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Multiphase shear flows often show banded structures that affect the global behavior of complex
fluids e.g. in microdevices. Here we investigate numerically the banding of emulsions, i.e. the for-
mation of regions of high and low volume fraction, alternated in the vorticity direction and aligned
with the flow (shear bands). These bands are associated with a decrease of the effective viscosity
of the system. To understand the mechanism of banding experimentally observed we have per-
formed interface resolved simulations of the two-fluid system. The experiments were performed
starting with a random distribution of droplets which, under the applied shear, evolves in time re-
sulting in a phase separation. To numerically reproduce this process, the banded structures are
initialized in a narrow channel confined by two walls moving in opposite direction. We find that
the initial banded distribution is stable when droplets are free to merge and unstable when coa-
lescence is prevented. In this case, additionally, the effective viscosity of the system increases,
resembling the rheological behavior of suspensions of deformable particles. Droplets coales-
cence, on the other hand, allows emulsions to reduce the total surface of the system and hence
the energy dissipation associated to the deformation, which in turn reduces the effective viscosity.

1 Introduction
The formation of banded structures in shear flows has been ob-
served for different types of complex fluids1,2. These structures
can have different orientations depending on the flowing mate-
rial: banding in the direction of the velocity gradient has been
observed in worm-like micellar solutions as a consequence of a
flow instability3 whereas structures oriented in the vorticity di-
rection and alternated in the flow direction have been reported
for attractive emulsions4. Kang et al. 5 performed experiments
of rodlike virus suspensions and observed vorticity banding in a
limited range of shear rates which was explained in analogy to
elastic instabilities of polymers (the Weissenberg effect): inhomo-
geneities in the flow induce a weak rotational flow in the gradient
direction.6 Of interest here, vorticity banding has been observed
in emulsions composed by a biphasic polymer blend flowing in the
Newtonian regime7,8. In these works, the authors perform exper-
iments at different viscosity ratios (from 0.001 to 5.4) and shear
rate (from 0.005 s-1 to 5 s-1) in a range from dilute to moderate
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concentration of the disperse phase (the volume fraction ranging
from 2.5% to 20%). They report the generation of droplet-reach
and droplet-poor regions, regularly aligned in the direction of the
flow and alternating in the vorticity direction, as illustrated in
figure 1. The vorticity banding phenomenon was observed only
when the droplet phase showed a viscosity lower than the matrix
phase (viscosity ratio < 1). The process, which leads after long
time to a separation of the phases, has been associated with a de-
crease of the effective viscosity which is more evident for lower
values of the viscosity ratio. Caserta and Guido 8 linked the for-
mation of bands with the change of the concavity of the viscosity-
volume fraction master curve. In this study we investigate the
stability of banded structures and relate the vorticity banding in
shear flows to the viscosity-concentration curve.

Emulsions are a biphasic liquid-liquid system in which the two
fluids are partially or totally immiscible. Depending on the in-
teraction force between the droplets, the emulsions can be con-
sidered repulsive or attractive. In the former case, the repulsive
force between the drops is predominant, whereas in the latter
case the system can produce flocculates4. The macroscopic prop-
erties of these systems strongly depend on their microstructure,
mainly the droplet size and distribution. The two mechanisms
that affect the disperse phase dynamics are the interface deforma-
tion and the collision rate. The deformation is due to the stress
induced by the flow, counterbalanced by the interfacial stresses,
which tend to reduce the droplet surface by keeping a spheri-
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Fig. 1 Example of vorticity banding in a plane parallel to the walls: droplet
distribution at increasing time (γ = γ̇t is a non-dimensional measure of
time) from left to right. Figure adapted from Caserta and Guido 8.

cal shape. The ratio of these two stresses is known as capillary
number, Ca. When Ca exceeds a critical value, droplets do not
reach a steady state shape under flow, but break in two or more
fragments, each having a stable deformed shape9. On the other
hand, in the case of non diluted emulsions, the flow can induce
the collision of two or more droplets. During these interactions at-
tractive forces between droplets can induce coalescence, provided
the resulting larger drop is still stable under flow, i.e. its capillary
number does not exceeds the critical value. The interplay of these
two mechanisms is of fundamental importance for describing the
properties of liquid-liquid systems such as emulsions10,11. These
are important also in microfluidic devices to control the formation
of droplets and manipulate their distribution, e.g. T junctions or
nozzles12,13.

While the breakup involves mainly the interaction between one
single drop and the external flow, the coalescence arises from the
interaction of different drops, which complicates the dynamics of
the system. If the Peclet number, defined as the ratio of the dif-
fusion induced by the external flow and the molecular diffusion,
is larger than 1 then the coalescence is flow-driven, which is the
case under consideration in this study. Under this condition, it
has been shown experimentally that coalescence decreases with
increasing shear rate as well as with the particle-size ratio, due
to changes in the trajectory of smaller droplets.14,15 The complex
dynamics describing the behavior of two colliding droplets can be
thought as the interplay of an external flow, responsible of the
frequency, force and duration of collisions, and an internal flow
(the drainage film between the two particles) which accounts for
the deformation of the interface and, eventually, rupture and con-
fluence.16. For spherical particles of equal size at low Reynolds
number, it is possible to estimate a collision frequency per unit
time and volume as C = (2/3)γ̇d3n2, with γ̇ the applied shear
rate, d the diameter of the particles and n the number of par-
ticles per unit volume17. If the characteristic collision duration
is larger than the drainage time, droplets will tend to coalesce,
whereas the emulsion will behave as repulsive in the opposite
case18. From scaling analysis it is possible to approximate the
drainage time in a head-on collision of two equal-size drops as
td γ̇ ≈ Cam, where m = 4/3 if the drainage film is assumed to be
flat16 or m = 1 for dimpled-film shape19. This estimation has
also recently been corrected to account for the slip condition at
the interface between polymers20 which can give important dif-

ferences mostly at low Ca. In a real scenario, the assumption of
head-on collision is not always proper and the emulsion can have
a polydisperse size distribution, which makes the previous esti-
mate not fully reliable. The morphology of a liquid-liquid system
under flow is a non trivial function of the flow intensity, depend-
ing on the entire flow history21,22. Several experimental studies
have been conducted on droplet collisions in shear flows in order
to describe the size evolution and deformation13,18,23,24 and to
investigate the effect of the wall confinement25.

Performing numerical simulations of droplet collisions and co-
alescence is a challenging problem due to the large separation of
scales involved in the problem: from the external flow length-
scale, the gap between the two plates which can be order of mm,
to the smallest scale given by the thickness of the fluid film be-
tween two drops, which can be order of nm16. Additionally, the
process of band generation requires thousands or tens of thou-
sands strain units8 to fully develop, making the observation win-
dow very long. Fully resolved three-dimensional simulations of
emulsions in shear flow, with same physical parameters as in ex-
periments, are therefore extremely expensive. Numerical studies
of emulsions at moderate concentration in literature have mostly
been conducted with methods that do not allow droplets to coa-
lesce26,27 whereas simulations which resolve the liquid films are
mostly in the dilute regime28,29.

In this work we present a numerical investigation of emulsions
in shear flow with volume fraction φ of the disperse phase rang-
ing from 5% to 20% and viscosity ratio λ from 0.01 to 10, defined
as the ratio of the disperse phase viscosity over the outer fluid vis-
cosity. To avoid to simulate the long process of bands generation,
occurring over thousands of shear units, the initial condition of
our simulations is a distribution of droplets already in the forms
of bands, whose stability is investigated for different coalescence
efficiency. We aim to first reproduce the experimental observation
in Caserta and Guido 8 and to explain the vorticity banding pro-
cess by the effect of the coalescence on the droplet distribution
and on the rheological behavior of the system.

2 Numerical Method and Setup
We simulate emulsions at moderate concentrations in shear flows
at low Reynolds number. The multiphase flow is governed by the
incompressible Navier-Stokes equations

∂ui

∂xi
= 0, (1a)

ρ

(
∂ui

∂ t
+u j

∂ui

∂x j

)
=− ∂ p

∂xi
+

∂
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(
2µDi j

)
+σκδsni. (1b)

where ui, with i = 1,2,3, are the velocity components in the three
Cartesian coordinates x1,x2 and x3, p the pressure field, ρ and µ

the local density and viscosity, D the rate of deformation tensor
Di j =

(
∂ui/∂x j +∂u j/∂xi

)
/2, σ the interfacial tension coefficient,

κ the curvature of the interface, ni the i−th component of the unit
normal vector n to the interface and δs the Dirac delta function
which express that the interfacial tension force acts only at the
interface between the two fluids. To track in time the position
of the interface we employ a Volume of Fluid (VoF) technique
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based on the multi-dimensional tangent of hyperbola interface
capturing (MTHINC) method30. To identify the two fluids we
introduce a VoF function H (x, t) defined as the cell-average value
of the volume fraction of one fluid in the other. The VoF function
is advected by the flow field as

∂H

∂ t
+u j

H

∂x j
= 0. (2)

The material properties of the two fluids are linked to the VoF
function H as follow

ρ(x, t) = ρ1H (x, t)+ρ0(1−H (x, t))

µ(x, t) = µ1H (x, t)+µ0(1−H (x, t))
(3)

where the subscript 1 stands for the disperse phase, the sub-
script 0 for the carrier fluid and H is equal to 1 in the disperse
phase and 0 in the carrier fluid. Finally the surface tension force
is approximated using the Continuum Surface Force (CSF) ap-
proach31

σκδsni = σκ
∂H

∂xi
. (4)

The solver uses the second-order centered finite difference
scheme for the spatial discretization and a fractional step algo-
rithm for the time marching with a fast FFT solver for the result-
ing Poisson pressure equation. For the temporal discretization a
second order Adam-Bashfort scheme is used. See Rosti et al. 32

for a detailed description and validation of the code employed in
this work.
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Fig. 2 Sketch of the computational geometry and of the initial configura-
tion.

We know from previous experimental studies8 that, under spe-
cific conditions, sheared emulsions form vorticity aligned banded
structures. The process of formation of bands from an isotropic
emulsion needs more than 1000 strain units (the strain γ = γ̇t is
a measure of the overall deformation imposed to the sample, and
can be considered as a non-dimensional measure of time under
flow). Running a numerical simulation of this process for the en-
tire time required to complete its dynamic is not feasible with the
actual computational limits. For this reason, we decided to initial-
ize the disperse phase with the already-formed banded structures
and verify in which conditions they are stable and in which they
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Fig. 3 Time history of the effective viscosity (solid lines) and normalized
surface (dashed lines) for three different grid resolution: N = 16 (red);
N = 32 (blue), N = 64 (green), with N the number of grid points per initial
radius. These results refer to the simulation in the small domain.

will diffuse. The characteristic width of the bands is of the or-
der of the gap between the plates δ 8, which clearly highlights
the effect of the confinement on the phenomenon under study.
We initialize a random distribution of droplets, of equal radius r,
confined in two bands of width order δ . It is worth noticing that
in the case of morphological hysteresis the steady state droplet
size distribution is not only function of the applied shear rate but
depends also on the initial distribution.21 Thus, the focus of this
study is not on the droplet morphology at steady state but rather
on the stability of banded structures. To characterize the rhe-
ological behavior of the emulsion we also compute the effective
viscosity in a small domain starting with an homogeneous droplet
distribution and preventing the banding in the vorticity direction
by increasing the lateral confinement. By doing so, we are able to
compute the constitutive curve of the system. In the following we
will refer to the two cases as large domain (LD) and small domain
(SD).

A sketch of the computational domain and the initial distribu-
tion of the droplet is reported in figure 2. The domain is periodic
in the x and y directions (velocity and vorticity directions) and
wall bounded in the z direction (velocity gradient direction). The
large domain box has size Lx = Ly = 10δ and Lz = δ whereas the
small domain has size 1.6δ in the x and y direction and same size
in the z direction, with δ = 10r. The top and bottom walls move
with opposite velocities ±U such that the applied shear rate is
equal to γ̇ = 2U/δ , chosen to ensure that the droplet Reynolds
number Re = γ̇r2/ν0 is equal to 0.1, being ν0 the kinematic vis-
cosity of the outer fluid. The interfacial tension coefficient σ is
chosen to provide a capillary number, based on the initial radius
Ca = µ0γ̇r/σ , equal to 0.1, matching the experiments in Caserta
and Guido 8. In the experiments the banding has been observed
only for viscosity ratios smaller than one8; additionally the time
required to reach a stable and steady configuration is shorter
for smaller λ 7. For this reason we simulate banding emulsions
only with a viscosity ratio of 0.01. The coalescence probability
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Fig. 4 (Left) Droplets distribution at strain unit γ = 15 for the simulations with 20% volume fraction. (Right) Time history of the effective viscosity µe
normalized with the outer fluid viscosity µ0 for the simulation with φ = 20% (solid black line); on the right vertical axis, normalized total surface for the
simulation with φ = 20% (black dotted line). The inset shows the average volume fraction < φ > in the vorticity direction (y) at three different instants
for the case with volume fraction 20%: initial distribution (dashed-dot red line); distribution at γ = 15 (dotted blue line); distribution at γ = 27 (solid green
line).

estimated as in Chesters 16 with the chosen set of parameters is
equal to 0.9, thus suggesting that almost every collision will re-
sults in droplet coalescence. Additionally, the effect of breakup is
secondary compared to coalescence as observed experimentally8

and also verified a posteriori in our simulations. All the simula-
tions have been performed with a resolution of 32 grid points per
droplet initial diameter. We have verified that this resolution is
enough to properly describe both the transient and steady state
behavior of the emulsions, as shown in figure 3. In particular, the
effective viscosity has already converged for the coarser gird (16
points per initial radii), whereas the coalescence at low resolu-
tion is slightly faster (10% difference) but the steady state value
is the same. From the simulation with 64 points (shorter in time
for computational reasons) we verified that the adopted resolu-
tion (N = 32) is also enough to capture the transient dynamics
with a maximum error of less then 8% in the total surface. In this
study, the effective viscosity µe is always computed as the ratio
between the wall shear stress (i.e. the time and space average
of the derivative in the z direction of the horizontal velocity u at
the walls multiplied by the outer fluid viscosity) and the applied
shear rate

µe =
µ0 << ∂u

∂ z |w >>

γ̇
(5)

where the symbol « » indicates time and space average in the
homogeneous directions.

3 Results and discussion

In absence of any potential, for example gravitational or electric
field, the dynamics of the disperse phase is governed only by the
external flow. As the simulations start, the shear is transferred
from the plates to the interior of the domain, the drops start to
deform, align in the direction of the shear and eventually collide.
As soon as two pieces of interface are in the same computational

cell they will merge leading to the coalescence of the drops. In
this case every collision leads to coalescence, which implies an
overestimation of the coalescence efficiency of the system. This
is a well-known issue of interface capturing methods as the VoF
solver employed in this study. From a physical point of view, this is
equivalent to having a system with drainage time tending to zero,
or coalescence efficiency tending to unity. The condition of uni-
tary coalescence efficiency results in an extremely fast dynamic
evolution of the droplet size under flow, leading to the formation
of very large droplets. As droplet size grows the capillary number
approaches the critical value, so an equilibrium between droplet
coalescence and breakup could be the expected steady-sate. How-
ever in confined conditions, as in our study, large droplets can be
stabilized by the presence of walls13. This is in agreement with
what was observed in the experiments where, at very large strain
values, and in the case of high coalescence efficiency, extremely
large drops are visible.7,8. Analogous structures have been also
reported by33. We consider the simulations to be steady when
the effective viscosity vary less than 3-4% in a period of about 10
strain units.

We display in figure 4 the instantaneous distribution of the
droplets (left panel) after 15 strain unit for volume fraction equal
to 20%. Droplets inside the bands, where collisions are more fre-
quent, start to coalesce and create bigger structures elongated in
the direction of the shear. The distribution of the average vol-
ume fraction < φ > in the vorticity direction (y), computed by
averaging in the x and z-directions the local volume fraction φ ,
is reported in the inset of the right panel for three different in-
stants, also marked in the time history of the effective viscosity
and total surface in the same figure. As a consequence of the co-
alescence, the average concentration becomes more peaked and
confined in space, as visible by comparing the initial condition
(red dash-dotted line) to the blue and green curves in the inset.
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In other words, in these conditions we observe that the initial
banded structures are stable, i.e. they remain localized in their
initial position and do not diffuse along the vorticity direction.
Note also that the initial width of the band was about 1.5δ but
at steady state it becomes δ . To verify the independence of this
result from the initial configuration we considered an additional
case with bands of local volume fraction 30% and with a non-zero
volume fraction, about 5%, between the bands so that the mean
volume fraction in the domain is 15%, and also for this configu-
ration the initial banded structure is stable (not shown here).
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Fig. 5 Comparison of the effective viscosity µ normalized with the outer
fluid viscosity µ0 between simulations in the large domain (LD) and λ =

0.01 (red dots) and simulation in the small domain (SD): λ = 0.01 (blue
square), λ = 1 (black triangle), λ = 10 (green triangle). The black lines
are polynomial fit to the data. The dashed line represent the level rule
between two phases, one given by droplet rich areas at ≈ 30% φ and
one by droplet poor area at ≈ 0% φ , as explained in the text.

To understand why banded structures are stable in this con-
dition it can be helpful to consider the shape of the constitutive
curve of an emulsion. Conversely to rigid34 and deformable parti-
cles35, where the effective viscosity always increases with the vol-
ume fraction, emulsions can exhibit a constitutive curve of the ef-
fective viscosity vs the volume fraction with a negative curvature
when the viscosity ratio is lower than unity8,36. As previously dis-
cussed, we computed the effective viscosity of an homogeneous
emulsion in a smaller domain in the homogeneous directions and
same vertical distance between the walls δ . This smaller domain
prevents the separation of phases hence the system can be seen as
representative of a homogeneous distribution with a certain aver-
age volume fraction. It is worth noticing that, the viscosity com-
puted in the small domain (SD) represents a constitutive curve
of the emulsion, being the distribution homogeneous, whereas in
the large domain (LD) we measure the flow curve of the system.
In figure 5 we compare the effective viscosity of the two systems,
the large domain with bands (morphologically described in fig-
ure 4) and the homogeneous small domain with no bands. The
results illustrate that for viscosity ratio smaller than 1 the consti-
tutive curve has negative curvature; this effect reduces increasing
λ so that the curvature becomes positive for viscosity ratio greater
than 1. By comparing the effective viscosity between the simula-

Fig. 6 (Top panel) Snapshot of the velocity component in the gradient
direction (z) showing the migration of the droplets to the center of the do-
main. (Bottom panel) Snapshot of the velocity component in the vorticity
direction (y). For both panels γ = 5.

tions in the two different domain we also confirm the prediction
of the experiments showing that the presence of banded struc-
tures effectively reduces the viscosity of the system. This effect
is a direct consequence of the curvature of the constitutive curve:
for instance, an emulsion with average volume fraction φ = 15%
in a small domain will have an effective viscosity given by the
blue square in figure 5. If we consider the same volume fraction
but in a larger domain, which is able to fit the banded structures,
the phases will tend to separate producing droplet-rich areas (in
the example at 30% volume fraction) and droplet poor-areas (ap-
proximately 0% volume fraction). The effective viscosity of this
system, given by the red circle in correspondence of φ = 15%, lies
approximately on the dashed line connecting the values of the vis-
cosity at 0% and 30% for the flow without bands. In other words,
it is possible to apply the level rule by considering the droplet
rich and droplet poor regions as two different phases with volume
fraction φ1 = 0.3, φ2 = 0 and effective viscosity µ1 = 0.9 and µ2 = 1,
respectively. If ξ is the volume occupied by the bands with respect
to the whole domain (approximately 0.5), the average volume
fraction is given by φ = ξ φ1 +(1− ξ )φ2 = 0.15. Similarly, for the
effective viscosity we have µ = ξ µ1 + (1− ξ )µ2 = 0.95 which is
approximately the value given by the red dots for φ = 0.15. This
implies that, due to the shape of the constitutive curve, if the
domain is large enough the phases will separate because the final
state is energetically more convenient, being associated to a lower
effective viscosity. Additionally, since the two curves diverge, the
decrease in effective viscosity given by the phase separation is
more significant for higher volume fractions. For small φ , instead,
since the average distance between droplets increases collision
frequency tends to zero and the vorticity banding would require
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extremely long time to form and is unlikely to be seen. This can
also be explained considering the level rule and observing that
for small volume fraction the difference in the effective viscosity
between the banded and non-banded distribution becomes neg-
ligible, hence the curvature of the master curve becomes almost
zero. Note also that, by increasing the viscosity ratio, the curva-
ture of the constitute curve becomes positive and for λ > 1 the
banding is not anymore energetically convenient. These results
are in agreement with the experimental observations by Caserta
and Guido 8. The reason why at large viscosity ratio there is no
banding is that the coalescence is greatly favored by a low dis-
perse phase viscosity and reduces significantly for λ > 116; as we
will see in the next section, coalescence is the key ingredient for
the banding.

Before proceeding to the next section we want to suggest an
analogy between our system and the mechanism proposed in Ref
6. Kang et al. 6 observed vorticity banding in suspensions of rod-
like viruses for a specific range of the applied shear rate. They
proposed a mechanism for the generation of these bands inspired
by the elastic instability of polymers: the presence of inhomo-
geneities in the flow induces normal stresses in the gradient direc-
tion which, in turn, produce a weak flow causing the phase sep-
aration in banded structures. In our system inhomogeneities cor-
respond to droplets of different size, whereas the flow in the gra-
dient direction (z) is produced by the migration of larger droplets
towards the center of the gap (see figure 6 top panel). The latter
effect has been demonstrated experimentally10,37 and previous
simulations have also shown that it is related to the reduction of
the emulsion effective viscosity36. Once droplets become larger
and migrate towards the center of the gap, they also move slower
in the flow direction than smaller droplets. This induces a gradi-
ent of the flow velocity in the vorticity direction, associated with
a weak flow in the vorticity direction (see figure 6 bottom panel).

3.1 Effect of drainage time

As mentioned before, our simulations represent the limit of
drainage time tending to zero or, equivalently, of unitary coales-
cence efficiency. What will happen if we consider a system with
drainage time tending to infinity? In this case the collision time
is always faster than the drainage time and coalescence never oc-
curs. To reproduce this limiting case in our simulations, we intro-
duce an Eulerian subgrid force38 in the momentum equation that
depends on the signed distance ψ (usually referred to as level-set
function) from a droplet interface

Fc = µ0Ur
(

a
ψ

+
b

ψ2

)
n (6)

where µ0 is the outer fluid viscosity, r the initial radius of the
droplets, U the wall velocity, n the normal to the interface and
a and b are two coefficients. Every timestep the distance func-
tion ψ is reconstructed from the VoF field solving the following
redistancing equation

∂ψ

∂τ
+S (ψ0)(|∇ψ|−1) = 0 (7)

with S (ψ0) the sign function, τ an artificial time and the initial
distribution ψ0 given by ψ0 = (2H − 1)0.75∆, being ∆ the grid
spacing39. We solve equation (7) using the second order algo-
rithm of Russo and Smereka 40 with a timestep ∆τ = 0.1∆. In the
implementation, we tag every initial droplet with an index and
whenever two different droplets are closer than three grid points
we apply this repulsive force. By changing the magnitude of the
force we can delay or totally prohibit coalescence, therefore this
force can be thought of as the consequence of the additions of
surfactants in the emulsion. In this study, the two coefficients
a and b have been chosen to provide the smallest force able to
completely prevent the coalescence of the droplets, which corre-
spond to a = 55 and b = 3.5. See De Vita et al. 36 for a detailed
description of the algorithm and the effect of this collision force.

The evolution of the droplet configuration for the cases with
collision force is reported in figure 7. Unlike what observed in
the previous cases, the initial banded structures are unstable in
absence of coalescence and start to diffuse in the vorticity direc-
tion. Looking at the time evolution of the average volume fraction
distribution < φ > (inset of figure 8), we notice that the bands
become larger, the peaks reduce and the distribution tends to dif-
fuse in the y-direction. If we now plot the effective viscosity vs
the volume fraction for the cases with collision force we find that
the effective viscosity grows with the volume fraction and that
there is a change in the sign of the curvature (see figure 9). It is
worth noticing that when collision forces are active the effective
viscosity obtained in large domains (blue squares) or for small
domain where vorticity diffusion is inhibited (black diamonds), is
approximately the same, as reported in the figure 9. The small
difference between the two curves with collision force is due to
the remaining trace of the original bands in the simulations in the
large domain, which diffuse very slowly. When the coalescence is
prevented, the banded structures are not energetically convenient
because the banded configuration exhibit an higher effective vis-
cosity. This suggests that the initial banded structures, when co-
alescence is prohibited, tend to distribute homogeneously inside
the domain.

When the collision force is applied to prevent the coalescence,
the system behaves similarly to a suspension of deformable par-
ticles35,41,42. Rosti et al. 41 showed that the effective viscosity of
a suspension of deformable particles can be estimated with the
Eilers formula, valid for rigid spheres, by computing an effective
volume fraction based on the mean deformation of the particles.
Suspensions of deformable particles and droplet when they can-
not merge have therefore a constitutive curve with a positive cur-
vature. This implies that banded structures are not associated to
a minimum of viscosity and thus are unstable; applying the same
level rule as done in the case with merging will give a larger value
of the effective viscosity for the banded case. The mechanism of
coalescence allows emulsions to reduce the total surface of the
system and thus to reduce the viscous dissipation associated to
the flow. This also explains why the banding was not observed in
experiments for viscosity ratio greater than unity8: for λ > 1 the
coalescence efficiency reduces16.
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Fig. 7 Drops distribution for the simulations with collision force (i.e. coalescence efficiency tending to zero) for the case with 20% average volume
fraction: γ = 0 (left), γ = 105 (right).
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Fig. 8 Time history of the effective viscosity µe normalized with the outer
fluid viscosity µ0 for the simulation with φ = 20% and collision force. The
inset shows the average volume fraction < φ > in the vorticity direction
(y) at three different instants: initial distribution (dashed-dot red line); dis-
tribution at γ = 30 (dotted blue line); distribution at γ = 105 (solid green
line).

3.2 Shear stress budget
To better understand this aspect, we compute the contribution of
each term of the momentum equation to the shear stress. To this
end, we consider the x-component of the momentum equation,
average it in the homogeneous directions (x and y) and integrate
in the z-direction32:

τxz = τ
µ
xz + τ

σ
xz + τ

c
xz (8)

where the first term is associated to the viscous dissipation, the
second term to the interface tensions and the last term to the
collision force. To account for the interface tension we use the
Continuum Surface Force approach31 in which the interface ten-
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Fig. 9 Comparison of the effective viscosity µe normalized with the outer
fluid viscosity µ0 for the simulations without the collision force (red circle)
and with collision force (blue square). The values for the cases with the
collision force are taken at γ = 25. Black diamonds correspond to simula-
tions in a small domain, as in figure 5, starting with initial homogeneous
distribution.

sion is expressed as Fσ = σκ∇φ , where κ is the local curvature.
The shear stress due to interfacial tension is computed as

τ
σ
xz(z) =

∫
z
< Fσ ,x > dz;

in the same way we compute the contribution to the stress due to
the presence of the collision force as

τ
c
xz(z) =

∫
z
< Fc,x > dz.

See De Vita et al. 36 for a full derivation. The average values
of all the contributions are reported in figure 10 divided by the
Newtonian shear stress so that the sum of the components gives
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contribution to the viscous stress in the inner fluid is about 100 times
smaller than the others and is not visible on this scale.

the suspension effective viscosity. The stress budget clearly shows
that when the coalescence is prevented, most of the increase in
the effective viscosity is due to the interface tension term. The
stress associated to the deformation is proportional to the sur-
face area which is higher in the cases with collision force. This
confirms that the coalescence is the mechanism that allows emul-
sions to reduce their effective viscosity. From the graph, we can
also observe that, with merging, the additional reduction of the
effective viscosity in presence of shear banding is mostly related
to a further reduction of the interfacial tension term, with a small
contribution associated to the viscous dissipation. Indeed, for the
simulations with bands we observe that the droplets tend to ap-
proach the walls more than for the case without bands, which can
explain the small reduction of the viscous stress. The reduction
of the total area in the simulation with bands is about 8% higher
which confirm the reduction of the interface tension stress.

3.3 Bands diffusion

Finally, we provide an estimate for the droplet diffusion in the
vorticity direction, leading to the disappearance of the bands. We
consider the diffusion of bands as broadening of the average vol-
ume fraction < φ > (computed by averaging in x and z direc-
tions) in the vorticity direction when coalescence is prohibited
and droplet pair interaction are more collision-like, as shown in
figure 8. As a first approximation, we suppose that the evolution
of < φ > follows a monodimensional diffusion equation with a
constant diffusion coefficient

∂ < φ >

∂ t
= D

∂ 2 < φ >

∂y2 . (9)

The diffusion coefficient D has dimension L 2/T and can be es-
timated using as length scale the particle diameter L = d and as
time scale the inverse of the collision frequency per unit volume
times the volume associated to the reference length T = 1/(d3C).
With this definition we find that D = (2/3)γ̇d8n2 = 0.038. We
then solve the diffusion equation (9) for several diffusion coef-
ficients starting with an initial distribution of < φ > correspond-
ing to the initial configuration of our fully resolved simulations
(red dashed-dotted line in the inset of figure 4). We compute
the `2−norm of the error between the approximated distribution
given by the diffusion model and the simulated one every 0.01
shear unit and find that the diffusion coefficient which minimize
the error is D = 0.036. The difference between the two diffusion
coefficients is less then 5% which can be explained by the defor-
mation of the droplets, not considered in the estimation of the
collision frequency C by Smoluchowski M. 17. This confirms that
the evolution of the average volume fraction < φ > in the vorticity
direction is governed by the timescale of the collision frequency.
Finally, we display in figure 11 the evolution of the approximated
average volume fraction < φ > alongside the one obtained with
the full 3D numerical simulations. Since we considered only a
purely 1D diffusion equation with a constant diffusion coefficient
the evolution of the peaks is not properly reproduced whereas the
average diffusion of the band is well approximated.

4 Conclusions
We performed numerical simulations of emulsions in a shear
flow at moderate volume fractions and low Reynolds number re-
producing the experiments in Ref. 8. The aim of this study is
to demonstrate that coalescence is responsible for a substantial
change in the rheology of the suspension and for the formation of
the vorticity banding in shear flows of emulsions. Starting with
an initial distribution of the disperse phase in banded structures,
we observe that the distribution is stable and that the bands re-
main localized in their initial position, when coalescence is ac-
tive. In this configuration, the curve of the effective viscosity
vs the volume fraction exhibits a negative concavity, as also ob-
served experimentally8. To single out the effect of the coales-
cence we introduced a short-range repulsive force which always
prevents the merging of drops. When coalescence is prevented,
the banded structures are not stable anymore, the droplets tend to
diffuse and to assume a uniform distribution across the domain.
In this case, the concavity of the curve of the effective viscos-
ity vs volume fraction changes sign, resembling the behavior of
suspensions of rigid and deformable particles. The coalescence
mechanism allows emulsions to reduce the total surface of the
system and hence to reduce the energy dissipation associated to
the deformation of the particles. The results of the simulations
and band stability indicate therefore that the coalescence is the
physical mechanism that allows emulsions to generate the banded
structure in the vorticity direction and the collision process is re-
sponsible for the timescale of the process. To summarize, there
are two mechanisms that allows emulsions to reduce their effec-
tive viscosity: i) the coalescence, which reduce the total surface
of the disperse phase and change the concavity of the rheological
curve; ii) the shear banding that, when possible in large enough
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Fig. 11 Comparison between the simulated (dashed-dot blue line) and
the approximated (solid red line) average volume fraction < φ > for the
simulation with φ = 20%. (Top panel) comparison at time γ = 10; (bottom
panel) comparison at time γ = 60.
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Fig. 12 Sketch of the mechanisms contributing to the reduction of the
effective viscosity of an emulsion.

channels, further reduces the interface tension contribution. We
sketch qualitatively this behavior of emulsions in figure 12.

Future investigations should consider the improvement of the
collision algorithm in order to handle collision and coalescence
together and reproduce a more realistic collision efficiency.
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