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Abstract— We test the viability of having learn-
able timescales in multi-timescales recurrent neural
networks.
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1 Motivation

This article is quite modest. It seeks to provide
preliminary answers to the question: Can and should
multi-timescales recurrent neural networks learn their
own timescales? Multi-Timescales Recurrent Neural
Networks (MTRNN) [I] are recurrent neural networks
with several recurrent layers stacked onto one an-
other. Each layer connects to the layer above and
below, and each layer has its own timescale, which
acts as a decay factor that controls how much the
layer state over the past timesteps influence the cur-
rent hidden state. Typically, inspired by the brain, the
lower layers—which handle the raw sensory input—
have short timescales while the higher layers, that deal
with abstract features, have long timescales and re-
act to broad changes in the dynamics of the network.
In published MTRNN experiments, timescales values
are usually set arbitrarily. A popular choice has been
exponential timescales, such as setting the kth layer
timescale to 2% (in [2]) or 251 (in [3]).

We can wonder, however, if those timescales could
not be learned during training, like any other connec-
tion weight. And if doing so brings any benefits to the
learning performance. In this article, we respond yes
to the first question, and remain inconclusive about
the second.

2 Method
2.1 Network

We employ a MTRNN [I].
layer k are:

The equations for the

1 1
hY. ., = (1 — Tk) h,’f+7—k (Ld}~' + Sd} + Hd;*" +b)

dy,, = tanh(hf,,)

with h¥ the hidden state of the layer k at time ¢, d¥
the activity of its units, and L, S, and H the weight
matrices for the connection to the lower layer k—1, the
layer itself, the upper layer k+ 1; and b the bias term.
Here, we will consider a network with three layers of
25 units each.

The time constant 75 is the focus of this paper
here. Rather than a fixed scalar, we transform 74 in
a learnable weight in the network, modified through
back-propagation through time. Moreover, based on

our experience, while the learning rate of the rest of
the network is 0.001, the specific learning rate for those
T, weights is 0.01, ten times higher. Additionally, the
value of 74 is clamped to a minimum of 1, to avoid a
degenerative behavior of the layer equation.

2.2 Dataset and Training

We consider five sums of one-dimensional sinus pat-
terns of 100 timesteps each, as seen on the figure below.

Live sums of five sinus functions with diverse periods, over the

0, 1] interval, with a 0.01 resolution (100 timesteps total)

The training is done over 20000 epochs, with a
0.001 learning rate, and considering a mean-squared
error loss over the dataset patterns. We evaluate the
network by its capacity to predict the next timestep,
and to reproduce the pattern in closed-loop: the out-
put of a timestep is used as input for the next timestep.

3 Results

We consider a network initialized with all time con-
stants at 100 (we pushed the learning rate of the 7 to
0.1 for this network). Those time constant values are
too high; they won’t allow the network to generate
the fast variations of the target patterns. As the fig-
ure below shows, learning 7s during training allow the
network to correct for this initialization. The lowest
layer adapts to a low 7 value, while the layer 1 and 2
remain fairly stable.
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Note that while in this experiment, the time con-
stants ended-up ”in order”, layers do not necessarily
get all ordered when learning 7. If we consider ini-
tial 7 values 16, 8 and 4 for layer 0, 1 and 2, layer 0
again gets a low 7 value fast, but layer 2 keeps a lower
7 value than layer 1, at least at epoch 20000, as the
following figure shows.
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The closed-loop performance, in terms for mean square error,
is actually worse with leamable T at epoch 20000,

The loss of the network benefits from the adapta-
tion of the 7 values. However, its closed-loop error
actually is worse: the network with fixed 7 is mostly
approximating the slow mean of the samples, while
the network with learnable 7 is starting to learn to re-
produce faster features of the patterns, but is not yet
good at it.

So: are exponential 7 values a good way to ini-
tialize a MTRNN? The figure below suggests they
might: 7 values of layer 1 and 2 hardly change when
the network is initialized with exponential 7 values.
And when initializing all layers at 7 = 8, the network
evolves toward the similar state at the exponential ini-
tialization.
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When all ime constants start at 8, they evolve toward a similar stationary
state as the exponential case above.
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However, when looking at the output of the net-
work with 7 = 8, those well-differentiated time con-
stants do not necessarily help the network at produc-
ing the target patterns at epoch 20000, as shown in
the figure that follows.

Contrary to our expectations, and while the net-
work with learnable 7 seems to have settled on good
7 values, the network with a fixed 7 = 8 for all three
layers produces better patterns in the closed-loop case.

The graph of the closed-loop error shows that the for-
mer network is also less stable numerically.
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When all time constants start at 8, the open loop performance
7 is fairly indistinguishable whether T values are leamed or not.
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4 Discussion

So let’s review: learning 7 in MTRNN works in
some cases. It can allow a network to adapt to terrible
parameter initialization. It is not clear, however, that
the values that are derived from this learning process
are the best ones for the target patterns. The learning
process, for instance, consistently hits the hard clamp
at 1.0 for the lowest layer. If we remove it, the network
will adopt values of 7 as low as 0.6, creating a dynam-
ics that will degrade closed-loop learning and stability.
Furthermore, it is not clear that the MTRNN perfor-
mance is highly dependent on the precise value of its
time constants, as the network with all layers with
7 = 8 testifies. One could posit that approximately
good, fixed time constants might lead to faster and
more stable performance than adaptive ones.

This article is exploratory. More complex dataset,
simulations and analysis are needed to understand if
and how MTRNN can benefit from learning their time
constant in an autonomous manner.

Code Availability

The source code will be made available for review
shortly after submission at https://figshare.com/
s/d90ec851f08af442627f.

References

[1] Yamashita, Y., Tani, J. (2008). Emergence of Func-
tional Hierarchy in a Multiple Timescale Neural
Network Model: A Humanoid Robot Experiment.
PLoS Computational Biology, 4(11), €1000220.

[2] Choi, M., Tani, J. (2018). Predictive Coding for
Dynamic Visual Processing: Development of Func-
tional Hierarchy in a Multiple Spatiotemporal
Scales RNN Model. Neural Computation, 30(1),
237-270. doi: 10.1162/neco_a_01026

[3] Ahmadi, A., Tani, J. (2017). Bridging the Gap
Between Probabilistic and Deterministic Mod-
els: A Simulation Study on a Variational Bayes
Predictive Coding Recurrent Neural Network
Model. Neural Information Processing, 760-769.
doi: 10.1007/978-3-319-70090-8_77


https://figshare.com/s/d90ec851f08af442627f
https://figshare.com/s/d90ec851f08af442627f

	Motivation
	Method
	Network
	Dataset and Training

	Results
	Discussion

