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In biochemistry, heteropolymers encoding biological information are assembled out of equilibrium by
sequentially incorporating available monomers found in the environment. Current models of polymerization treat
monomer incorporation as a sequence of discrete chemical reactions between intermediate metastable states. In
this paper, we use ideas from reaction rate theory and describe nonequilibrium assembly of a heteropolymer via a
continuous reaction coordinate. Our approach allows for estimating the copy error and incorporation speed from
the Gibbs free energy landscape of the process. We apply our theory to several examples from a simple reaction
characterized by a free energy barrier to more complex cases incorporating error correction mechanisms, such
as kinetic proofreading.

DOI: 10.1103/PhysRevE.100.062502

I. INTRODUCTION

DNA, RNA, and proteins are the building blocks of all
living systems. These heteropolymers are assembled to match
a template; only a very small numbers of mismatches with the
template are tolerable for maintaining biological information
and for correct functioning of cells. However, the binding
energies of different monomers usually differ by only a few
kBT ’s, where kB is the Boltzmann constant and T is the
temperature. This means that, at physiological temperature,
mismatches cannot be completely suppressed [1].

Our aim is to describe the chemical processes responsible
for these errors. Specifically, we consider sequential assembly
of heteropolymers where each incorporated monomer can be
a right (r) or a wrong (w) match with a template. These two
different outcomes can be represented as competing chemical
reactions,

(1)

where h is the heteropolymer produced so far and hr/hw are
the same heteropolymer with an addition of a r/w monomer
at the tip, respectively. Each monomer incorporation is itera-
tively followed by a new one so that the whole polymerization
process is described by the tree-shaped network of chemical
reactions [2,3] in Fig. 1(a).

To achieve accurate and fast assembly, the reactions in
Eq. (1) involve several intermediate steps, such as initial
monomer discrimination [4], kinetic proofreading [4–6],
and mismatch repair [7,8]. In general, each one of these

*simone.pigolotti@oist.jp

error-correction mechanisms contributes simultaneously to
polymerization accuracy, speed [9–17], and energetic cost
[14,18–21].

Two approaches can provide insight into the error-
correction mechanisms underlying heteropolymer assembly.
The first approach is to measure their kinetic rates under
different experimental conditions [9]. The second approach
is to simulate heteropolymer assembly using molecular dy-
namics [22]. From the molecular dynamics, one can project
the numerous degrees of freedom into a one-dimensional
collective variable called the reaction coordinate [23]. The
reaction coordinate simplifies a chemical process into a one-
dimensional random motion [23–25]. The parameters of this
random motion depend on the underlying reactants dynamics
[26–28] and on the projection technique [23,28,29].

Although successful in describing protein folding
[24,25,30] and in modeling reaction rates [19,30], approaches
based on reaction coordinates found little use in studies
of polymerization speed and accuracy. In principle, both
reactions in Eq. (1) can be described by means of a
reaction coordinate [Fig. 1(b)]. However, to study the
complete polymerization process, we need to join the
reaction coordinates characterizing each branch in Fig. 1(a).
Mathematically, this amounts to impose appropriate boundary
conditions at the nodes of the reaction network.

In this paper, we develop a model of heteropolymer assem-
bly based on reaction coordinates and use it to compute the
accuracy and speed of polymerization in different conditions.
The paper is organized as follows. In Sec. II, we introduce
our model. From the reaction coordinate, we derive effective
incorporation and removal probabilities of right and wrong
monomers. In Sec. III, we compute the accuracy and speed
of a general heteropolymer assembly. In Sec. IV, we consider
examples characterized by different Gibbs free energy land-
scapes. In Sec. V, we generalize our results to a case where the
reaction leading to monomer incorporation is complemented
by kinetic proofreading. Section VI is devoted to conclusions
and perspectives.
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(a) (b)

FIG. 1. Synthesis of heteropolymers. (a) Network of incorporation and removal reactions to synthesize a heteropolymer. Each edge in the
network represents the chemical reaction h � hx where h is the heteropolymer produced so far and hx is the same heteropolymer with the
addition of monomer x ∈ {r,w} at the tip. Three reactions compete at the nodes of the network: removal of the last incorporated monomer,
incorporation of a r monomer, and incorporation of a w monomer. (b) Reaction coordinate description of the incorporation and removal
reactions. The initial and final points of the free energy landscapes correspond to the reactants and products of the incorporation and removal
reactions, respectively.

II. MODEL

We define our model of heteropolymer assembly with
reaction coordinates through the following steps. We first in-
troduce the reaction coordinate and the free energy landscape
in each chemical reaction of the polymerization network. We
then study the dynamics of the reaction coordinate dynamics
and its boundary conditions at the nodes of the network. Fi-
nally, we compute the probabilities to incorporate and remove
one monomer along each reaction coordinate.

A. Reaction coordinate and Gibbs free
energy of the heteropolymer

We introduce the continuous reaction coordinate y along
each edge of the polymerization network, Fig. 1(a). Without
loss of generality, we choose the units of the reaction coor-
dinate so that y ∈ [0, 1], where y = 0 and y = 1 correspond
to h and hx, respectively, i.e., to the states before and after
monomer incorporation, see Fig. 1(b).

Each point along this reaction coordinate is characterized
by a Gibbs free energy Ghx(y) (from now on simply free
energy). Such free energy depends on the previously incorpo-
rated sequence of monomers (h), on the candidate monomer
to be incorporated (x), and on the stage of the incorporation
process, i.e., the value of y. Implicitly, Ghx(y) also depends on
the reactant and product concentrations.

We introduce the free energy increments from the begin-
ning of each incorporation reaction,

�Gx(y) = Ghx(y) − Ghx(0), (2)

see Fig. 2. The free energy increments depend on the candi-
date monomer x but not on the whole history of incorporated
monomers h. With this notation, the (absolute) binding free
energy of monomer x is equal to −�Gx(1).

The free energy must be a continuous function of y and
must also vary continuously when crossing the nodes of the
network in Fig. 1. This means that we can decompose the free
energy at an arbitrary stage of the polymerization process as

Ghx(y) = Ghx(0) + �Gx(y)

= Gh(1) + �Gx(y)

=
(∑

i∈h

�Gi(1)

)
+ �Gx(y). (3)

B. Stochastic dynamics of the reaction coordinate and
boundary conditions

Because of thermal fluctuations, the reaction coordinate y
evolves according to a Langevin equation,

dy

dt
= −μ

d

dy
Ghx(y) +

√
2Dξ (t ), (4)

where μ is a mobility, D is a diffusion coefficient, and ξ (t ) is
white noise with 〈ξ (t )〉 = 0 and 〈ξ (t )ξ (t ′)〉 = δ(t − t ′) where
〈. . .〉 denotes an average over noise [31]. We assume that
D satisfies the Einstein relation D = kBT μ with temperature
T and Boltzmann constant kB. We also assume that D, μ,
and T are constant. When the reaction coordinate reaches
the boundaries, either y = 0 or y = 1, a new incorporation or
removal reaction is commenced.

Equation (4) needs to be complemented by rules to specify
which reaction initiates at the nodes of the reaction network.
To this aim, we consider two intermediate values of the
reaction coordinate: y = ε and y = 1 − ε with ε � 1. Using
these values, we coarse grain the evolution of the reaction
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FIG. 2. Free energy G···(y) of the heteropolymer depends on the
reaction coordinate y and the sequence of incorporated monomers.
The superscript of the free energy indicates the stage of the polymer-
ization process (h, hx̃, or hx̃x in this case). The functions �Gx̃ (y) and
�Gx (y) are the free energy increments along the reaction coordinate
to incorporate x̃ and x, respectively. The total binding free energies
for monomer x̃ and x are −�Gx̃ (1) and −�Gx (1), respectively.

coordinate y as

(y = 0)
π x

0,ε−−⇀↽−−
π x

ε,0

(y = ε)
π x

ε,1−ε−−−⇀↽−−−
π x

1−ε,ε

(y = 1 − ε)
π x

1−ε,1−−−⇀↽−−−
π x

1,1−ε

(y = 1), (5)

where the quantities π x
ỹ,y are the first-passage probabilities

from y to ỹ. For example, π x
1−ε,ε is the probability that the

reaction coordinate reaches y = 1 − ε from y = ε without
having reached y = 0 before.

The representation in Eq. (5) separates the dynamics in
proximity of the nodes of Fig. 1(b) from the dynamics in the
interval [ε, 1 − ε]. Thanks to this separation, we use detailed
balance, probability conservation close to the nodes, and the
continuity of Ghx(y) to compute the first-passage probabilities
π x

ε,0 and π x
1−ε,1 (see Appendix A). This procedure results

in

π x
ε,0 = π x

1−ε,1 = 1
3 + O(ε). (6)

We compute the first-passage probabilities in the interior
applying standard techniques [31,32] to the Fokker-Planck
equation associated with Eq. (4). We obtain

π x
0,ε =

∫ 1−ε

ε
ψx(y)dy∫ 1−ε

0 ψx(y)dy
,

π x
ε,1−ε =

∫ 1
1−ε

ψx(y)dy∫ 1
ε

ψx(y)dy
,

π x
1−ε,ε =

∫ ε

0 ψx(y)dy∫ 1−ε

0 ψx(y)dy
,

π x
1,1−ε =

∫ 1−ε

ε
ψx(y)dy∫ 1

ε
ψx(y)dy

, (7)

with

ψx(y) = exp

[∫ y

0

μ

D

∂ �Gx(z)

∂z
dz

]
= exp

[
�Gx(y)

kBT

]
, (8)

where the last equality follows from the relation D = kBT μ.

C. Effective probabilities of monomer incorporation
and rejection

From the probabilities π x
ỹ,y, we now compute the effective

probabilities px
→ and px

← to incorporate and reject monomer x
along each edge of the reaction network in Fig. 1. To this end,
we assume that the coarse grained dynamics in Eq. (5) is at
steady state. We then use adiabatic elimination [33] to obtain
(see Appendix B)

px
→ = ε

3

1∫ 1
0 exp

[
�Gx (y)

kBT

]
dy

+ O(ε), (9a)

px
← = ε

3

exp
[

�Gx (1)
kBT

]
∫ 1

0 exp
[

�Gx (y)
kBT

]
dy

+ O(ε). (9b)

Equations (9) relate the free energy landscapes Gx(y) and
the incorporation and removal probabilities of the polymer-
ization process. From Eq. (9), the probabilities are consistent
with the detailed balance condition,

px
→

px←
= exp

[
−�Gx(1)

kBT

]
, (10)

which connects the ratios of forward and backward probabili-
ties to the binding free energy −�Gx(1), see Fig. 2.

III. RESULTS

We now address the accuracy and speed of a polymer-
ization process in the reaction coordinate framework. We
consider a copy polymer made up of a number Nr of right
monomers and Nw of wrong monomers with N = Nr + Nw.
For large N , we define the error rate,

η = lim
N→∞

Nw

N
. (11)

To compute η from the incorporation and removal probabil-
ities px

→ and px
←, we first recast Eq. (11) into the implicit

equation,

η

1 − η
= lim

N→∞
Nw

Nr
= lim

n→∞
nw

→ − nw
←

nr→ − nr←
, (12)

where we have introduced the numbers nr
→, nr

←, nw
→, and nw

←
of r and w incorporation and removal reactions which have
occurred in the process and n is the total number of observed
chemical reactions. For large n, we have

nr
→ ∼ ncpr

→, (13a)

nr
← ∼ nc(1 − η)pr

←, (13b)

nw
→ ∼ ncpw

→, (13c)

nw
← ∼ ncηpw

←, (13d)

where c = [pr
→ + (1 − η)pr

← + pw
→ + ηpw

←]−1 is a normal-
ization constant so that n = nr

→ + nr
← + nw

→ + nw
←. Substitut-

ing Eqs. (13) into Eq. (12) gives

η

1 − η
= pw

→ − ηpw
←

pr→ − (1 − η)pr←
. (14)

Equation (14) is a general “self-consistency” relation for
the error rate that holds also for discrete models of polymer-
ization [2,3,14]. In our case, we substitute Eqs. (9) in Eq. (14)
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and take the limit ε → 0, obtaining

η

1 − η
=

(
η − exp

[−�Gw (1)
kBT

]
1 − η − exp

[−�Gr (1)
kBT

]
)

×
(

exp

[
�Gw(1) − �Gr (1)

kBT

] ∫ 1
0 exp

[
�Gr (y)

kBT

]
dy∫ 1

0 exp
[

�Gw (y)
kBT

]
dy

)
.

(15)

Solving Eq. (15) for η yields an explicit expression of the error
rate from the energy potentials.

Equation (15) identifies different regimes of error correc-
tion. To identify a first regime, we observe that

η = 1

1 + exp
[

�Gw (1)−�Gr (1)
kBT

] if

exp

[
�Gw(1) − �Gr (1)

kBT

] ∫ 1
0 exp

[
�Gr (y)

kBT

]
dy∫ 1

0 exp
[

�Gw (y)
kBT

]
dy

= 1,

(16)

In the regime where Eq. (16) holds, the error depends only on
the binding free energy difference �Gw(1) − �Gr (1). This
regime is called the energetic discrimination regime in the
literature [3,16]. Systems near equilibrium operate in this
regime because the Boltzmann factors of the binding free
energies determine, via detailed balance, the probabilities to
incorporate different monomers.

To identify a second error-correction regime in Eq. (15),
we consider the case where �Gr (y) and �Gw(y) are charac-
terized by energy barriers with heights δr and δw, respectively
(see Fig. 1(b) and Kramers [19]). When such barriers are
large, we can approximate the integrals in Eq. (15) by using
the Laplace method [34],∫ 1

0 exp
[

�Gr (y)
kBT

]
dy∫ 1

0 exp
[

�Gw (y)
kBT

]
dy

≈ exp

[
δr − δw

kBT

]√
w

r
, (17)

where r and w are the curvatures of �Gr (y) and �Gw(y)
at their maxima, respectively. Equation (17) implies that
activation barriers suppress the polymerization error via the
second term in parentheses in Eq. (15). The regime where
this suppression occurs is the kinetic discrimination regime
[3,16]. The first factor on the right-hand side of Eq. (17)
represents the contribution of a difference in activation en-
ergy barrier δr − δw to accuracy. This effect is also present
in models based on discrete-step reactions [2,3,16,18]. The
factor

√
w/r is a correction to activation energies based

on the width of the activation barriers. This factor permits
kinetic discrimination at equal barrier heights, provided that
the barrier for right monomers is significantly more narrow
than for wrong monomers.

We estimate the average polymerization speed using a
similar argument to that leading to Eq. (15). For large number
N of incorporated monomers, the average speed is equal to N
divided by the total time T needed to assemble the polymer,

v = lim
N→∞

N

T = lim
N→∞

(nr
→ − nr

←) + (nw
→ − nw

←)

T , (18)

where we expressed N in terms of the number of incorporation
and removal reactions. For large N , we can approximate the
polymerization time as

T ∼ n〈τ 〉, (19)

where 〈τ 〉 is the average time it takes to either incorporate
or remove a monomer. Substituting Eqs. (13) and (19) into
Eq. (18) gives the estimate for the polymerization speed,

v = c[pr
→ − (1 − η)pr

← + pw
→ − ηpw

←]

〈τ 〉 . (20)

The numerator of Eq. (18) is the probability of an incor-
poration minus the probability of a removal, whereas the de-
nominator provides the timescale of these events. In practice,
calculating 〈τ 〉 is not straightforward since one has to take into
account contributions from incorporation attempts that are not
finalized. In Appendix C, we provide a more formal derivation
of Eq. (20) together with an explicit expression for 〈τ 〉.

IV. EXAMPLES

To address the validity and practical implications of
Eqs. (15) and (20), we consider two examples of potentials
�Gr (y) and �Gw(y). In both cases, we work in dimensionless
units by fixing D = 1, kBT = 1, and μ = 1.

A. Linear potential

As a first example, we consider linear free energy land-
scapes,

�Gr (y) = −mry, (21a)

�Gw(y) = −mwy. (21b)

Despite their simplicity, the potentials in Eq. (21) are useful
to understand the physics of the process. Upon increasing
the slopes mr and mw, polymerization becomes increasingly
irreversible. Substituting the potentials Eq. (21) into the ex-
pression for the error Eq. (15) and performing the integrals,
we obtain

η

1 − η
= mw(1 − e−mr )[1 − e−mwη]

mr (1 − e−mw )[1 + e−mr (1 − η)]
, (22)

which implies

η = mw

mr + mw

for mr, mw  1. (23)

The exact solution of Eq. (22) shows that the error is ap-
proximately a function of mw/mr when mr, mw are large, as
predicted by Eq. (23), Fig. 3(a). We compared the predictions
from Eqs. (22) and (20) with numerical simulations of the
incorporation process from Eq. (4). Our theory yields reliable
predictions for a broad range of parameters, Figs. 3(c) and
3(d).
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(c) (d)

(a) (b)

FIG. 3. Error rate η and velocity v for linear free energy landscapes. (Top) Surface plots of η and v from Eqs. (15) and (20) when
Gr (y) = −mry and Gw (y) = −mwy as a function of the irreversibility parameters mr and mw . (Bottom) Error η and speed v as a function
of mw for different values of mr . Crosses represent the average η and v values measured from 700 numerical simulations of the stochastic
incorporation process. The Langevin dynamics of Eq. (4) was integrated with the Euler-Maruyama scheme [35].

B. Potential with an activation barrier

As a second example, we consider the potential,

�Gx(y)

= ax

{
exp

[
−

(
y − 1

2

)2

2c2
x

]
− exp

(
− 1

8c2
x

)}

+ bx

2

⎛
⎝ 2cx + 1

2 − y√(
2cx + 1

2 − y
)2 + c2

x

− 2cx + 1
2√(

2cx + 1
2

)2 + c2
x

⎞
⎠,

(24)

where ax, bx, and cx are monomer-dependent parameters that
control the shape of the free energy potentials. Key features
of the potential of Eq. (24) are the binding energy −�Gx(1),
the height of the activation barrier δx, and its width σ x = 4cx,
Fig. 4.

We study this model for different cases, corresponding
to different parameter choices. In the first case, we fix
−�Gr (1) = −�Gw(1) upon choosing br = bw = b and cr =
cw = 1/20. This enforces a kinetic discrimination regime
[3] where the binding energy −�Gr (1) quantifies the degree
of irreversibility. For highly irreversible processes, the error
η should mainly depend on the activation energy difference
δr − δr , see Eq. (17). We also expect that the reaction speed
should increase for more irreversible processes. Equations
(15) and (20) confirm such a qualitative picture, see Figs. 5(a)
and 5(b). Also in this case, numerical simulations are in
excellent quantitative agreement with our theory, Figs. 5(c)
and 5(d).

As a second case, we fix ar = aw = 5 and br = bw = 1. In
this way, we have that −�Gr (1) ≈ −�Gw(1) and δr ≈ δw.

Energetics alone would not permit monomer discrimination
in this case [3]. However, Eq. (17) predicts that the difference
in the barrier widths σr and σw should allow to discriminate r
and w monomers [see Fig. 6(a)]. We confirmed the existence
of such a kinetic discrimination regime with numerical simu-
lations, Fig. 6(c).

V. KINETIC PROOFREADING

In this section, we sketch a generalization of our frame-
work to include kinetic proofreading [5,6]. We assume that the

FIG. 4. Free energy potentials with a barrier for r and w

monomers from Eq. (24) for r and w monomers. We chose the
parameters so that the free energy landscapes for r and w monomers
have different binding energies [−�Gr (1) and −�Gw (1)], different
barrier heights (δr and δw), and different barrier widths (σ r and σw).
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(a) (b)

(c) (d)

FIG. 5. Equations (15) and (20) predict η and v in a kinetic discrimination regime. (Top) Contour plots of η and v from Eqs. (15) and
(20) as a function of the activation energy difference δw − δr and the binding energy −�Gr (1). In this example, we chose ar = 1, br = bw ,
and cr = cw = 1/20 to ensure a kinetic discrimination regime where �Gr (1) = �Gw (1). Large values of −�Gr (1) correspond to highly
irreversible processes. (Bottom) Plots of η and v versus the activation energy difference δw − δr at fixed values of �Gr (1). Crosses corresponds
to the average values of η and v measured from 300 stochastic simulations of the incorporation process with Eq. (4). The Langevin dynamics
was simulated with a weak 2.0 Runge-Kutta stochastic scheme [35].

(a) (b)

(c) (d)

FIG. 6. Different barrier widths allow for kinetic discrimination in the absence of binding and activation energy differences. (Top) Surface
plots of η and v from Eqs. (15) and (20) as a function of the barrier widths σr and σw . To ensure that Gr (y) and Gw (y) have approximately the
same binding and activation energies we fixed ar = aw = 5, br = bw = 1, and cr, cw � 0.05. (Bottom) Plots of η and v versus σw for selected
values of σ r . Crosses corresponds to the average η and v values measured from 400 simulations of the incorporation process with Eq. (4). The
Langevin dynamics was simulated with the weak 2.0 Runge-Kutta stochastic scheme [35].
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reaction h � hx can be decomposed into three subreactions,

(25)

where each subreaction occurs with probabilities pi,x
→’s and

pi,x
←’s, and hx∗ is an intermediate metastable complex. The

extra pathway hx∗ � h represents kinetic proofreading. Such
a reaction can improve accuracy when driven towards the
reactants h so that wrong monomers undergo an additional
checkpoint [3,5].

Every subreaction in Eq. (25) is described by its own
reaction coordinate y which evolves according to a Langevin
equation,

dy

dt
= −μ

d

dy
Gi,x(y) +

√
2Dξ (t ), (26)

where Gi,hx (y) is the free energy landscapes along the ith
subreaction. Also, in this case, we take y ∈ [0, 1] for all sub-
reactions with y = 1 always in the direction of incorporation
of monomer x. Similar to Eq. (3), we decompose the free
energies for the subreactions as

G1,hx̃x(y) = �G1,x(y) + G2,hx̃(1), (27a)

G2,hx̃x(y) = �G2,x(y) + G1,hx̃x(1), (27b)

G3,hx̃x(y) =
{
�G3,x(y) + G2,hx̃ (1) for hx∗ → h,

�G3,x(y) + G1,hx̃x(1) for hx∗ ← h,
(27c)

where we specified that monomer x̃ was incorporated before
attempting to incorporate monomer x. Here, G3,hx̃x(y) depend
on the direction of the subreaction because the heteropolymer
total energy now depends also on the sequence of subreac-
tions.

We now compute the probabilities pi,x
→’s and pi,x

← with i ∈
{1, 2, 3} from Eq. (26) with the same procedure which leads
to Eq. (9). This yields

pi,x
→ = επ i,x

ε,0

1∫ 1
0 exp

[
�Gi,x (y)

kBT

]
dy

+ O(ε), (28a)

pi,x
← = επ i,x

1−ε,1

exp
[

�Gi,x (1)
kBT

]
∫ 1

0 exp
[

�Gi,x (y)
kBT

]
dy

+ O(ε), (28b)

with

π1,x
ε,0 = π2,x

1−ε,1 = π3,x
ε,0 = 1

5 , (29a)

π1,x
1−ε,1 = π2,x

ε,0 = π3,x
ε,0 = 1

3 . (29b)

Equations (29) state that the all subreactions from reactants h
and hx∗, respectively, can start with equal probabilities.

To obtain an equation for η, we need to compute the
effective incorporation and removal probabilities px

→ and px
←

in Eq. (14) from Eqs. (28) and (29). To this end, we assume

that the reactions in Eq. (25) are at steady state. We then use
adiabatic elimination [33] to obtain (see Appendix D)

px
→ = p2,x

→ (p1,x
→ + p3,x

→ )

p1,x← + p3,x← + p2,x→
, (30a)

px
← = p2,x

← (p1,x
← + p3,x

← )

p1,x← + p3,x← + p2,x→
. (30b)

Substituting Eqs. (28) and (30) in Eq. (14) finally provides an
expression for η in terms of the free energy landscapes Gi,x (y).

VI. CONCLUSIONS

In this paper, we described the assembly of heteropolymers
by means of continuous reaction coordinates. In the simplest
cases, our results are consistent with those derived for reac-
tions occurring in discrete steps [2,3,10,12–14,16,17]. More-
over, our formalism reveals discrimination mechanisms that
are not easily described with discrete reactions. One example
is the possibility to discriminate according to barrier widths as
described by Eq. (17) and confirmed in simulations, Fig. 6(c).

For simplicity, in this paper, we developed our formalism
by means of a reaction coordinate characterized by a Marko-
vian dynamic. In general, only specific projection techniques
yield reaction coordinates with negligible non-Markovian
contributions [23,28,29,36], and the resulting Langevin equa-
tion might not be in the form of Eq. (4). Our framework can
be adapted to such situations as well as to non-Markovian
reaction coordinates, describing, for example, enzymes under-
going slow conformational changes.

The framework described here is microscopically re-
versible. This allows to characterize nonequilibrium work
and heat exchanges during the polymerization process from
the diffusive dynamics of the reaction coordinate, similar to
recent studies of the ATP synthase [37,38] and small-scale
technological devices [39,40]. This analysis would permit
characterizing thermodynamic limits of information process-
ing of these processes [14,41–43].
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APPENDIX A: FIRST-PASSAGE TIME PROBABILITIES AT
THE NODES

Because of detailed balance, the probabilities π x
ε,0 and

π x
1−ε,1 are related to the free energy difference when passing

from one edge of the reaction network to another, i.e.,

π x
ε,0 ∝ exp

[
−Ghx̃x(ε)

kBT

]
, π x̃

1−ε,1 ∝ exp

[
−Ghx̃ (1 − ε)

kBT

]
,

(A1)

where we specified that the monomer x̃ ∈ {r,w} was incorpo-
rated before monomer x ∈ {r,w}. After the incorporation of
x̃, the enzyme can catalyze three reactions: Removal of x̃ or
incorporation of either r or w. The probabilities of these three
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events must be normalized

π x̃
1−ε,1 + π r

ε,0 + πw
ε,0 = 1. (A2)

Combining Eqs. (A1) and (A2) gives

π x
ε,0 = exp

[−Ghx̃x (ε)−Ghx̃ (1−ε)
kBT

]
1 + exp

[−Ghx̃r (ε)−Ghx̃ (1−ε)
kBT

] + exp
[−Ghx̃w (ε)−Ghx̃ (1−ε)

kBT

] , (A3a)

π x̃
1−ε,1 = 1

1 + exp
[−Ghx̃r (ε)−Ghx̃ (1−epsilon)

kBT

] + exp
[−Ghx̃w (ε)−Ghx̃ (1−ε)

kBT

] . (A3b)

Substituting Eq. (3) into Eq. (A3), taking the limit of small ε,
using the continuity of Ghx̃x(y), and then renaming x̃ with x
finally gives Eq. (6).

APPENDIX B: EFFECTIVE INCORPORATION AND
REMOVAL PROBABILITIES

The dynamics of the reaction coordinate y in the coarse
grained description of Eq. (5) obeys a Markov chain,

Px
0 (ν + 1) = π x

0,εPx
ε (ν) + [

1 − π x
ε,0

]
Px

0 (ν)

+ external fluxes, (B1a)

Px
ε (ν + 1) = π x

ε,0Px
0 (ν) + π x

ε,1−εPx
1−ε (ν)

+ [
1 − (

π x
0,ε + π x

1−ε,ε

)]
Px

ε (ν), (B1b)

Px
1−ε (ν + 1) = π x

1−ε,εPx
ε (ν) + π x

1−ε,1Px
1 (ν)

+ [
1 − (

π x
ε,1−ε + π x

1,1−ε

)]
Px

1−ε (ν), (B1c)

Px
1 (ν + 1) = π x

1,1−εPx
1−ε (ν) + [

1 − π x
1−ε,1

]
Px

1 (ν)

+ external fluxes, (B1d)

where the first-passage probabilities appear as transition prob-
abilities and the quantities Px

0 (ν), Pε (ν), P1−ε (ν), and P1(ν)
are the probabilities that the reaction coordinate reaches the
points y = 0, y = ε, y = 1 − ε, and y = 1 after ν consecu-
tive transitions, respectively. The external fluxes in Eqs. (B1a)
and (B1d) are the probability fluxes from the remaining reac-
tions which originate from the nodes y = 0 and y = 1 in the
network of Fig. 1(a).

To simplify Eq. (B1), we perform adiabatic elimination
[33] of the intermediate states y = ε and y = 1 − ε: we im-
pose the steady state regime Px

ε (ν + 1) = Px
ε (ν) and Px

ε (ν +
1) = Px

ε (ν) in Eqs. (B1b) and (B1c), respectively, we solve
Eqs. (B1b) and (B1c) for Px

ε (ν) and Px
1−ε (ν), and we finally

substitute the result back into Eqs. (B1a) and (B1d). This
yields the effective Markov chain,

Px
0 (ν + 1) = px

←Px
1 (ν) + [1 − px

→]Px
0 (ν)

+ external fluxes, (B2a)

Px
1 (ν + 1) = px

→Px
0 (ν) + [1 − px

←]Px
1 (ν)

+ external fluxes, (B2b)

where we have defined the effective probabilities px
→ and px

←
to incorporate a monomer (h → hx) and remove a monomer
(h ← hx), respectively, as

px
→ = π x

1,1−επ
x
1−ε,επ

x
ε,0

π x
1,1−επ

x
1−ε,ε + π x

0,επ
x
ε,1−ε + π x

0,επ
x
1,1−ε

, (B3a)

px
← = π x

0,επ
x
ε,1−επ

x
1−ε,1

π x
1,1−επ

x
1−ε,ε + π x

0,επ
x
ε,1−ε + π x

0,επ
x
1,1−ε

. (B3b)

Substituting Eqs. (6)–(8) into Eq. (B3) and then expanding
for small ε finally gives Eq. (9).

APPENDIX C: DERIVATION OF THE POLYMERIZATION
SPEED VIA REACTION COORDINATES

To derive the polymerization speed, we consider a mean
field formulation of the polymerization process in Fig. 1(a)
where the enzyme can remove any monomer in the copy
heteropolymer. Removal of r and w monomers occurs with
probabilities 1 − η and η, respectively. This assumption sim-
plifies the reaction tree of Fig. 1(a) into the closed network
of Fig. 7(a) where the incorporation and removal probabilities
px

→ and px
← are defined as in Eq. (9).

We now introduce the reaction coordinate in this mean field
description, Fig. 7(b). For later convenience, we also consider
the values of the reaction coordinate y = 0, y = ε, y = 1 −
ε, and y = 1 together with the probabilities π x

ỹ,y’s defined in
Eqs. (6) and (7).

Using the scheme in Fig. 7(b), we define the probability
P0,1(ζ ) that y = 0 or y = 1 after ζ consecutive transitions and
the probabilities Pr

ε (ζ ), Pr
1−ε (ζ ), Pw

ε (ζ ), Pw
1−ε (ζ ) that y = ε

or y = 1 − ε for the r and w monomers after ζ consecu-
tive transitions. These probabilities evolve according to the
Markov chain,

�P(ζ + 1) = A �P(ζ ), (C1)

where

�P(ζ ) = [
P0,1(ζ ), Pr

ε (ζ ), Pr
1−ε (ζ ), Pw

ε (ζ ), Pw
1−ε (ζ )

]T
, (C2)

and

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 π r
0,ε π r

1,1−ε πw
0,ε πw

1,1−ε

c′π r
ε,0 0 π r

ε,1−ε 0 0

c′(1 − η)π r
1−ε,1 π r

1−ε,ε 0 0 0

c′πw
ε,0 0 0 0 πw

ε,1−ε

c′ηπw
1−ε,1 0 0 πw

1−ε,ε 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (C3)
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(a) (b)

FIG. 7. Mean field representation of the polymerization process. (a) Mean field version of the heteropolymer assembly in Fig. 1(a) where
the enzyme can remove any monomer in h. Removal involves r and w monomers (1 − η) and η times, respectively. The probabilities px

→, px
←

are defined as in Eq. (9). The constant c = [pr
→ + (1 − η)pr

← + pw
→ + ηpw

←]−1 normalizes the probabilities and is defined as in Eq. (13).
(b) The same as in panel (a), but we have now explicitly introduced the intermediate reaction coordinate values y = ε and y = 1 − ε, as well
as the transition probabilities π x

y,ỹ defined as in Eqs. (6) and (7). The constant c′ = [π r
ε,0 + (1 − η)π r

1−ε,1 + πw
ε,0 + ηπw

1−ε,1]−1 normalizes the
probabilities exiting from the central node.

where c′ = [π r
ε,0 + (1 − η)π r

1−ε,1 + πw
ε,0 + ηπw

1−ε,1]−1 is a normalization constant. We now define the matrices,

JN = 1

3

⎡
⎢⎢⎢⎣

0 −1 +1 −1 +1
+1 0 −1 0 0
−1 +1 0 0 0
+1 0 0 0 −1
−1 0 0 +1 0

⎤
⎥⎥⎥⎦, (C4a)

JT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 〈dτ 〉r
0,ε 〈dτ 〉r

1,1−ε 〈dτ 〉w0,ε 〈dτ 〉w1,1−ε

〈dτ 〉r
ε,0 0 〈dτ 〉r

ε,1−ε 0 0

〈dτ 〉r
1−ε,1 〈dτ 〉r

1−ε,ε 0 0 0

〈dτ 〉wε,0 0 0 0 〈dτ 〉wε,1−ε

〈dτ 〉w1−ε,1 0 0 〈dτ 〉1−ε,ε 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (C4b)

which contain the contribution of each transition to the het-
eropolymer length N and the polymerization time T . The time
increments 〈dτ 〉x

y,ỹ in JT are the first-passage times from ỹ to
y [31]. In particular, we have that

〈τ 〉x
0,ε = 1

D

(
�x

→(0) −
∫ 1

0 �x
→(y)dy∫ 1

0 ψx(y)dy

)
ε + O(ε2), (C5a)

〈τ 〉1−ε,ε = 1

D

∫ 1

0
�x

←(y)dy + O(ε), (C5b)

〈τ 〉ε,1−ε = 1

D

∫ 1

0
�x

→(y)dy + O(ε), (C5c)

〈τ 〉x
1,1−ε = 1

D

[
�x

←(1) −
[

exp

(
�Gx(1)

kBT

)]∫ 1
0 �x

←(y)dy∫ 1
0 ψx(y)dy

]
ε

+ O(ε2), (C5d)

with

�x
→(y) =

ψx(y)
∫ 1

y

∫ 1
u

ψx (z)
ψx (u) dz du∫ 1

0 ψx(y)dy
, (C6a)

�x
←(y) =

ψx(y)
∫ y

0

∫ u
0

ψx (z)
ψx (u) dz du∫ 1

0 ψx(y)dy
. (C6b)

The remaining first-passage times 〈dτ 〉r
ε,0, 〈dτ 〉r

1−ε,1,〈dτ 〉wε,0, and 〈dτ 〉w1−ε,1 are assumed equal to zero for sim-
plicity. Physically, this assumption is justified when binding
and unbinding of monomers is much faster than processing a
monomer into a finalized incorporation.

Using Eq. (C4), we define the tilted matrix B with compo-
nents,

Bi, j = Ai, j exp
[
qN JN

i, j + qτ Jτ
i, j

]
, (C7)

and dummy variables qN and qτ . For large values of ζ , the
largest eigenvalue of B coincides with the scaled cumulant
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generating function of N and T , see Ref. [44].The implicit
function theorem then implies

N ≈ −ζ
∂qN det[B − λI]

∂λ det[B − λI]

∣∣∣∣
qN =qτ =0, λ=1

, (C8a)

T ≈ −ζ
∂qτ

det[b − λI]

∂λ det[B − λI]

∣∣∣∣
qN =qτ =0, λ=1

, (C8b)

where det[B − λI] is the characteristic polynomial of B. To
compute v, we finally use that

v = N

T = ∂qN det[B − λI]

∂qτ
det[B − λI]

∣∣∣∣
qN =qτ =0, λ=1

, (C9)

which is equivalent to Eq. (18). Substituting Eqs. (6), (7),
(C3), (C4), and (C7) into Eq. (C9) and then taking the leading
order for small ε, yields Eq. (20), where

〈τ 〉D
c

= [pr
→ − (1 − η)pr

←]

(∫ 1

0
[�r

←(y) − �r
→(y)]dy

)

+(pw
→ − ηpw

←)

(∫ 1

0
[�w

←(y) − �w
→(y)]dy

)

+ε

3
[�r

→(0) + �w
→(0) + (1 − η)�r

←(1) + η�w
←(1)]

+ O(ε2), (C10)

and c is defined as in Eq. (13).

APPENDIX D: EFFECTIVE INCORPORATION AND
REMOVAL PROBABILITIES FOR THE KINETIC

PROOFREADING EXAMPLE

To compute the incorporation and removal probabilities for
the kinetic proofreading case, we mimic the procedure that
leads to Eq. (9). We consider the probabilities Ph(ρ), Phx∗ (ρ),
and Phx(ρ) to obtain the reactants h, hx∗, and hx after ρ

subreactions of Eq. (25). These probabilities evolve according
to the Markov chain,

Ph(ρ + 1) = p1,x
← Phx∗ (ρ) + [1 − (p1,x

→ + p3,x
→ )]Ph(ρ)

+ external fluxes, (D1a)

Phx∗ (ρ + 1) = p1,x
→ Ph(ρ) + p2,x

← Phx (ρ) + p3,x
→ Ph(ρ)

+ [1 − (p1,x
← + p2,x

→ + p3,x
← )]Phx∗ (ρ),

(D1b)

Phx (ρ + 1) = p2,x
→ Phx∗ (ρ) + [1 − p2,x

← ]Phx(ρ)

+ external fluxes, (D1c)

where the external fluxes are the probability fluxes of the other
subreactions entering the nodes y = 0 and y = 1. At steady
state, we simplify Eq. (D1) with adiabatic elimination [33]:
We impose Phx∗ (ρ + 1) = Phx∗ (ρ) into Eq. (D1b), solve it for
Phx∗ (ρ), and substitute the solution in Eqs. (D1a) and (D1c).
This yields, after some rearrangements,

Ph+x (ρ + 1) = px
←Phx(ρ) + [1 − px

→]Ph+x (ρ), (D2a)

Phx(ρ + 1) = px
→Ph+x(ρ) + [1 − px

←]Phx(ρ), (D2b)

with effective incorporation and removal probabilities px
→ and

px
← defined as in Eq. (30).
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