
sites are known to be highly mutable and CpG density profiles
correlate well with mutation rate profiles in strong nucleosomes
(Supplementary Fig. 1e). Functional factors like DNA methyla-
tion, histone modification, chromatin accessibility, replication
timing, and recombination rate are also relevant. Therefore, to
systematically assess the contribution of nucleosomes to mutation
rate variation across the whole genome, we defined variables for
measuring nucleosomes and used a logistic regression framework
to control for potential confounding factors (Fig. 2).

We defined three variables to quantify nucleosomal properties
relative to a specific nucleotide position in the whole genome.
Two relate to translational positioning: dmean, the mean distance

between the focal position and the midpoints of mapped MNase-
seq fragments (maximum distance of 95 bp), and dvar, the
variance of these distances (Fig. 2a). A smaller dmean means that a
nucleotide position is closer to nucleosome dyads and a smaller
dvar indicates that the nucleosomes around it are more
translationally stable. Our modeling used dvar instead of the
score S(i) defined in Gaffney et al. to measure positioning
stability, because S(i) was designed for dyad positions rather than
any position in the genome. When dividing the genome into five
equal portions by dvar, we observed a negative relationship
between dvar and SNV density, suggesting that dvar behaves like
S(i) and affects the mutation rates genome-wide (Fig. 2b). As the
relationship between dmean and SNV rate is nonlinear, we defined
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dmean a categorical variable binned into five intervals (Fig. 1e,
Supplementary Fig. 1e; see Methods). The third variable is
nucleosome occupancy calculated as a normalized per-base
MNase-seq fragment coverage (see Methods). Other factors
considered are local nucleotide sequences (±5 bp of the focal site,
“−” for upstream) and functional genomic measurements in
human germ cells or other cell types if no available germ-cell data
(see Methods). dvar has a relatively weak but statistically
significant correlation with many of these factors, suggesting
nonindependence (Supplementary Fig. 2).

To assess the contribution of each factor to local mutation
rates, we compared a full logistic regression model encompassing
all variables against reduced models missing individual variables
using likelihood-ratio tests; the reported p values indicate how
significant a factor is associated with mutation rate variation,
having controlled for other factors (Fig. 2c, d; see Methods). For
SNVs, we tested A/T (comprising A > C, A > G, and A > T
mutations), CpG, and non-CpG C/G sites separately (comprising
C > A, C > G, and C > T mutations for C/G sites; Fig. 2c), whereas
they were pooled for INDELs.

Our statistical framework recapitulates reported observations
(Fig. 2c, d, Supplementary Fig. 3). In agreement with previous
studies31, local sequence context is the biggest contributor to local
mutation rate variation (Fig. 2c, d), with effect sizes generally
declining with increasing distance from the surveyed site. DNA
methylation and H3K9me3 are two common epigenetic marks
associated with mutation rate variation in general11, whereas
H3K4me1, H3K4me2, H3K4me3, H3K27me3, and H3K36me3
are linked with specific mutation types. Replication timing has
highly statistically significant associations with both SNVs and
INDEL mutation types. Recombination rate, open chromatin
(measured by ATAC-seq), and gene expression level are also
associated with specific mutation types.

Turning to nucleosomal properties, translational stability (dvar)
is associated with elevated mutation rates at A/T, non-CpG C/G,
and CpG sites, with the first two showing the greatest significance.
INDELs also show similar effects, though the higher p values
compared with SNVs could partly be due to the smaller sample
size. Examining specific SNV mutation types, dvar is significantly
associated with all A/T and C/G mutations (Supplementary
Fig. 3), except for CpG > TpG (adjusted p= 0.09). The regression
coefficients for dvar are always negative (i.e., nucleosome
variability is anticorrelated with mutation rate, see coefficients
in Supplementary Data 1), indicating that translational stability is
positively associated with mutation rates thus corroborating the
patterns observed in Fig. 1. We also calculated the McFadden’s
pseudo R2, which measures the explained variance by dvar in the
models, but note that currently there is no widely accepted
measurement of explained variance for logistic regression. We
found that the differences in pseudo R2 between full and reduced
models without dvar range from 0.07 to 8.88% of the full-model
pseudo R2 (median= 1.56%, Supplementary Data 2), suggesting
unignorable effects of dvar.

As expected from Fig. 1, the mean distance to dyads, dmean, also
displays statistically significant associations with mutations rates
at A/T and C/G sites (Fig. 2c, d). Finally, nucleosome occupancy
is also statistically significant; in contrast to the positioning
variables, here the effect is much larger for INDELs than SNVs
(Fig. 2c, d; INDELs, adjusted p= 9.8e−26; SNVs, adjusted p=
0.74, 0.02, and 0.01). The regression coefficients of occupancy are
negative for SNVs at A/T sites, but positive for SNVs at CpG sites
(Supplementary Data 1), suggesting that occupancy can have
opposing effects on mutability depending on sequence context.

Nucleosome positioning stability is at least partly determined by
the occupied DNA sequence and thus its effects on mutation rates
to some degree can be attributed to the associated sequence (this

also applies to other reported factors such as replication timing).
We acknowledge the limitation that logistic regression model
cannot assess all higher-order interactions among the long
stretches of nucleotides that guide nucleosome positioning. It is
also impossible to evaluate all possible interactions between local
sequences and many functional features. Nonetheless, we achieved
similar statistical significance for translational stability after
including nonadditive two-way interaction effects for ±5 nucleo-
tides and the 7-mer mutability estimates from Carlson et al. in
regression models (see Methods; Supplementary Fig. 4a, b).

Since many strong nucleosomes are associated with repeat
elements, we added repeat status as a predictor in the regression
model (see Methods). We still observed strong statistical
significance for translational stability after considering repeat
status (Supplementary Fig. 4c), suggesting that translational
stability is independently associated with mutation rate variation.
We also tested repeat and nonrepeat regions separately, and
translational stability is statistically significant in most tests
(Supplementary Fig. 4d).

Taken together, the logistic regression modeling analysis
recapitulated known factors and confirmed the independent
contribution of nucleosome translational stability to mutation
rate variation across the genome.

Mutational signature analysis. Having established an association
between mutation rate and nucleosome translational stability, we
next sought to identify mutational mechanisms that might
explain it. As an initial screen, we compared the Catalogue of
Somatic Mutations in Cancer (COSMIC) mutational signatures37

for de novo mutations within strong nucleosomes and those in
genomic background. Mutational signatures were originally
developed to infer the mutational processes underlying cancer
progression by combining the relative frequencies of 96 possible
mutation types (six types of single-nucleotide substitutions C > A,
C > G, C > T, T > A, T > C, and T > G, each considered in the
context of the bases immediately 5′ and 3′ to each mutated base).

We first consider the relative frequencies of the 96 mutation
types in the whole genome and strong nucleosomes in different
repeat contexts (Fig. 3a). The results account for background
differences in tri-nucleotide frequencies between these regions
(see Methods). Several mutation types display distinct frequencies
in strong nucleosomes, suggesting differences in the underlying
mutational processes. For instance, six out of 16 T > C mutation
types are more prevalent in strong nucleosomes and different
repeat-based subgroups display distinct C > T mutation frequen-
cies. L1-associated strong nucleosomes tend to show the most
similar mutation frequencies to genomic background, whereas the
“Others” group shows the most changes, perhaps reflecting the
heterogeneity of constituent genomic regions.

Next, we applied the MutationalPatterns software38 to calculate
the contribution of COSMIC mutational signatures to different
sets of de novo SNVs. Three major signatures (Signatures 1, 5,
and 16) are present in all tested groups (contributing 87.7% for
the whole-genome group, 77.0–84.5% for strong-nucleosome
groups; Fig. 3b). Four signatures (Signatures 5, 12, 20, and 26)
show increased contribution (>1%) to the “all strong-nucleo-
some” group relative to the genomic background. The aetiologies
of Signatures 5 (~7% increase in strong-nucleosome regions) and
12 (2.2% increase) are currently unknown according to the
COSMIC website, but a recent study39 suggested that Signature 5
is likely associated with POL θ-mediated mutagenesis and DSB
repair. Signatures 20 (1.3% increase) and 26 (1.2% increase) are
associated with DNA MMR. There are further differences in
associated signatures among strong-nucleosome-associated SNVs
in different repeat contexts (“Alu”, “L1”, and “Others”; Fig. 3b),
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such as Signatures 1, 3, 5, 6, 11, 12, 20, and 26. Such differences
between different groups could be due to the heterogeneity of
contributing mutational processes and redundancy among some
COSMIC signatures.

It is important to note that COSMIC mutational signatures
were designed for use with cancer genomes and so some germline
mutational processes may not be well represented. Nevertheless,
our analysis identified several candidate mutational processes
associated with strong nucleosomes, such as the mutagenesis
linked to DNA MMR (Signatures 6, 20, and 26) and DNA DSB
repair (Signatures 3 and 5). Therefore, to gain deeper insights and
to obtain independent evidence for these mutational processes,
we examined multiple published genomic datasets below.

MMR (Signatures 6, 20, and 26). DNA MMR is a major pathway
that is active during DNA replication: it mainly repairs mis-
matches and short INDELs introduced by DNA synthesis that
have escaped polymerase proofreading. Mutations arising from
inefficiencies in MMR are represented by Signatures 6, 20, and 26,
which show increased contribution to de novo SNVs in the “all
strong nucleosomes” group (2% increase collectively) and three
repeat-based subgroups of mutations (1.6, 6.7, and 4.3% increase
for “Alu”, “L1”, and “Others”, respectively).

We analyzed somatic mutations from two sets of ultrahyper-
mutated cancer genomes40. The first comprised genomes with
driver mutations in the POLE gene encoding the catalytic subunit
of DNA polymerase ε (Pol ε, the major replicase for the leading
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strand) and in one or more of the core MMR genes (MLH1,
MSH2, MSH6, PMS1, and PMS2). The second contained cancers
with mutated POLE but intact MMR. As it is even more
challenging to detect somatic mutations in tumor-derived data
than resequencing of normal individuals, we focused this analysis
on strong nucleosomes found in high-mappability regions of the
genome (see Methods).

We reasoned that differences in mutation distributions
between the two sets of genomes could be attributed to the
MMR pathway. The overall mutation patterns are similar in both
cases, with much higher mutation rates at strong-nucleosome
boundaries and adjacent linker DNA than the surrounding
regions (Fig. 4a). This implies that errors introduced during
error-prone replication by a deficient Pol ε escape repair by the
MMR pathway when they coincide with strong nucleosomes.
Next, we calculated an “MMR escape ratio” to quantify the
relative amount of replication errors that escapes MMR repair in
the POLE only mutant cancers compared with the POLE and
MMR double mutants. Strong nucleosomal regions (especially
boundaries and adjacent linkers) display ~10% higher escape

ratios than the genome-wide background (Fig. 4a). A/T sites have
higher escape ratios than C/G sites around strong nucleosomes.
Despite different nucleotide frequencies, both C/G and A/T sites
exhibit similarly elevated escape ratio profiles (dyads having lower
values than linkers; Fig. 4a), suggesting that strong nucleosomes
can contribute to the elevated escape ratios independent of
sequence context. Moreover, the apparent ~200-bp periodicity in
escape ratio and mutation density profiles are suggestive of
associations with nucleosome positioning other than sequence
context alone (Fig. 4a). Together, these observations strongly
indicate a relationship between replication errors, MMR, and
strong nucleosomes in elevating mutation rates.

DNA polymerase fidelity (Signatures 10 and possibly 12). We
also studied the effect of strong nucleosomes on replication
fidelity by examining data from children with inherited biallelic
MMR deficiency (bMMRD)41; these include ultrahypermutated
genomes arising from Pol ε and polymerase δ defects (Pol δ, the
major replicase for the lagging strand; POLD1 encodes the
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catalytic subunit of Pol δ). We estimated Pol δ and Pol ε escape
ratios (escaping the proofreading correction of polymerases)
using the same reasoning as above (Fig. 4b). We found that strong
nucleosomes have higher escape ratios for both polymerases
relative to the genomic background (Fig. 4b), implying that they
have lower replication fidelity in these regions. The proofreading
escape ratios for both polymerases are even higher than that for
MMR (Fig. 4a, b) and A/T sites display higher proofreading
escape ratios than C/G sites (Supplementary Fig. 5a). Again, the
periodic pattern in the relative escape profiles (Fig. 4b, Supple-
mentary Fig. 5a) suggests that nucleosome positioning con-
tributes to the heterogeneity in replicase fidelity across the
genome.

The etiology of Signature 12 is currently unknown. Here, we
found that it contributes 21.15–21.99% to mutations in POLD1-
mutant bMMRD genomes (inferred by MutationalPatterns,
Supplementary Fig. 5b), but much less for other bMMRD
samples (0–2.88% for POLE-mutant, and 3.32–10.43% for
POLE/POLD1-intact). This suggests that Signature 12 is probably
associated with Pol δ and that many de novo mutations around
strong nucleosomes arise from errors escaping Pol δ proof-
reading. Surprisingly, Signature 10, known to be associated with
Pol ε deficiency, is absent from strong nucleosomal de novo SNVs
(Fig. 3b). This suggests that although both Pol ε and Pol δ have
high proofreading escape ratios (i.e., low fidelity) around strong
nucleosomes (Fig. 4b), most of the replication errors that are
eventually converted to de novo mutations are derived from
lagging strand replicase Pol δ.

Reijns et al. showed that in budding yeast, Okazaki junctions
formed during lagging strand replication tend to be near
nucleosome dyads and display elevated mutation rates14. We
tested this by reanalyzing the OK-seq data from human
lymphoblastoid cells42. Unlike yeast, Okazaki junctions in humans
are more frequently located in the linker regions (Supplementary
Fig. 6) rather than the dyads, suggesting that the mutagenic effects
of Okazaki junctions are different in the two organisms. This may
partly be because yeast lacks the typical H1 histone found in
human and other eukaryotes. However, the very short reads
(single-ended 50 bp) of OK-seq data restricted our analysis to
regions with high read mappability (covering ~10% of strong
nucleosomes), limiting the strength of the conclusions here.

DSBs (Signatures 3 and 5). DSB repair represented by Signatures
3 and 5 is another potential mechanism involved in strong-
nucleosome-associated mutations (Fig. 3b). Tubbs et al.43 studied
the genome-wide distribution of DSBs using END-seq and sug-
gested that poly(dA:dT) tracts are recurrent sites of replication-
associated DSBs. Our analysis of these data revealed a higher
frequency of DSBs around strong nucleosomes compared with
genomic background (Fig. 4c). The trend holds for experiments
with and without hydroxyurea treatment (HU, a replicative
stress-inducing agent), suggesting that strong nucleosomes are
endogenous hotspots (i.e., without HU treatment) of DSBs during
replication. It is notable that young Alu and L1 elements harbor
prominent poly(dA:dT) tracts, which are enriched at the
boundary and linker regions of strong nucleosomes (Supple-
mentary Fig. 7a). The patterns of high DSB frequency still hold
true when looking at strong nucleosomes associated with different
repeats (Supplementary Fig. 7b, c). However, because the END-
seq data were sequenced with single-ended 75 bp reads and
majority of young Alu and L1 elements cannot be assessed with
such short reads, we could not pursue further detailed analysis.
We also note that because of the lack of END-seq data derived
from naked DNA, it is difficult to assess the contribution of
strong nucleosomes to the elevated DSB frequency independent

of the sequence context. Since DSB repair can be error-prone44,
even using high-fidelity homologous recombination, frequent
DSB formation and subsequent error-prone repair likely con-
tribute to the elevated mutation rates around strong nucleosomes.

Strong nucleosomes and evolution of transposons. Above, we
highlighted that ~70% of strong nucleosomes are in Alu and L1
retrotransposons (Supplementary Fig. 1d). Upon examination of
the subfamilies (Fig. 5a, b), we uncovered a strong enrichment for
evolutionarily young L1s (e.g., L1PA2 to L1PA11) and Alus (e.g.,
AluY to AluSx). Since younger repeats have poorer mappability,
strong nucleosomes are underdetected (Supplementary Fig. 8a)
and these observations probably underestimate the true enrich-
ment. This may also explain why several of the youngest
L1 subfamilies (L1PA2 to L1PA5) have lower enrichments than
the slightly older subfamilies (Fig. 5a, Supplementary Fig. 8a).

The preference for nucleosomes to occupy specific sections of
Alu elements is supported by both in vitro and in vivo
evidence45–48. We recapitulated these observations for strong
nucleosomes using the Gaffney et al. MNase-seq data (Fig. 5c):
there are two hotspots of strong nucleosomes in young Alus,
which fade away in older elements. We also observed that
younger Alus exhibit elevated de novo mutation rates compared
with old ones (Fig. 5c). The weaker translational stability in older
Alus is accompanied by reduced de novo mutation rates for both
SNVs and INDELs (Fig. 5c). Thus, these data suggest an
intriguing interplay between Alus, strong nucleosomes and
mutation rates.

The histone octamer is thought to preferentially bind DNA
sequences presenting lower deformation energy costs49. We
estimated deformation energies using the nuScore software49

based on the DNA sequence and nucleosome core particle
structure. We found that Alus do indeed exhibit lower
deformation energies than surrounding regions (Fig. 5c). Further-
more, the energies of Alu elements tend to increase with age,
suggesting that the accumulated mutations in Alu sequences
reduced their nucleosome-binding stability. This is also supported
by comparing deformation energies of Alu consensus sequences
(ancestral states) and those of current genomic sequences
(Supplementary Fig. 8b). We further analyzed the 3′ end
sequences of L1 elements harboring strong nucleosomes and
observed similar patterns (Supplementary Fig. 8c, d).

Discussion
Though the involvement of nucleosome organization in DNA
damage and repair processes was recognized nearly 30 years
ago50, its genome-wide effects on germline mutation rates (par-
ticularly in higher eukaryotes) have remained poorly understood.
Our analysis combining large-scale de novo mutation and
nucleosome datasets in human provides several important
insights into this topic.

A major finding is that strong translational positioning of
nucleosomes is associated with elevated de novo mutation rates,
which is also supported by observations using extremely rare
variants in polymorphism data. The ability to use de novo
mutations here allowed us to bypass confounding evolutionary
factors such as selection, thus allowing direct assessment of the
impact on mutation rates. Importantly, our statistical tests con-
trolling for nucleosome occupancy and other related factors
confirmed the significant contribution of translational stability to
mutation rate variation and indicated that it affects not only
strong nucleosomes but also other parts of the genome. There-
fore, we have discovered a nucleosomal factor that significantly
modulates germline mutation rate variation.
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Investigating the underlying mutational processes responsible for
this association remains challenging. Nevertheless, we obtained
several informative results regarding potential mechanisms by
leveraging published omics data related to DNA damage and repair.
In doing so, we revealed that MMR, replicase fidelity, and DSB
contribute to elevated mutation rates around strong nucleosomes.
In particular, multiple sets of ultrahypermutated cancer data
allowed us to quantify the performance of MMR and replicases by
calculating the repair escape ratios. The results derived from ana-
lysis of cancer genomic data probably apply to germ cells because
they agree nicely with the observations from our mutational sig-
nature analysis with de novo mutations. The precise molecular
interactions determining the relationships between strong-
nucleosome positioning, replicase fidelity, and DNA repair are
still unclear. However, based on the evidence from our analysis with
the omics data and previous studies14,43,51, we speculate that strong
nucleosomes may act as particularly strong barriers that impair the
performance of the replication and repair machineries. There may
be additional, unexamined effects on DNA damage and repair
processes related to germline development, but many published
genomic datasets about DNA damage and repair were generated in
nongerm cells and with very short sequencing reads (e.g., <100 bp),
which hinder accurate analysis. Improved sequencing strategies
such as long-read sequencing and direct measurement in germ cells
would benefit future related studies.

Interestingly, we found that strong nucleosomes are pre-
ferentially located within young LINE and SINE elements, two of

the most common retrotransposons in the human and other
mammalian genomes. Owing to their potentially deleterious
effects, newly inserted retrotransposons are tightly repressed by
multiple regulatory mechanisms, such as DNA methylation and
H3K9me3 (ref. 52). Strong-nucleosome positioning, which may
mask access to the transcription machinery, could be another
layer of the repressive system. Furthermore, the hypermutation in
young SINEs/LINEs, partly contributed by associated strong
nucleosomes, could lead to the rapid reduction of retro-
transposition capacity. Therefore, the combination of strong-
nucleosome positioning and hypermutation in SINEs/LINEs
might have facilitated their expansion across the genome during
evolution.

The decreasing numbers of strong nucleosomes in older LINE/
SINE elements imply frequent nucleosome positioning changes
during evolution. Since nucleosome positioning is strongly
affected by the underlying DNA sequence, the decrease of posi-
tioning stability probably arises from the accumulation of
mutations. A previous study suggested widespread selection for
maintaining nucleosome positioning in the human genome53.
Since a large majority of strong nucleosomes associated
with SINE/LINE elements are expected to become nonstrong
ones in future, selection for preserving positioning might not be
as widespread as previously suggested, though it may happen
at some particular regions or within a short evolutionary
scale. Another evidence against strong selection for preserving
positioning is that most genomic regions do not employ
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translationally stable positioning, possibly due to its relatively
high mutagenic potential. Our data to some extent support the
repositioning model proposed by Warnecke et al.54.

Finally, we summarized our major findings in a proposed model
in Fig. 6, which demonstrates the relationship among nucleosome
positioning, mutation rate variation, retrotransposons, and evolu-
tion. Given the importance of germline de novo mutations in
evolution and human diseases and the universal roles of nucleo-
somes in eukaryotic genome organization and regulation, our work
should have profound implications in related research areas.

Methods
Mutation datasets. De novo mutations identified in multiple large-scale trio
sequencing project were downloaded from de novo-db (v1.6.1)55. Seven studies
with >1000 de novo mutations27–29,56–59 were considered in our analysis (Sup-
plementary Fig. 1a). Extremely rare variants (derived allele frequency ≤ 0.0001)
were obtained from Genome Aggregation Database (gnomAD, release 2.0.2)30.

Nucleosome datasets. We used the 1,037,801 strong nucleosomes (i.e., transla-
tionally stable nucleosomes) identified based on MNase-seq data of sequenced
seven lymphoblastoid cell lines from Gaffney et al.32. The original hg18-based
coordinates of annotated nucleosomes were converted to hg19 using the “liftOver”
tool from UCSC genome browser. The rotationally stable nucleosomes identified
based on 49 DNase-seq samples (43 distinct cell types) were from Winter et al.33.
We classified the human genome into three groups based on the nucleosome
contexts (Fig. 1b): (i) regions covered by translationally stable (“strong”) nucleo-
somes; (ii) regions covered by rotationally but not translationally stable nucleo-
somes; and (iii) the remaining genomic regions. Chromosomes X and Y were
excluded from analysis as some other datasets used in our work lacked data for
these chromosomes. As the nucleosome maps we used were not derived from germ
cells, for downstream analysis we excluded the genomic regions in which
nucleosome positioning were found to differ between human embryonic stem cells
and differentiated fibroblasts34. Based on the positioning stability scores defined in
Gaffney et al., we divided the one million strong nucleosomes into three categories
of equal sizes with different levels of stability — “high”, “middle”, and “low”, which
were used for analysis shown in Fig. 1 and Supplementary Fig. 1.

Accounting for mappability. Sequencing read mappability can significantly affect
variant calling results and other aligned read-depth based measurements (e.g.,
nucleosome occupancy). The sequencing reads for detecting de novo mutations
used in our analysis were mainly 150 bp paired-end reads, with fragment sizes

ranging from 300–700 bp (Supplementary Fig. 1). We used the Genome Mapp-
ability Analyzer (GMA, v0.1.5)36 to generate the mappability scores for simulated
paired-end 150 reads with fragment sizes set to be 400 bp. Only the regions with
GMA mappability scores of ≥90 (~2.59 Gb) were considered for most analyses,
unless specified otherwise. We did not use the mappability tracks from ENCODE
for the de novo mutation data, because those tracks were only for single-ended
reads. For some analyses, additional filtering was applied if other associated
datasets suffered from more severe mappability issues. For measuring nucleosome
occupancy, we used the method described in the Gaffney et al. to simulate paired-
end 25 bp reads matching the base compositions of MNase-seq data in the human
genome, and then calculated per-base coverage depths by the simulated fragments.
The 10 bp-bin ratios between the MNase-seq read coverage and the simulated read
coverage were used for measuring the occupancy.

De novo mutations in different nucleosome contexts. We used Genomic
Association Tester (GAT, v1.3.6)60 to do the enrichment analysis, because it can
perform simulations to estimate the expected numbers and calculate the statistical
significance. We ran GAT by sampling 10,000 times (setting parameters “–ignore-
segment-tracks –num-samples= 10,000 –num-threads= 5”) to estimate the
expected numbers of mutations in different contexts, which were then compared
with the observed numbers. Low-mappability regions were excluded from analysis.
A similar analysis was also done for the extremely rare variants of gnomAD.
Analysis of meta-profiles along strong nucleosomes was done using deepTools
(v3.1.3)61.

Statistical modeling of mutation rate variation. As described in the main text,
for a given genomic position, we defined two variables (see Eqs. (1) and (2) below)
regarding the translational positioning of nearby nucleosomes (Fig. 2a)

dmean ¼
Pn

i¼1di
n

; 0 ≤ d ≤ 95; ð1Þ

dvar ¼
Pn

i¼1 di � dmeanð Þ2
n� 1

; ð2Þ

where d is the distance between a MNase-seq midpoint to the focal site. We
considered MNase-seq midpoints within ±95 bp of the focal site, because genome-
wide nucleosome repeat length was estimated to be 191.4 bp for the Gaffney et al.
data32. Genomic sites having ≥10 MNase-seq midpoints within ±95 bp were
considered from analysis (covering 2.49 Gb of usable sites). The measurements for
nucleosome occupancy were 10 bp-bin ratios between the MNase-seq read cover-
age and the simulated read coverage. We did not use the positioning score S(i)
defined in Gaffney et al. to measure positioning stability in our modeling analysis,
because S(i) was designed for identifying the stable dyads and so for non-dyad
positions it does not represent the positioning stability properly.
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Fig. 6 Proposed model of the interplay between nucleosome translational stability, mutation rate, and transposable elements. a Most genomic regions
are occupied by nucleosomes lacking strong translational stability. b Strong nucleosomes are preferentially associated with newly inserted SINE/LINE
elements. c Strong nucleosomal regions are subject to high mutation rates during germline development, caused by mutational processes such as low
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RNA expression, DNA methylation, and chromatin accessibility (ATAC-seq)
data from human spermatogonial stem cells were from Guo et al.62. For the RNA-
seq and ATAC-seq data from Guo et al., because the genome-wide read signal
tracks were not available, we downloaded, processed, and mapped the raw reads to
generate the genome-wide tracks. Since suitable data for histone modifications in
human germ cells were not available, we used the ChIP-seq data of human
embryonic stem cells from ENCODE63. Replication timing data (Repli-seq of
GM12878) were also from ENCODE. The data of recombination rates were from
the HapMap project64.

A binary logistic regression framework was used to assess the contribution of
different factors to mutation rate variation across the genome systematically. The
logistic regression model is described as Eqs. (3) and (4) below

μ ¼ Pr y ¼ 1ð Þ ¼
exp β0 þ β1X1 þ � � � þ βpXp

� �

1þ exp β0 þ β1X1 þ � � � þ βpXp

� � ¼ exp Xβð Þ
1þ exp Xβð Þ ; ð3Þ

logit μð Þ ¼ log
μ

1� μ

� �
¼ Xβ; ð4Þ

where μ= Pr(y= 1) denotes the probability that a genomic position is mutated (for
testing individual SNV mutation types, e.g., A > T, μ is the probability that a site is
mutated to a specific nucleotide), X represents the observations for the considered
variables (categorical or continuous, e.g., dmean, dvar, adjacent nucleotides, etc.), and
β is the vector of parameters to be estimated.

We used the Bayesian logistic regression model implemented in the
“bayesglm”65 of the R package “arm” (v1.10.1), which was reported to perform well
in handling the complete separation issue in logistic regression models65. The
setting of priors in “bayesglm” was “prior.scale= 2.5, prior.df= 1”. The complete
separation issue is common when one class is rare relative to the other and (or)
there are many regressors in a model. As we had only ~300,000 de novo mutations,
the probability for a given site to be mutated in our data is ~1/10,000, which is a
rare event.

Within the logistic regression framework, we compared the full model with all
considered variables to a reduced model without one specific variable by
performing likelihood-ratio tests in R (“anova” function) to evaluate the
significance for each variable. The resulting p values of a set of likelihood-ratio tests
were adjusted for multiple testing with Benjamini–Hochberg correction. The R
package “pscl” (v1.5.2) was used to calculate the McFadden’s pseudo R2 of the
regression models.

To perform the regression analysis, we generated the data of all variables for the
de novo mutation sites and subsampled a fraction of the nonmutated sites as the
control sites. We did not use all the nonmutated sites in the genome as it would
lead to a large imbalance in the sizes of two classes (“mutated” and “nonmutated”)
and much larger computational burden. For de novo SNVs, we randomly
generated 2,490,967 nonmutated sites (about 1/1000 of the accessible genome,
about ten times as many as de novo SNVs) and 249,669 nonmutated sites (about 1/
10,000 of the accessible genome, about ten times as many as de novo INDELs) for
INDELs. For de novo INDELs, we used the INDELs of ≤5 bp for regression
analysis, because long INDELs were rare and may have high false positive/negative
rates. For RNA expression, DNA methylation, chromatin accessibility, replication
timing, recombination rate, and histone modification data, we used the average
value of the ±10 bp of a focal site for each specific feature based on the genome-
wide signal tracks. We also assessed different window sizes (±5 and ±20 bp), which
led to similar results.

For SNVs, we performed logistic regression tests for mutation types at A/T sites
and C/G sites separately and distinguished C/G sites in CpG and non-CpG
contexts. We also tested for nine individual SNV mutation types (three for A/T
sites, three for C/G sites at CpG contexts, and three for non-CpG contexts,
Supplementary Fig. 3). The regression coefficients for the full model of each test are
given in Supplementary Data 1.

Since the variable dmean has a nonmonotonic relationship with mutation rates,
we binned the values into five categories: [0,18], [19, 36], [37, 54], [55, 73], and
[74, 95] (first four bins implying nucleosome-bound regions, and the last bin
implying close to the linker). We applied log transformation to the variables dvar
and “expression level”, because the log transformation can largely improve
statistical significance of these two variables.

In the regression models mentioned above, we did not consider the nonadditive
effects of adjacent nucleotides (±5 bp). When we tried adding nonadditive effects
for ±5 nucleotides (considering only two-way interactions; taking a much longer
running time), we got similar results regarding the association of translational
stability (dvar) and mutation rates (Supplementary Fig. 4). We also tried using the
7-mer mutability estimates from Carlson et al.31, which incorporated nonadditive
effects among ±3 nucleotides, as predictors in the regression models.

To evaluate how the repeat status affects the effects of translational stability on
mutation rates, we added the repeat status (“Alu”, “L1”, “other repeat” or
“nonrepeat”) as a predictor to regression models, and also ran the regression tests
for different repeat/nonrepeat regions separately.

Analysis of mutational processes. COSMIC mutational signatures are based on
frequencies of mutations in tri-nucleotide contexts. Since the regions associated

with strong nucleosomes have different tri-nucleotide composition relative to
genome background, we first normalized the mutation type frequencies in regions
associated with strong nucleosomes as this: set Fi,strong for the occurrence of a
specific mutation type (e.g., T[T > C]T), Ni,strong for the occurrence of the con-
sidered tri-nucleotide context (e.g., TTT) in strong-nucleosome regions, and
Ni,genome for the occurrence of the considered tri-nucleotide context in the whole-
genome background, then the corrected occurrence of a the mutation type for
strong nucleosomes is N 0

i;strong ¼ Fi;strong � Ni;strong ´Ni;genome. Two-sided Fisher’s
exact tests were performed to identify mutation types that show significant increase
or decrease in strong-nucleosome regions relative to genome background. The
contingency table used for running “fisher.test” in R for a specific mutation type is
matrix (c(Fi,strong, Ni,strong− Fi,strong, Fi,genome− Fi,strong, (Ni,genome−Ni,strong)−
(Fi,genome− Fi,strong)), ncol= 2), where Fi,strong and Fi,genome are the occurrences of
the considered mutation type and Ni,strong and Ni,genome for the occurrences of the
considered tri-nucleotide context. Benjamini–Hochberg method was used for
multiple testing correction.

The contribution of COSMIC mutational signatures37 to different sets of mutations
(de novo SNVs and somatic mutations from bMMRD samples) was predicted using the
“fit_to_signatures” function in the R package “MutationalPatterns” (v1.8.0)38. For the
sets of de novo SNVs associated with strong nucleosomes, the corrected frequencies
described above were used for running “fit_to_signatures.”

Mutations in POLE in cancers can lead to reduced base selectivity and/or
deficient proofreading during replication, producing unusually large numbers of
mutations (so called “ultrahypermutation”), which facilitated our analysis. POLE
mutated genomes from PCAWG project40 were used to evaluate the differential
MMR efficiency between strong and nonstrong-nucleosome regions. We compared
the mutation densities in cancer genomes with POLE mutated and a deficient
MMR (four individual samples) to those with POLE mutated and a proficient
MMR (six samples). The MMR pathway was considered deficient if a driver
mutation (annotated by the PCAWG consortium) was found in one of five MMR
core genes — MLH1, MSH2, MSH6, PMS1, and PMS2.

For a given bin (10 bp size) in the meta-profile, we calculated the relative MMR
escape ratio relative to genomic background around strong nucleosomes as
described in the following equation:

Rescape
i ¼

mPOLE*;MMRWT

i

mPOLE* ;MMR*

i

mPOLE* ;MMRWT

mPOLE* ;MMR*

; ð5Þ

where mi is the mutation density for the ith bin (observed number of mutations in
the ith bin divided by the bin size), and �m is the genome-wide average mutation
density of a specific sample group (observed number of mutations in the simulated
windows divided by the total window size), estimated by simulating random
windows in the genome. “*” and “WT” depict mutant and wildt ype, respectively.
A similar logic was used when evaluating relative proofreading escape ratios of Pol
ε (mutated POLE) and Pol δ (mutated POLD1) using the somatic mutation data
from the bMMRD project41.

When analyzing PCAWG and bMMRD data, to account for potential
mappability issues, we focused on the highly mappable regions based on the
CrgMapability scores from ENCODE. We used CrgMapability scores here, which
are more stringent than GMA ones, because detecting somatic mutations in tumors
is more difficult than for ordinary individual resequencing data. We considered the
strong nucleosomes that have a 100-mer CrgMapability score of 1 (meaning any
100-bp read from these regions can be mapped uniquely in the genome) within
±800 bp of the dyads. We then simulated a same number of 1600 bp-sized regions
from the genome that satisfy the mappability requirement to calculate the
background mutation density. Note that in theory the mappability issue in the
relative escape ratios should be very small because the two sets of samples have the
same mappability for a given bin and the ratio calculation in Eq. (5) normalizes the
effects of different mappability among regions.

Two-sided Fisher’s exact tests were performed to test the association of strong
nucleosomal regions (dyad ± 95 bp) with differential MMR/polymerase performance.
For example, for testing the MMR performance, the contingency table used for running

“fisher.test” in R is matrix c Np
strong;N

p
all�

��
Np
strong;N

d
strong;N

d
all � Nd

strongÞÞ; ncol ¼ 2Þ,
where Np

strong and Np
allare the numbers of mutations located in strong nucleosomal

regions (dyad ± 95 bp) and all the considered regions for the MMR-proficient sample
respectively, and Nd

strong and Nd
all for the MMR-deficient sample. The same method was

used to test the performance of Pol ε and Pol δ around strong nucleosomes.
The raw reads of OK-seq data42 were downloaded from NCBI and mapped to

the human genome. We kept only the uniquely mapped reads for inferring Okazaki
junctions. The very 5′ end sites of aligned reads (separating reads mapped to
Watson and Crick strands) were considered putative Okazaki junction signals.

To investigate DSBs around strong nucleosomes, we downloaded the genome-
wide tracks of human END-seq data (GSM3227951 and GSM3227952)43. Because
the reads of END-seq data were single-ended 75 bp, we considered the strong
nucleosomes that have a 75-mer CrgMapability score of 1 within ±500 bp of the
strong-nucleosome dyads for analysis.
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Strong nucleosomes in different repeat contexts. GAT60 was used to estimate
the expected numbers of strong nucleosomes in different contexts (sampling ≥
1000 times), which were compared with the observed numbers. The annotations of
repeat elements (February 2009, Repeat Library 20140131) were downloaded from
RepeatMasker website66. We also did GAT analysis for LINE/L1 and SINE/Alu
subfamilies of different ages. The age information of repeat families was from
Giordano et al.67. For generating the MNase-seq midpoints along the repeat
consensus sequences, we made use of the alignment information in the Repeat-
Masker result files (“hg19.fa.align.gz”) and mapped the hg19-based coordinates to
the coordinates in the consensus sequences. Strong nucleosomes appear to be
underdetected in very young L1 elements, which we think is due to difficulties in
mapping short MNase-seq reads (Alus are easier to map because they are much
smaller).

Nucleosome deformation energies of all sites in the human genome were
estimated using nuScore (v1.0)49. We also ran nuScore to estimate the deformation
energies of Alu and L1 subfamily consensus sequences. For the L1 analysis shown
in Supplementary Fig. 8, we only considered the 3′ end regions of L1 subfamilies,
because 5′ end regions of L1 elements are usually truncated in the genome and
their subfamily identities are difficult to be determined.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All the analyses in this study were based on published datasets. Links for main published
datasets used in the study: MNase-seq data32 [http://eqtl.uchicago.edu/nucleosomes/
mnase_seq.html]; de novo-db55 [http://denovo-db.gs.washington.edu/denovo-db/];
gnomAD data30 [http://gnomad.broadinstitute.org/]; repeat annotations66 [http://www.
repeatmasker.org/species/hg.html]; PCAWG data40 [https://dcc.icgc.org/pcawg/];
bMMRD data41 [https://www.ebi.ac.uk/ega/studies/EGAS00001001112]; END-seq data43

GSE116321. Other data generated in the study are available from the corresponding
author on reasonable request. The source data underlying Figs. 1c–f, 2b–d, 3a, b, 4a–c,
and 5a–c and Supplementary Figs. 1b–e, 2, 3, 4a–d, 5a, b, 6b, 7a–c, and 8a–d are provided
as a Source Data file.

Code availability
Custom scripts and associated input data are available at the ZENODO repository; DOI:
10.5281/zenodo.3598517 [https://doi.org/10.5281/zenodo.3598517].

Received: 18 October 2019; Accepted: 23 February 2020;

References
1. Veltman, J. A. & Brunner, H. G. De novo mutations in human genetic disease.

Nat. Rev. Genet. 13, 565–575 (2012).
2. Acuna-Hidalgo, R., Veltman, J. A. & Hoischen, A. New insights into the

generation and role of de novo mutations in health and disease. Genome Biol.
17, 241 (2016).

3. Hodgkinson, A. & Eyre-Walker, A. Variation in the mutation rate across
mammalian genomes. Nat. Rev. Genet. 12, 756–766 (2011).

4. Segurel, L., Wyman, M. J. & Przeworski, M. Determinants of mutation rate
variation in the human germline. Annu. Rev. Genom. Hum. Genet. 15, 47–70
(2014).

5. Michaelson, J. J. et al. Whole-genome sequencing in autism identifies hot spots
for de novo germline mutation. Cell 151, 1431–1442 (2012).

6. Stamatoyannopoulos, J. A. et al. Human mutation rate associated with DNA
replication timing. Nat. Genet. 41, 393–395 (2009).

7. Francioli, L. C. et al. Genome-wide patterns and properties of de novo
mutations in humans. Nat. Genet. 47, 822–826 (2015).

8. Arbeithuber, B., Betancourt, A. J., Ebner, T. & Tiemann-Boege, I. Crossovers
are associated with mutation and biased gene conversion at recombination
hotspots. Proc. Natl Acad. Sci. USA 112, 2109–2114 (2015).

9. Halldorsson, B. V. et al. Characterizing mutagenic effects of recombination
through a sequence-level genetic map. Science 363, eaau1043 (2019).

10. Sabarinathan, R., Mularoni, L., Deu-Pons, J., Gonzalez-Perez, A. & Lopez-
Bigas, N. Nucleotide excision repair is impaired by binding of transcription
factors to DNA. Nature 532, 264–267 (2016).

11. Schuster-Bockler, B. & Lehner, B. Chromatin organization is a major influence
on regional mutation rates in human cancer cells. Nature 488, 504–507
(2012).

12. Terekhanova, N. V., Seplyarskiy, V. B., Soldatov, R. A. & Bazykin, G. A.
Evolution of local mutation rate and its determinants. Mol. Biol. Evol. 34,
1100–1109 (2017).

13. Smith, T. C. A., Arndt, P. F. & Eyre-Walker, A. Large scale variation in the
rate of germ-line de novo mutation, base composition, divergence and
diversity in humans. PLoS Genet. 14, e1007254 (2018).

14. Reijns, M. A. M. et al. Lagging-strand replication shapes the mutational
landscape of the genome. Nature 518, 502–506 (2015).

15. Harris, K. & Nielsen, R. Error-prone polymerase activity causes
multinucleotide mutations in humans. Genome Res. 24, 1445–1454 (2014).

16. Seplyarskiy, V. B., Andrianova, M. A. & Bazykin, G. A. APOBEC3A/B-
induced mutagenesis is responsible for 20% of heritable mutations in the
TpCpW context. Genome Res. 27, 175–184 (2017).

17. Lujan, S. A. et al. Heterogeneous polymerase fidelity and mismatch repair bias
genome variation and composition. Genome Res. 24, 1751–1764 (2014).

18. Seplyarskiy, V. B. et al. Error-prone bypass of DNA lesions during lagging-
strand replication is a common source of germline and cancer mutations. Nat.
Genet. 51, 36–41 (2019).

19. Supek, F. & Lehner, B. Differential DNA mismatch repair underlies mutation
rate variation across the human genome. Nature 521, 81–84 (2015).

20. Frigola, J. et al. Reduced mutation rate in exons due to differential mismatch
repair. Nat. Genet. 49, 1684–1692 (2017).

21. Perera, D. et al. Differential DNA repair underlies mutation hotspots at active
promoters in cancer genomes. Nature 532, 259–263 (2016).

22. Makova, K. D. & Hardison, R. C. The effects of chromatin organization on
variation in mutation rates in the genome. Nat. Rev. Genet. 16, 213–223
(2015).

23. Sasaki, S. et al. Chromatin-associated periodicity in genetic variation
downstream of transcriptional start sites. Science 323, 401–404 (2009).

24. Tolstorukov, M. Y., Volfovsky, N., Stephens, R. M. & Park, P. J. Impact of
chromatin structure on sequence variability in the human genome. Nat.
Struct. Mol. Biol. 18, 510–515 (2011).

25. Chen, X. et al. Nucleosomes suppress spontaneous mutations base-specifically
in eukaryotes. Science 335, 1235–1238 (2012).

26. Pich, O. et al. Somatic and germline mutation periodicity follow the
orientation of the DNA minor groove around nucleosomes. Cell 175,
1074–1087.e18 (2018).

27. Yuen, R. et al. Whole genome sequencing resource identifies 18 new candidate
genes for autism spectrum disorder. Nat. Neurosci. 20, 602–611 (2017).

28. Jonsson, H. et al. Parental influence on human germline de novo mutations in
1,548 trios from Iceland. Nature 549, 519–522 (2017).

29. Turner, T. N. et al. Genomic patterns of de novo mutation in simplex autism.
Cell 171, 710–722.e12 (2017).

30. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans.
Nature 536, 285–291 (2016).

31. Carlson, J. et al. Extremely rare variants reveal patterns of germline mutation
rate heterogeneity in humans. Nat. Commun. 9, 3753 (2018).

32. Gaffney, D. J. et al. Controls of nucleosome positioning in the human genome.
PLoS Genet. 8, e1003036 (2012).

33. Winter, D. R., Song, L., Mukherjee, S., Furey, T. S. & Crawford, G. E. DNase-
seq predicts regions of rotational nucleosome stability across diverse human
cell types. Genome Res. 23, 1118–1129 (2013).

34. West, J. A. et al. Nucleosomal occupancy changes locally over key regulatory
regions during cell differentiation and reprogramming. Nat. Commun. 5, 4719
(2014).

35. Harpak, A., Bhaskar, A. & Pritchard, J. K. Mutation rate variation is a primary
determinant of the distribution of allele frequencies in humans. PLoS Genet.
12, e1006489 (2016).

36. Lee, H. & Schatz, M. C. Genomic dark matter: the reliability of short read
mapping illustrated by the genome mappability score. Bioinformatics 28,
2097–2105 (2012).

37. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer.
Nature 500, 415–421 (2013).

38. Blokzijl, F., Janssen, R., van Boxtel, R. & Cuppen, E. MutationalPatterns:
comprehensive genome-wide analysis of mutational processes. Genome Med.
10, 33 (2018).

39. Roy, S. et al. p53 orchestrates DNA replication restart homeostasis by
suppressing mutagenic RAD52 and POLθ pathways. eLife 7, e31723 (2018).

40. ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-
cancer analysis of whole genomes. Nature 578, 82–93 (2020).

41. Shlien, A. et al. Combined hereditary and somatic mutations of replication
error repair genes result in rapid onset of ultra-hypermutated cancers. Nat.
Genet. 47, 257–262 (2015).

42. Petryk, N. et al. Replication landscape of the human genome. Nat. Commun.
7, 10208 (2016).

43. Tubbs, A. et al. Dual roles of poly(dA:dT) tracts in replication initiation and
fork collapse. Cell 174, 1127–1142.e19 (2018).

44. Rodgers, K. & McVey, M. Error-prone repair of DNA double-strand breaks. J.
Cell Physiol. 231, 15–24 (2016).

45. Englander, E. W. & Howard, B. H. Nucleosome positioning by human Alu
elements in chromatin. J. Biol. Chem. 270, 10091–10096 (1995).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15185-0

12 NATURE COMMUNICATIONS |         (2020) 11:1363 | https://doi.org/10.1038/s41467-020-15185-0 | www.nature.com/naturecommunications

http://eqtl.uchicago.edu/nucleosomes/mnase_seq.html
http://eqtl.uchicago.edu/nucleosomes/mnase_seq.html
http://denovo-db.gs.washington.edu/denovo-db/
http://gnomad.broadinstitute.org/
http://www.repeatmasker.org/species/hg.html
http://www.repeatmasker.org/species/hg.html
https://dcc.icgc.org/pcawg/
https://www.ebi.ac.uk/ega/studies/EGAS00001001112
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116321
https://doi.org/10.5281/zenodo.3598517
www.nature.com/naturecommunications


46. Englander, E. W., Wolffe, A. P. & Howard, B. H. Nucleosome interactions
with a human Alu element. Transcriptional repression and effects of template
methylation. J. Biol. Chem. 268, 19565–19573 (1993).

47. Salih, F., Salih, B., Kogan, S. & Trifonov, E. N. Epigenetic nucleosomes: Alu
sequences and CG as nucleosome positioning element. J. Biomol. Struct. Dyn.
26, 9–16 (2008).

48. Tanaka, Y., Yamashita, R., Suzuki, Y. & Nakai, K. Effects of Alu elements on
global nucleosome positioning in the human genome. BMC Genom. 11, 309
(2010).

49. Tolstorukov, M. Y., Choudhary, V., Olson, W. K., Zhurkin, V. B. & Park, P. J.
nuScore: a web-interface for nucleosome positioning predictions.
Bioinformatics 24, 1456–1458 (2008).

50. Smerdon, M. J. DNA repair and the role of chromatin structure. Curr. Opin.
Cell Biol. 3, 422–428 (1991).

51. Li, F., Tian, L., Gu, L. & Li, G. M. Evidence that nucleosomes inhibit mismatch
repair in eukaryotic cells. J. Biol. Chem. 284, 33056–33061 (2009).

52. Slotkin, R. K. & Martienssen, R. Transposable elements and the epigenetic
regulation of the genome. Nat. Rev. Genet 8, 272–285 (2007).

53. Prendergast, J. G. & Semple, C. A. Widespread signatures of recent selection
linked to nucleosome positioning in the human lineage. Genome Res. 21,
1777–1787 (2011).

54. Warnecke, T., Becker, E. A., Facciotti, M. T., Nislow, C. & Lehner, B.
Conserved substitution patterns around nucleosome footprints in eukaryotes
and Archaea derive from frequent nucleosome repositioning through
evolution. PLoS Comput. Biol. 9, e1003373 (2013).

55. Turner, T. N. et al. denovo-db: a compendium of human de novo variants.
Nucleic Acids Res. 45, D804–D811 (2017).

56. Werling, D. M. et al. An analytical framework for whole-genome sequence
association studies and its implications for autism spectrum disorder. Nat.
Genet. 50, 727–736 (2018).

57. Turner, T. N. et al. Genome sequencing of autism-affected families reveals
disruption of putative noncoding regulatory DNA. Am. J. Hum. Genet. 98,
58–74 (2016).

58. Yuen, R. K. et al. Genome-wide characteristics of de novo mutations in
autism. NPJ Genom. Med. 1, 160271–1602710 (2016).

59. Genome of the Netherlands C. Whole-genome sequence variation, population
structure and demographic history of the Dutch population. Nat. Genet. 46,
818–825 (2014).

60. Heger, A., Webber, C., Goodson, M., Ponting, C. P. & Lunter, G. GAT: a
simulation framework for testing the association of genomic intervals.
Bioinformatics 29, 2046–2048 (2013).

61. Ramirez, F., Dundar, F., Diehl, S., Gruning, B. A. & Manke, T. deepTools: a
flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42,
W187–W191 (2014).

62. Guo, J. et al. Chromatin and single-cell RNA-Seq profiling reveal dynamic
signaling and metabolic transitions during human spermatogonial stem cell
development. Cell Stem Cell 21, 533–546.e6 (2017).

63. ENCODE Consortium. An integrated encyclopedia of DNA elements in the
human genome. Nature 489, 57–74 (2012).

64. International HapMap Consortium, Frazer, K. A. et al. A second generation
human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

65. Gelman, A., Jakulin, A., Pittau, M. G. & Su, Y.-S. A weakly informative default
prior distribution for logistic and other regression models. Ann. Appl. Stat. 2,
1360–1383 (2008).

66. Tempel, S. Using and understanding RepeatMasker. Methods Mol. Biol. 859,
29–51 (2012).

67. Giordano, J. et al. Evolutionary history of mammalian transposons
determined by genome-wide defragmentation. PLoS Comput. Biol. 3, e137
(2007).

Acknowledgements
We are grateful to Tobias Warnecke, John Diffley, Anob Chakrabarti, and Sara
Rohban for insightful comments. We thank Peter Van Loo, Jonas Demeulemeester,
and Maxime Tarabichi for assistance in accessing the PCAWG genomic data. We
appreciate obtaining access to the de novo mutation data on SFARI Base. This work is
supported by the Francis Crick Institute that receives its core funding from Cancer
Research UK (FC001110), the UK Medical Research Council (FC001110), and the
Wellcome Trust (FC001110) (N.M.L.). N.M.L. is also supported by a Wellcome Trust
Investigator Award and core funding from the Okinawa Institute of Science &
Technology. C.L. is funded by an EMBO long-term postdoctoral fellowship (ALTF
1499–2016).

Author contributions
C.L. conceived the project, performed the analyses, and drafted the manuscript; N.M.L.
supervised the project and co-wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-15185-0.

Correspondence and requests for materials should be addressed to C.L.

Peer review information Nature Communications thanks the anonymous reviewer(s)
for their contribution to the peer review of this work. Peer reviewer reports are
available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15185-0 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:1363 | https://doi.org/10.1038/s41467-020-15185-0 | www.nature.com/naturecommunications 13

https://doi.org/10.1038/s41467-020-15185-0
https://doi.org/10.1038/s41467-020-15185-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Nucleosome positioning stability is a modulator of�germline mutation rate variation across the�human genome
	Results
	Datasets used for analysis
	De novo SNVs and INDELs are enriched in strong nucleosomes
	Genome-wide assessment and controlling for other factors
	Mutational signature analysis
	MMR (Signatures 6, 20, and 26)
	DNA polymerase fidelity (Signatures 10 and possibly 12)
	DSBs (Signatures 3 and 5)
	Strong nucleosomes and evolution of transposons

	Discussion
	Methods
	Mutation datasets
	Nucleosome datasets
	Accounting for mappability
	De novo mutations in different nucleosome contexts
	Statistical modeling of mutation rate variation
	Analysis of mutational processes
	Strong nucleosomes in different repeat contexts
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




