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Abstract— Reinforcement learning is a useful ap-
proach to solve machine learning problems by self-
exploration when training samples are not provided.
However, researchers usually ignore the importance of
the choice of exploration noise. In this paper, I show
that temporally self-correlated exploration stochastic-
ity, generated by Ornstein-Uhlenbeck process, can sig-
nificantly enhance the performance of reinforcement
learning tasks by improving exploration.
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1 Introduction

Reinforcement learning (RL) has recently been a
powerful solution to difficult tasks where well-defined
sample data is not available. State-of-art RL algo-
rithms have achieved human-level or superhuman per-
formance in a variety of task such as the game of Go[1],
video games[2, 3], and robotic controls[4].

In RL, the agents require self-exploration to extract
sample data by interacting with environment. In RL
studies, exploration can be done using various meth-
ods, such as ε-greedy[2] and actor-critic[3]. Conven-
tionally, researchers usually use random white noise
for stochastic exploration, which is not temporally
self-correlated. It remains to address that how auto-
correlated stochasticity affects exploration efficiency.

2 Temporally correlated stochasticity

Temporally correlated noise can be obtain by a con-
tinuous stochastic process, such as Wiener process or
by the moving average of white noise[5]. One of these
stochastic processes, known as Ornstein-Uhlenbeck
process(OU-process)[6], is defined by the following
equation:

dxt = θ(µ− xt) dt+ σ
√

2θ dWt (1)

where dWt = ξ(t) dt, and ξ(t) is sampled from Gaus-
sian white noise. Parameter µ denotes the expected
mean of xt, while σ is the standard-deviation and θ
indicates the inverse of its auto-correlation timescale.
The distribution of xt is Gaussian. In this study, I
set dt = 1, which is a reasonable approximation when
θ � 1, and also can be regarded as a special case of au-
toregression model. I call the trajectory of xt as “OU
noise”. A comparison between OU noise and Gaussian
white noise is showed in Figure 1 (a-d).

The auto-correlation of OU noise is:

1

σ2
〈(x(t0)− µ)(x(t0 + t)− µ)〉 = exp(−θ|t|) (2)

Algorithm 1: ε-greedy Q-learning with tempo-
rally correlated exploration

Initialize the table or function approximator for
action state value Q̂ and the hidden variable h;
while episode++ < max episode do

Initialize the environment;
while task not done do

Sample a random number ξ ∼ N(0, 1) ;

h← h− θh+
√

2θξ

if |h| < ε then Sample a temporally
correlated stochastic action a(h);

else Select action a = argmax(Q̂(s, ·));
Execute and record the state transition
(s, a, s′, r);

Compute the target Q value:

Qtarget(s, a) = r + γmax[Q̂(s′, ·)]

Update the table or approximator for Q;

end

end

With this temporal correlation, it is obvious that
the range of exploration will be larger by larger auto-
correlation timescale, without changing the variance
of the noise. Consider a 2-dimensional random walk
problem, where the step size (velocity) at x and y di-
rection is sampled from either Gaussian white noise or
OU noise. As Figure 1(e) shows, the range of random
walk is enlarged when the temporally correlated OU
noise is used.

3 Related works

Two recent studies[4, 5] utilized temporally corre-
lated noise to perform exploration in control tasks with
continuous actions space, with actor-critic algorithms.
However, they did not show the results that tempo-
rally correlated noise significantly outperforms white
noise. Neither did they extend the stochastic action
selection into discrete action space.

In this article, I propose the OU-process as the ex-
ploration stochasticity in discrete action space. I will
show that the temporal correlation in noise signifi-
cantly increase the efficiency of exploration and thus
the performance of RL.

4 Algorithm

I call the algorithm used in this paper “ε-greedy Q-
learning with temporally correlated exploration”( Al-
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Figure 1: Comparison between Gaussian white noise(σ = 1) and OU noise(θ = 0.3, σ = 1) . (a) An example
trajectory of Gaussian white noise, within 200 time steps. (b) Auto-correlation of the Gaussian white noise in
(a). (c-d) Same as (a-c), but an example of OU noise plotted. (e) Trajectory of a random walk on a 2-D plane,
where the velocity is sampled from 2-D Gaussian white noise or OU noise. 100 trials of 100 steps are plotted.

gotithm 1). To generate temporally correlated noise,
a hidden variable h is used. This algorithm is mostly
the same as standard ε-greedy Q-learning[7] but the
stochastic action for exploration is temporally self-
correlated. Note that there are various ways to sample
a temporally correlated stochastic action, one of them
is used in this study: Assuming the action space is
{−1, 1}, then a = sign(h) can be sampled as the auto-
correlated stochastic action.

5 Experimental results
I performed the RL experiments with ε-greedy Q-

learning with temporally correlated exploration, com-
pared with the same algorithm but using Gaussian
white noise.
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Figure 2: Experimental results. (a) Setting of chain
world task, where the numbers indicate the reward at
each state. (b,c) Performance comparison between the
Q-learning using OU noise(blue, θ = 0.05) and Gaus-
sian white noise(red). The last 1000 episodes for cart-
pole are without training and all-greedy. Simulations
were run for 100 trials.

In the first experiment, I tested a chain world task,
as showed in Figure 2(a). I used a table for estimat-
ing Q value, which was updated for each step. The

second experiment is the classic continuous control
task “cartpole”, where I use an single-layer perceptron
to approximate the Q-value. State triansitions were
recorded in a replay buffer, and the synaptic weights
of the network were updated by randomly sampling a
batch of data from the buffer at each time step.

In both two experiments, the agent using OU noise
for exploration has achieved better performance than
that using white noise. For the chain world, the reason
is straightforward: the agent needs higher exploration
range to reach the large reward at most right. But
for cartpole, the case becomes more complicated. OU
noise works better when learning rate is small and ε ∼
0.1. Further detailed and systematic study will be the
future direction.

The codes can be found at https://github.com/oist-
cnru/temporally correlated exploration stochasticity.
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