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Abstract:

The green alga, Caulerpa lentillifera, is composed of a single cell with multiple nuclei,
but it possesses structures analogous to leaves or fronds, stems or stolons, and roots or
rhizoids. To understand molecular mechanisms involved in formation and function of
these structures, we carried out RNA-seq analysis of fronds and stolons (including
rhizoids). Taking advantage of the decoded genome of C. lentillifera, the present
RNA-seq analysis addressed transcripts corresponding to 9,311 genes identified in the
genome. RNA-seq data suggested that 8,734 genes are expressed in sporophytes. In
spite of the siphonous body of the alga, differential gene expression was evident in the
two structures. 1,027 (11.8%) and 1,129 (12.9%) genes were preferentially expressed in
fronds and stolons, respectively, while the remaining 6,578 (75.3%) genes were
expressed at the same level in both. Most genes preferentially expressed in fronds are
associated with photosynthesis and plant hormone pathways, including abscisic acid
signaling. In contrast, those preferentially expressed in stolons are associated with
translation and DNA replication. These results indicate that gene expression is regulated
differently between fronds and stolons, which probably governs the function of each
structure. Together with genomic information, the present transcriptomic data provide
genic information about development and physiology of this unique, siphonous

organism.

KEYWORDS
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1. INTRODUCTION

The green alga, Caulerpa lentillifera, belongs to the division Chlorophyta, the class
Ulvophyceae, the order Bryopsidales, and the family Caulerpaceae (Adl et al. 2005;
Draisma et al. 2014). The Caulerpa body is composed of a single cell with multiple
nuclei (Coneva & Chitwood 2015). Some siphonous algae reach meters in length, likely
the largest single-celled organisms on Earth. However, these algae possess structures
analogous to leaves or fronds, stems or stolons, and roots or rhizoids (Figure 1). About
200 species of Caulerpa have been reported, with diverse frond morphologies
(AlgaeBase, http://www.algaebase.org). C. lentillifera morphology resembles clusters
of green grapes (Figure 1); hence, it is commonly known as sea grapes, or “‘umi-budo”
in Japanese. Using rhizoids, C. lentillifera anchors itself to substrates such as rocks or
ropes. Fronds are formed with new stolons, in which new vesicle-rudiments are added
apically. This alga is one of the major edible seaweeds in the subtropical/tropical
Asia-Pacific region, especially cultivated for market in Okinawa, Japan (Mary et al.
2009).

In a previous study, Ranjan et al. (2015) carried out RNA-seq analysis using C. taxifolia,
a well-known toxic, invasive species (Mozzachiodi et al. 2001; Galil 2007). Ranjan et al.
(2015) showed that a set of genes was highly expressed in stolons, rachis (frond stem),
and apex (frond tips). These genes are associated with DNA replication and chromatin,
translation, and coat-protein complex (COP) vesicles and kinases, respectively. They
suggested that a global, basal-apical pattern of transcript distribution from the holdfast

to the frond apex roughly follows the flow of genetic information in the cell, that is,
from transcription to translation. This is an interesting result, given that the alga is a
unicellular, multinucleated organism. That is, the plant body comprises a single cell.

The stolon corresponds to the nucleus in the middle of the body, the rachis to the central
cytoplasm, and the apex to the peripheral cytoplasm, respectively (Ranjan et al. 2015).
Although the distribution of nuclei in the entire body has not been shown yet, this result
raises several basic questions about how morphology and function of these structures

are differentiated and/or maintained in Caulerpa.

We focused on C. lentillifera, the size of which is similar to C. taxifolia, approximately
10 to 30 cm from stolon to frond apex (Figure 1) (Paul et al. 2014; Ranjan et al. 2015).
In order to understand the biology of the siphonous body plan, we decoded the
approximately 26-Mb genome of C. lentillifera (Arimoto et al. 2019). This genome was
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estimated to contain 9,311 protein-coding genes. Unexpectedly, homologous genes for
some components of plant hormone pathways were conserved and/or highly expanded
in the Caulerpa genome. It has been reported that outgrowth of the plant body is
controlled by plant hormone pathways (Bar & Ori 2014; Abad et al. 2017). These
hormones are also essential to maintain plant physiological homeostasis (Verma et al.
2016). However, it is thought that the green siphonous algal lineage evolved body plans
and sessile life styles independently of the land plant lineage (Umen 2014). It is
interesting that while these organisms have different body plans and cellularities, they

employ similar mechanisms to regulate development (Kaplan & Hagemann 1991).

The present study carried out RNA-seq analysis of C. lentillifera fronds and stolons,

because these two regions are the major structural components of this alga.

2. MATERIALS AND METHODS

Our gene expression analysis was based on sequencing data obtained in the Caulerpa
lentillifera genome decoding project (Arimoto et al. 2019). In that project, genomic
DNA and mRNA of C. lentillifera were sequenced to reconstruct the genome and to
predict gene models. Procedures for RNA isolation and sequencing are described briefly

below.

2.1. Algal specimens

Caulerpa lentillifera was cultivated in aquaria under natural light and harvested during
the daytime at the Onna Village Fisheries Cooperative, Okinawa, Japan. Large, intact
(undamaged) sporophytes were used for RNA extraction. Debris attached to the
sporophytes was removed by flushing with 0.22-um-filtered seawater. Fronds and
stolons were separated using sterilized scalpels and frozen in liquid nitrogen

immediately. Frozen samples were stored at -80°C until RNA extraction.

2.2. RNA extraction

Frozen samples were ground in a mortar and pestle, and put into Plant RNA reagent (cat.
no. 12322012; ThermoFisher, MA, USA). Contaminating DNA was removed by DNase
treatment using columns from a Qiagen RNeasy Plant Mini Kit (cat. no. 74904; Qiagen,
Germany). RNA extraction and purification procedures followed manufacturer
instructions. RNA purity and quantity were verified with a NanoDrop 2000
Spectrophotometer (ThermoFisher, MA, USA). The amount of extracted RNA was
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quantified using a Qubit RNA HS Assay Kit (cat. no. Q32852; ThermoFisher, MA,
USA). RNA integrity was confirmed using electropherograms generated by the Agilent
2100 Bioanalyzer (Agilent Technologies, CA, USA).

2.3. Library preparation and sequencing

Six RNA-seq libraries were prepared from fronds and stolons of three specimens.
Extracted RNA was converted into RNA-seq libraries with a TruSeq Stranded mRNA
Library Prep Kit (cat. no. RS-122-2101; Illumina, CA, USA). All sequencing libraries
were prepared with protocols provided by the manufacturers. RNA libraries were
sequenced using the [llumina HiSeq 4000 platform (Illumina, CA, USA).

2.4. Expression Analysis

Sequencing adapters and low-quality (< Q20) regions of [llumina reads were removed
with Trimmomatic 0.33 (Bolger et al. 2014) and Sickle 1.33
(https://github.com/najoshi/sickle), respectively. Trimmed, paired-end reads were
mapped onto genome sequences using STAR 2.5.2a (Dobin et al. 2013). Index files for
STAR were generated with gene model information using the ‘--sjdbGTFfile’ option.
Expression levels of genes were calculated using edgeR 3.20.1 (McCarthy et al. 2012),
based on mapping results from which chimeric mapped reads were excluded.
Expression levels were converted into counts-per-million (CPM) from RNA-seq data.
Data were normalized using the Trimmed mean M-value (TMM) and Relative Log
Expression (RLE) methods in edgeR 3.20.1 and DESeq?2 version 1.18.1 (Love et al.
2014), respectively. After normalization, generalized linear model methods (GLMs)
(McCarthy et al. 2012) were applied to calculate gene expression levels in the edgeR
analysis. Differences in gene expression level were examined using a likelihood-ratio

test.

2.5. Quantitative real-time PCR

RNA extraction and purification methods for quantitative real-time PCR (qQRT-PCR)
were the same as for RNA-seq library preparation. mRNAs in purified total RNA were
enriched using a TruSeq Stranded mRNA Library Prep Kit. cDNA was synthesized
from enriched mRNA equivalent to 1 pg of total RNA using SuperScript VILO Master
Mix (cat. no. 11755050; ThermoFisher, MA, USA). cDNA equivalent to 1 ng of total
RNA was used as a template for qRT-PCR. Quantification of gene expression was
performed on the StepOnePlus Real-Time PCR System (ThermoFisher, MA, USA)
using Probe qPCR Mix (cat. no. RR391A; Takara Bio, Japan) and
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FAM/TAMRA-labeled probes synthesized by Takara Bio Inc. Composition of reaction
mixtures and thermocycler settings followed manufacturer instructions. Primer and
probe sequences used for qRT-PCR assays are shown in Table S2. Relative gene
expression was calculated using the AACt method normalized to gene expression of the

housekeeping gene, tubulin alpha.

2.6. Gene annotation

Sequence similarities of Caulerpa lentillifera proteins to NCBI RefSeq entries were
detected with BLAST searches (E-value cutoff of 10-3; Camacho et al. 2009).
Functional domains of C. lentillifera proteins were searched using HMMER 3.1b2
(http://hmmer.org) and the Pfam-A 29.0 database (Finn et al. 2016). HMMER was
employed with default parameters, except for the e-value threshold -E 1e-5 option.
Gene Ontology (GO) IDs were assigned using InterProScan 5.22-61.0 (Jones et al.
2014) with a corresponding lookup service. Assigned GO terms were projected onto
higher-level GO terms to plot a GO landscape using WEGO 2.0 (Ye et al. 2006) with
GO database version 2017-04-01. GO enrichment analysis was performed with goatools
under default parameters combined with the ‘--no_propagate counts’ option
(https://github.com/tanghaibao/goatools).

3. RESULTS

3.1. Mapping of RNA-seq reads and annotation

mRNAs were extracted from fronds and stolons, respectively, and were paired-end
sequenced on the [llumina HiSeq 4000 platform with the 2x150 bp sequencing protocol.
We obtained approximately 18 gigabases (Gb) per library from the biological triplicates
of fronds and stolons (Arimoto et al. 2019; Table S1). Approximately 110 Gb (2x377
million reads) of RNA information were obtained. This read number was much larger
than that of the previous study of Caulerpa taxifolia, in which a total of 32.8 Gb (2x178

million reads) were used for transcriptome assembly (Ranjan et al. 2015).

We recently decoded the approximately 26-Mb genome of C. lentillifera and found
9,311 protein-coding genes (Arimoto et al. 2019). RNA-seq reads from sporophytes
were assigned to genomic sequences, and 8,734 (93.8%) of the 9,311 genes were
supported by corresponding mRNAs (Table 1). We expect that the remaining 577 genes
are specifically or primarily expressed in gametes or sporophytes during the

reproductive stage. The following analysis focused on the 8,734 mRNA-assigned genes.
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Of these, 7,173 (82.1%) were BLAST-matched, 6,498 (74.4%) Pfam
protein-domain-matched, and 5,372 (61.5%) gene ontology (GO)-assigned, respectively
(Table 1).

3.2. Differential expression of mRNAs in fronds and stolons

Expression profiles of the six specimens were compared using Z-scores from edgeR
software. Profiles were categorized into two groups (Figure 2a). The first group
included three specimens of fronds and second comprised three specimens of stolons
(Figure 2a). In this analysis, globally two major expression profiles were evident. One
includes genes with highly expressed mRNAs in fronds and fewer expressed in stolons.
The other includes genes with highly expressed mRNAs in stolons and fewer expressed

in fronds (Figure 2a).

The magnitude of differences in gene expression between fronds and stolons was
determined from analysis using edgeR. The threshold of expression level change was
the false discovery rate (FDR) < 0.05 and p-value < 0.05 (Figure 2b). There were 1,027
(11.8%) genes with significantly expressed mRNAs in fronds and 1,129 (12.9%) genes
with significant expression in stolons. 6,578 (75.3%) genes were expressed at
comparable levels in both regions (Figure 2c). Analysis using DESeq?2 also detected
expression changes in 421 of the 1,027 genes and 487 of the 1,129 genes, respectively.
1,027 genes preferentially expressed in fronds were characterized using BLAST
searches (787 genes were annotated), Pfam domain searches (715), and GO annotation
(574), respectively (Table 1). On the other hand, 1,129 genes preferentially expressed in
stolons were characterized using BLAST searches (878), Pfam domain searches (793),
and GO annotation (700), respectively (Table 1). Further GO annotation analysis of
those obtained by edgeR and DESeq2 combined showed that 204 and 276 GO terms
were assigned to genes expressed preferentially in fronds and stolons, respectively.
Comparison of assigned GO terms in stolon-preferring and frond-preferring genes
showed that 104 and 176 were unique to fronds and stolons, respectively, while 100 GO

terms were common to both structures (Figure 3a).

Assigned GO terms were categorized as ‘cellular components (CC),” ‘molecular
function (MF),’ or ‘biological process (BP)’ (Figure 3b). Comparison of the count of
assigned GO terms showed that two GO terms in CC (membrane part and intrinsic
component of membrane), one GO term in MF (oxidoreductase activity), and one GO

term in BP (metabolic process) were more frequently observed in fronds than in stolons
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(Figure 3b). On the other hand, seven (cell part, intracellular, intracellular part,
intracellular organelle, non-membrane-bounded organelle, ribonucleoprotein complex,
and membrane-bounded organelle), six (small molecule binding, heterocyclic
compound binding, organic cyclic compound binding, carbohydrate derivative binding,
ion binding and structural constituent of ribosome), and three (nitrogen compound
metabolic process, biosynthetic process, and primary metabolic process) GO terms in
the CC, MF and BP categories, respectively, were found at higher frequencies in stolons
than in fronds (Figure 3b).

3.3. Enriched functions based on gene ontology analysis in fronds

To explore biological functions, GO terms assigned to genes preferentially expressed in
fronds were estimated by enrichment analysis. A GO term in the CC category assigned
to genes that are preferentially expressed in fronds was an “integral component of
membrane.” Eight GO terms in the MF category assigned to fronds were cytochrome-c
oxidase activity, carbohydrate binding, oxidoreductase activity, and others. Six GO
terms in BP category also assigned to fronds were aerobic respiration, protein

ubiquitination, lipid metabolic process, and others (Figure 4a).

In fronds, GO terms associated with photosynthesis, including carbohydrate binding and
oxidation-reduction process are enriched among preferentially expressed genes. Protein
modification genes associated with phosphatase activity and protein ubiquitination are
also enriched in fronds. These enriched metabolic processes suggest that primary
photosynthetic products such as carbohydrates are produced mainly in fronds. Abundant
genes associated with “integral component of membrane” may reflect localization of

plastids in fronds. These results are consistent with those of Ranjan et al. (2015).

3.4. Enriched functions based on gene ontology analysis in stolons

Overviews of assigned GO terms in preferentially expressed genes in stolons were also
estimated by enrichment analysis. Six GO terms in the CC category were assigned to
genes that are preferentially expressed in stolons: associated with ribosome, intercellular
and nucleus. Ten assigned GO terms in the MF category included structural constituent
of ribosome, histone acetyltransferase activity, transcription-related activity, and others.
Nine GO terms in the category BP were translation, transcription, DNA metabolic

process, and others (Figure 4b).

Translation-associated GO terms including ribosome and rRNA processing are enriched



260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

among genes preferentially expressed in stolons. GO terms that are related to
DNA-associated activities, e.g. DNA metabolism, histone acetylation and transcription
are also enriched in stolons. These enriched GO terms potentially indicate that basic
cellular processes such as DNA replication and translation are more active in stolons.
Preferentially expressed genes associated with DNA activity are consistent with a
previous study of Caulerpa taxifolia (Ranjan et al. 2015). On the other hand, genes with
translation activity were different. In C. taxifolia, genes with translation activity were

previously reported to be more active in fronds.

3.5. Characterization of loci involved in plant hormone pathways

Plant hormones affect growth of macroalgae as they do land plants (Bradley 1991;
Evans & Trewavas 1991; Lobban & Harrison 1997). In addition, genomic data of
Caulerpa lentillifera suggest that plant hormone-associated genes are expanded in this
alga (Arimoto et al. 2019). Therefore, we further analyzed genes involved in plant
hormone pathways. These genes are classified into seven categories involved in plant
hormone pathways for auxin, abscisic acid (ABA), jasmonic acid (JA), cytokinin (CK),
ethylene, brassinosteroid, and strigolactone (SL) (Table 2 and Table S3). Of two
tryptophan synthase alpha subunit (TSA) genes in the auxin hormone pathway, only one
was preferentially expressed in fronds (Table 2). This was also the case with zeaxanthin
epoxidase (ZEP) and abscisic acid-responsive elements-binding factor (AREB) in the
ABA pathway, acyl-coenzyme A oxidase (ACX) in the JA pathway, LONELY GUY
lysine decarboxylase (LOG) in the CK pathway, aminocyclopropane 1-carboxylate
synthase (ACS) in the ethylene pathway, and sterol 1/dwarf7 type C-5 sterol desaturase
(STE1/DWF7) in the brassinosteroid pathway. ZEP, ACX, LOG, ACS, and
STE1/DWEF7 are enzymatic signaling molecules in each plant hormone pathway
whereas AREB is a transcription factor activated by ABA signaling. These results
indicate that a larger variety of genes involved in plant hormone biosynthesis and/or

signaling is preferentially expressed in fronds than in stolons.

Protein phosphatase 2C (PP2C) and snfl-related protein kinase 2 (SnRK?2) in the ABA
pathway and more axillary growth (MAX) in the SL pathway are expanded gene families
in the C. lentillifera genome, constituting 17, 22, and 32 genes, respectively (Table 2
and Table S3) (Arimoto et al. 2019). The number of MAX genes preferentially expressed
in either fronds or stolons was the same (five genes, Table 2 and Table S3). On the other
hand, four genes each in PP2C and SnRK2 were preferentially expressed in fronds,

while three PP2C and two SnRK?2 were preferentially expressed in stolons, respectively
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(Table 2). In addition, 9 PP2C and 16 SnRK2 were expressed at the same level in both
parts. Preferential expression of one, PP2C (g6397), was also supported by quantitative
real-time PCR assays (Figure S1).

4. DISCUSSION

Individual Caulerpa plants are composed of single cells with multiple nuclei. These
algae, however, possess fronds, stolons, and rhizoids, structures analogous to leaves,
stems, and roots, respectively. In order to explore differential gene expression
responsible for functional differences of these structures, we performed RNA-seq
analysis of Caulerpa lentillifera fronds and stolons. Previously, Ranjan et al. (2015)
carried out a similar RNA-seq analysis using Caulerpa taxifolia. The advantage of their
analysis was that six structures including apex, pinnules, the rachis, basal fronds,
stolons, and holdfasts were used to make a transcriptomic atlas of C. taxifolia. We
subjected two structures, stolons (including rhizoids) and fronds, because these two are
the major structural components of C. lentillifera. On the other hand, an advantage of
the present analysis is that the gene expression profile is based on genomic information.
Transcriptomes assigned to 8,734 of 9,311 estimated genes were analyzed. In addition,
this study yielded a much greater mass of data than the previous study. The number of
genes categorized with GO terms in the present study was 5,372, corresponding to
61.5% of the 8,734 genes. In contrast, only 25% of 57,118 assembled transcripts were
analyzed in the previous study. In addition, bioinformatic tools used in the two studies
were different. Therefore, results obtained in the two studies are not entirely

comparable.

Ranjan et al. (2015) suggested that in C. taxifolia, a global pattern of transcript
distribution from the holdfast to the frond apex corresponds roughly to the flow of
genetic information in the cell. That is, DNA replication occurs in stolons, mRNAs are
translated in the rachis, and proteins such as kinases accumulate in apex. This is an
interesting idea, given that the alga is a unicellular, multinucleate organism. Our results
show that approximately 75.3% of 8,734 genes are expressed at a comparable level
throughout the individual. On the other hand, 11.8% and 12.9% of genes are
preferentially expressed in fronds and stolons, respectively. In addition, the present
study confirmed that genes associated with DNA replication are preferentially
expressed in stolons of C. lentillifera and that genes associated with phosphatase

activity are preferentially expressed in the fronds.
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The repertory of plant hormone-associated genes preferentially expressed in fronds is
broader than that in stolons. However, relationships among preferentially expressed
plant hormone-associated genes within the two structures seem complicated, especially
for abscisic acid (ABA) signaling. The ABA signaling pathway is associated with
environmental stress responses (Vishwakarma et al. 2017). Preferential expression of
genes for two components of ABA signaling, PP2C and SnRK?2, were observed in both
of fronds and stolons. However, the combinations of these genes were different in each
structure. PP2Cs negatively regulate SnRK2 activity in land plants (Umezawa et al.
2009). However, these two gene families are highly expanded in the Caulerpa genome
(Arimoto et al. 2019). Therefore, it is likely that each PP2C may suppress specific
SnRK2s expressed in each structure, so that genes that are expressed in a given part
might maintain structure-specific signaling in the other part. Further functional analyses

are needed to support or reject this hypothesis.

Ranjan et al. (2015) reported a basal-apical pattern of transcript distribution that
corresponds roughly to the flow of genetic information in the cell,
transcription-to-translation. In order to interpret the results, information regarding the
distribution of nuclei throughout the entire cell body is essential and should be

examined in future studies.

First, if nuclei are distributed unevenly, preferentially, or solely in stolons, this might
indicate that differential distribution of mRNAs, especially those for nuclear activity,
translation, and real functions may be interpreted as follows. Most mRNAs are
transcribed in the stolons and then flow through fronds toward the apexes. Because
different sets of mRNAs are present in stolon, rachis, and apex, there may be a special
transport and accumulation system in which sets of mRNAs might be localized and
moved to the three regions. If so, future studies should explore cellular and molecular

mechanisms that achieve specific mRNA flows and accumulations.

Second, if nuclei are distributed through the entire body, nuclei have to recognize their
locations or respond to positional signals emanating from a certain region. Then, the
nuclei would regulate a set of genes specific to that region. According to the previous
study, the pattern of gene expression in the body resembles that of the cell itself.
However, the present study confirmed preferential expression of mRNAs in the two

structures, but not a flow of genetic information corresponding to transcription to
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translation.

Caulerpa nuclei are very small, approximately 2 um in diameter (Varela-Alvarez et al.
2012). In addition, nuclei of various epiphytic and endophytic microbes are embedded
in the cell wall or cytoplasm of Caulerpa (Singh & Reddy 2014). Normal methods such
as DAPI staining cannot distinguish algal nuclei from microbial nuclei. Improved
methods must be developed to answer this fundamental question. However, we have
some information about nuclear distribution in C. lentillifera. In decoding the genome
of this alga, we isolated DNA from fronds, indicating that a considerable number of
nuclei are present in fronds. Fronds can regenerate the entire body when they are
isolated, and regenerated stolons also contain many nuclei (Guo et al. 2015). Therefore,
during this regeneration process, nuclei of fronds must divide and move to the newly
forming stolons. These circumstantial data support an even distribution of nuclei in

fronds and stolons.

1,027 and 1,129 genes were preferentially expressed in fronds and stolons, respectively.
We tried to confirm these results by other methods, including quantitative PCR. There
were some difficulties regarding specific amplification of target sites, because the C.
lentillifera genome contains paralogs of target genes with high sequence similarity.
Although further technical improvement may be required, we finally found that
sequence-specific probes such as TagMan mitigated the problems. Nevertheless,
molecular functions associated with photosynthesis and environmental stress responses
are preferentially activated in fronds, which are the edible parts of Caulerpa. DNA
replication seems to occur more frequently in stolons. These results may help to develop
methods for efficiently inducing frond growth for more productive aquaculture.
Furthermore, genomic and transcriptomic information in this study shed additional light

on the biology of siphonous algae.

5. DATA AVAILABILITY

All sequence data obtained in this study are accessible in the DDBJ/EMBL/NCBI
database at the BioProject ID, PRIDB5734. Gene annotation data are available at
http://marinegenomics.oist.jp/algae/gallery/.
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Figure Legends

Figure 1. The siphonous green alga, Caulerpa lentillifera. (a) Cultivated Caulerpa
lentillifera. This alga consists of many grape-like vesicles connected by stolons.
Filamentous rhizoids also project from the stolons. The entire alga is composed of a large
single cell with many nuclei. Scale bar, 20 mm. A cross section of a C. lentillifera stolon
(b) and a frond vesicle (c). Organelles are localized peripherally in the body, where many

fibrous components are found in the central part of the stolon. Scale bar, 200 pm.

Figure 2. Comparison of gene expression profiles in Caulerpa lentillifera stolons
and fronds. (a) Comparison of gene expression profiles among three individuals A, B,
and C. Expression level was categorized as high (red) or low (blue). Sources of RNA
are shown on the X axis. The Y axis corresponds to expression levels of each gene. (b)
Changes of gene expression between fronds and stolons in Caulerpa lentillifera. Genes
highly expressed in fronds and stolons have positive and negative y-axis values,
respectively. Differentially expressed genes that have a false discovery rate < 0.05 are
indicated with red circles. Black circles are genes expressed at comparable levels in
both structures, judged by this threshold value. (c) The pie chart shows the number of
differentially expressed genes (DEG). The threshold of DEG detection was the false

discovery rate.

Figure 3. Gene ontology overview of preferentially expressed genes in Caulerpa
lentillifera. (a) A Venn diagram showing GO terms assigned to loci preferentially
expressed in fronds (cyan) and stolons (magenta). (b) A histogram of GO terms in
stolons and fronds. GO terms were assigned to the intersection of edgeR and DESeq?2
analyses. The X axis shows assigned GO terms and the Y axis shows the percentages of
GO-assigned genes in each structure. CC, cellular component. MF, molecular function.

BP, biological process.

Figure 4. Gene ontology enrichment analysis comparing stolons and fronds in
Caulerpa lentillifera. Enriched gene ontology (GO) terms pertaining to fronds (a) and
stolons (b) are shown in histograms. Each bar corresponds to p-values converted to
logarithms. The numbers shown at the tips of each bar equal the number of genes
assigned to that GO term. CC, cellular component. MF, molecular function. BP,
biological process.

Supplementary Figure Legends
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Figure S1. Validation of gene expression levels using quantitative real-time PCR.
Differences of gene expression levels of 26397, which is a component of abscisic acid
signaling, between stolons and fronds corresponded to the estimation based on

RNA-seq data. Error bars show standard deviation.
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Table 1. Statistical summary of genes expressed in Caulerpa lentillifera.

Features

Total

Frond!

Stolon'

Number of genes?

% genes have RNA-seq support
Number of BLAST match genes®
Number of Pfam domain match genes®

Number of GO assigned genes®

9,311
8,734/9,311 (93.8%)
7,173/8,734 (82.1%)
6,498/8,734 (74.4%)
5,372/8,734 (61.5%)

1,027/8,734 (11.8%)
787/1,027 (76.6%)
715/1,027 (69.6%)
574/1,027 (55.9%)

1,129/8,734 (12.9%)
878/1,129 (77.8%)
793/1,129 (70.2%)
700/1,129 (62.0%)

1) The number of differentially expressed genes
2) Arimoto et al. 2019

3) Percentage based on the RNA-seq supported genes
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Table 2. Differential expression of plant hormone-associated genes in Caulerpa lentillifera.

Pathways Genes Annotations # Genes'  # Frond DEGs # Stolon DEGs
Auxin TSA Tryptophan synthase alpha subunit 2 1(D) 0
Abscisic acid ZEP Zeaxanthin epoxidase 2 1 0
(ABA) PP2C Protein phosphatase 2C 17 4(2) 3(D)
SnRK2 Serine/threonine-protein kinase 22 4(1) 2
AREB ABSCISIC ACID-INSENSITIVE 5-like protein 2 1(1) 0
Jasmonic acid (JA) ACX Acyl-CoA oxidase 3 2 0
Cytokinin (CK) LOG Cytokinin nucleoside 5'-monophosphate 5 L 0
phophoribohydrolase
Ethylene ACS l-aminocyclopropane-1-carboxylate synthase 2 1 (1) 0
Brassinosteroids STE1/DWEF7 Delta7 sterol C-5 desaturase 1 1 0
Strigolactone (SL) MAX Carotenoid cleavage dioxygenase 32 52) 52)

1) Arimoto et al. 2019
DEG, differentially expressed genes.

Numbers in parentheses correspond to numbers of DEGs detected by both of two different algorithms.
580
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Table S1. Sequence data summary'.

Raw data Filtered data
Total Total
Library Read Number of Number of )
Insert size amount of amount of Uniquely mapped reads Source
types length reads reads
data data
2x61.4 2x59.1 Individual A
Paired-end 200 bp 2x150 bp 18.1 Gb . 17.4 Gb 96.23%
million reads million reads frond
2x60.9 2x58.9 Individual A
Paired-end 200 bp 2x150 bp ) 18.1 Gb . 17.4 Gb 96.67%
million reads million reads stolon
2x64.7 2x62.7 Individual B
Paired-end 200 bp 2x150 bp 19.2 Gb . 18.6 Gb 93.69%
million reads million reads frond
2x61.4 2x59.7 Individual B
Paired-end 200 bp 2x150 bp 18.2 Gb . 17.6 Gb 95.57%
million reads million reads stolon
2x70.1 2x67.9 Individual C
Paired-end 200 bp 2x150 bp 20.8 Gb . 20.1 Gb 94.67%
million reads million reads frond
2x58.6 2x56.8 Individual C
Paired-end 200 bp 2x150 bp 17.3 Gb . 16.8 Gb 96.33%
million reads million reads stolon

1) Arimoto et al. 2019
582
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Table S2. Primer and probe sequences for quantitative real-time PCR.

Target genes Gene ID Primers Sequences (5' to 3')
tubulin alpha 4057 Forward GCCAAGCCGGTATCCAAGTC

Reverse GCGTTAAATGCGTCGTCTTCG

Probe CCAACCCGACGGCCAACTACCATCTGA
PP2C 26397 Forward GCCGTGGATTTTACGTCGTCT

Reverse TGCACTGGATGCGTCCTG

Probe TCTGCTGCGATTCATGTTACTTCACGATGC
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Table S3. Differential expression levels of plant hormone associated genes.
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Pathway Annotation Gene ID Parts logFC FDR
Auxin TSA g27447* Frond 0.45006 9.43E-03
Abscisic acid ZEP 2372 Frond 0.75646 4.35E-04
PP2C 2508 Frond 0.38404 1.15E-02
PP2C g4317* Frond 0.37332 4.85E-02
PP2C 24936 Frond 0.46760 1.07E-03
PP2C 28444* Frond 0.37847 2.84E-02
PP2C 22460 Stolon -0.31301 4.04E-02
PP2C g26397* Stolon -0.38438 8.68E-03
PP2C 28298 Stolon -0.58589 1.91E-04
SnRK2 23174* Frond 0.38396 3.59E-02
SnRK2 26486 Frond 1.40935 9.82E-20
SnRK2 27448 Frond 0.46533 1.32E-03
SnRK2 28496 Frond 1.50088 9.94E-12
SnRK2 23093 Stolon -0.40972 2.26E-02
SnRK2 28008 Stolon -0.47855 1.69E-03
AREB 26338* Frond 0.46958 1.64E-02
Jasmonic acid ACX g3712 Frond 0.69534 2.11E-06
ACX 28317 Frond 0.91244 4.36E-11
Cytokinin LOG g7625% Frond 0.69523 1.91E-06
Ethylene ACS 23569* Frond 0.54005 1.01E-04
Brassinosteroids STE1/DWF7 26980 Frond 0.31979 3.55E-02
Strigolactone MAX 2334 Frond 0.65272 1.53E-03
MAX 2342% Frond 0.61833 2.04E-02
MAX 2499 Frond 0.50666 6.37E-03
MAX 24218* Frond 0.74305 3.61E-07
MAX 25131 Frond 0.70679 6.68E-06
MAX 2335 Stolon -0.41606 1.18E-02
MAX 23820 Stolon -0.41255 2.41E-02
MAX 23827* Stolon -0.46190 5.72E-03
MAX 23830* Stolon -0.57019 1.91E-03
MAX 28395 Stolon -0.47942 7.40E-04

* Gene expression differences were detected by both algorithms.



