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ARTICLE

Energy consumption and cooperation
for optimal sensing
Vudtiwat Ngampruetikorn1,2✉, David J. Schwab2,3,6 & Greg J. Stephens4,5,6

The reliable detection of environmental molecules in the presence of noise is an important

cellular function, yet the underlying computational mechanisms are not well understood. We

introduce a model of two interacting sensors which allows for the principled exploration of

signal statistics, cooperation strategies and the role of energy consumption in optimal sen-

sing, quantified through the mutual information between the signal and the sensors. Here we

report that in general the optimal sensing strategy depends both on the noise level and the

statistics of the signals. For joint, correlated signals, energy consuming (nonequilibrium),

asymmetric couplings result in maximum information gain in the low-noise, high-signal-

correlation limit. Surprisingly we also find that energy consumption is not always required for

optimal sensing. We generalise our model to incorporate time integration of the sensor state

by a population of readout molecules, and demonstrate that sensor interaction and energy

consumption remain important for optimal sensing.

https://doi.org/10.1038/s41467-020-14806-y OPEN

1 Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA. 2 Initiative for the Theoretical Sciences, The Graduate Center,
CUNY, New York, NY 10016, USA. 3 Center for the Physics of Biological Function, Princeton/CUNY, New York, USA. 4 Biological Physics Theory Unit, OIST
Graduate University, Okinawa 904-0495, Japan. 5 Department of Physics and Astronomy, Vrije Universiteit, 1081HV Amsterdam, The Netherlands. 6These
authors contributed equally: David J. Schwab, Greg J. Stephens. ✉email: vngampruetikorn@gc.cuny.edu

NATURE COMMUNICATIONS |          (2020) 11:975 | https://doi.org/10.1038/s41467-020-14806-y | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-14806-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-14806-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-14806-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-14806-y&domain=pdf
mailto:vngampruetikorn@gc.cuny.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Cells are surrounded by a cocktail of chemicals, which carry
important information, such as the number of nearby
cells, the presence of foreign material, and the location of

food sources and toxin. The ability to reliably measure chemical
concentrations is thus essential to cellular function. In fact, cells
can exhibit extremely high sensitivity in chemical sensing, for
example, our immune response can be triggered by only one
foreign ligand1 and Escherichia coli chemotaxis responds to
nanomolar changes in chemical concentration2. But how does
cellular machinery achieve such sensitivity?

One strategy is to consume energy: molecular motors meta-
bolise ATPs to drive cell movement and cell division, and kinetic
proofreading employs nonequilibrium biochemical networks to
increase enzyme–substrate specificity3. Indeed, the role of energy
consumption in enhancing the sensitivity of chemosensing is the
subject of several studies4–8. However, whether nonequilibrium
sensing can supersede equilibrium limits to performance is
unknown9,10.

Interactions also directly influence sensitivity, and receptor
cooperativity is a biologically plausible strategy for suppressing
noise11–13. These results, however, apply in steady state11 and it is
independent receptor that maximise the signal-to-noise ratio
under a finite integration time14,15 even when receptor interac-
tions are coupled to energy consumption16. More generally, a
trade-off exists between noise-reduction and available resources,
such as integration time and the number of readout molecules6,7.
It is therefore important to examine how sensor circuit sensitivity
depends on the level of noise and the structure of the
signals without a priori fixing the interactions or the energy
consumption.

We introduce a general model for nonequilibrium coupled
binary sensors. Specialising to the case of two sensors, we obtain
the steady state distribution of the two-sensor states for a speci-
fied signal. We then determine the sensing strategy that max-
imises the mutual information for a given noise level and signal
prior. We find that the optimal sensing strategy depends on both
the noise level and signal statistics. In particular, energy con-
sumption can improve sensing performance in the low-noise,
high-signal-correlation limit but is not always required for opti-
mal sensing. Finally, we generalise our model to include time
averaging of the sensor state by a population of readout mole-
cules, and show that optimal sensing remains reliant on sensor
interaction and energy consumption.

Results
Model overview. We consider a simple system of two informa-
tion processing units (sensors), an abstraction of a pair of coupled
chemoreceptors or two transcriptional regulations with cross-
feedback (Fig. 1a). The sensor states depend on noises, signals
(e.g., chemical changes) and sensor interactions, which can couple
to energy consumption. Instead of the signal-to-noise ratio, we
use the mutual information between the signals and the states of
the system as the measure of sensing performance. Physically, the
mutual information corresponds to the reduction in the uncer-
tainty (entropy) of the signal (input) once the system state
(output) is known. In the absence of signal integration, the
mutual information between the signals and sensors is also
the maximum information the system can learn about the signals
as noisy downstream networks can only further degrade the
signals. However, computing mutual information requires the
knowledge of the prior distribution of the signals. Importantly,
the prior encodes some of the information about the signal, e.g.,
signals could be more likely to take certain values or drawn from
a set of discrete values. Although the signal prior in cellular
sensing is generally unknown, one simple, physically plausible

choice is the Gaussian distribution, which is the least informative
distribution for a given mean and variance.

Nonequilibrium coupled sensors. We provide an overview of
our model in Fig. 1b. Here, a sensor complex is a network of
interacting sensors, each endowed with binary states s= ±1, e.g.,
whether a receptor or gene regulation is active. The state of each
sensor depends on that of the others through interactions, and on
the local bias fields generated by a signal; for example, an increase
in ligand concentration favours the occupied state of a chemor-
eceptor. Owing to noise, the sensor states are not deterministic so
that the probability of every state is finite. We encode the effects
of signals, interactions and intrinsic noise in the inversion rate—
the rate at which a sensor switches its state. We define the
inversion rate for the ith sensor

ΓiSjH � N H exp �β hisi þ
Xj≠i
j

J ijsisj

 !" #
; ð1Þ

where S= {si} denotes the present state of the sensor system, H=
{hi} the signal, Jij the interactions, and β the sensor reliability (i.e.,
the inverse intrinsic noise level). The transition rate determines
the lifetime, and thus the likelihood, of each state S. In the
above form, the coupling to the signal, hisi, favours alignment
between the sensor si and the signal hi, whereas the interaction
Jij > 0 (Jij < 0) encourages correlation (anticorrelation) between
the sensors si and sj. The constant N H sets the overall timescale
but drops out in steady state, which is characterised by the ratios
of the transition rates. In the context of chemosensing, the signal
{hi} parametrises the concentration change of one type of ligand
when all sensors in the sensing complex respond to the same
chemical, and of multiple ligands when the sensors exhibit dif-
ferent ligand specificity.
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Fig. 1 Model overview. We consider a minimal model of a sensory
complex, which includes both external signals and interactions between the
sensors. a Physical examples of a sensor system with two interacting
sensors: a pair of chemoreceptors with receptor coupling (left) and a pair of
transcriptional regulations of gene expressions with cross-feedback (right).
b Model schematic. Each sensor is endowed with binary states s1= ±1 and
s2= ±1, so that the sensor complex admits four states: −, −+, +− and
++. A signal H is drawn from the prior distribution PH and couples to each
sensor via the local fields h1 and h2. The coupling between the sensors is
described by J12= J + t∕2 and J21= J − t∕2, and can be asymmetric so in
general J12≠ J21. c The field hi favours the states with si=+1 (top row); the
coupling J favours the correlated states −− and ++ (bottom left); and
the nonequilibrium drive t generates a cyclic bias (bottom right).
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Given an input signal H, the conditional probability of the
states of the sensor complex in steady state PS∣H is obtained by
balancing the probability flows into and out of each state while
conserving the total probability ∑SPS∣H= 1,X

i

PSijHΓ
i
SijH � PSjHΓ

i
SjH

h i
¼ 0: ð2Þ

Here and in the following, the state vector Si is related to S by the
inversion of the sensor i, si → −si, whereas all other sensors
remain in the same configuration.

In equilibrium, detailed balance imposes an additional
constraint forbidding net probability flow between any two states,

P eq
SijHΓ

i;eq
SijH � Peq

SjHΓ
i;eq
SjH ¼ 0; ð3Þ

and this condition can only be satisfied by symmetric interactions
Jij= Jji (see, Coupling symmetry and detailed balance in
Methods). We define the equilibrium free energy

FSjH ¼ �
X
i

hisi �
Xi<j
i;j

J ijsisj; ð4Þ

such that the inversion rate depends on the initial and final states
of the system only through the change in free energy

Γi; eqSjH ¼ N H exp � 1
2
β FSijH � FSjH
� �� �

: ð5Þ

Together with the detailed balance condition (Eq. (3)), this
equation leads directly to the Boltzmann distribution P eq

SjH ¼
e�βFSjH=Z eq

H with the partition function Z eq
H . When constrained

to equilibrium couplings, this model has been previously
investigated in the context of optimal coding by a network of
spiking neurons17. Asymmetric interactions Jij ≠ Jji break detailed
balance, resulting in a nonequilibrium steady state (see, Coupling
symmetry and detailed balance in Methods).

We specialise to the case of two coupled sensors S= (s1, s2),
belonging to one of the four states: −−, −+, ++ and +−
(Fig. 1b). For convenience, we introduce two new variables, the
coupling J and nonequilibrium drive t, and parametrise J12 and J21
such that J21= J− t ∕ 2 and J12= J+ t ∕ 2 (Fig. 1b). The effects of
the bias fields (h1, h2), coupling J and nonequilibrium drive t are
summarised in Fig. 1c. Compared with the equilibrium inversion
rate [Eq. (5)], a finite nonequilibrium drive leads to a
modification of the form

ΓiSjH ¼
e
1
2βtΓi; eqSjH for cyclic S ! Si;

e�
1
2βtΓi; eqSjH for anticyclic S ! Si;

8<
: ð6Þ

where S→ Si is cyclic if it corresponds to one of the transitions in
the cycle −− → −+ → ++ → +− → −−, and anticyclic
otherwise. Recalling that this probability flow vanishes in
equilibrium, it is easy to see that, depending on whether t is
positive or negative, the nonequilibrium inversion rates result in
either cyclic or anticyclic steady state probability flow.

A net probability flow in steady state leads to power
dissipation. By analogy with Eq. (5), we write down the effective
change in free energy of a transition S → Si,

ΔF eff
S!Si ¼ ΔFeq

S!Si
� t for cyclic S ! Si;

�t for anticyclic S ! Si:

�

That is, the system loses energy of 4t per complete cycle. To
conserve total energy, the sensor complex must consume the
same amount of energy it dissipates to the environment. The
nonequilibrium drive also modifies the steady state probability
distribution. Solving Eq. (2), we have (see also, Steady state

master equation in Methods)

PSjH ¼ exp �β FSjH þ δFSjH
� �h i

=ZH ; ð7Þ
where FS∣H denotes the free energy in equilibrium [Eq. (4)]. The
nonequilibrium effects are encoded in the noise-dependent term

δFSjH ¼ � 1
β
ln e

1
2βts1s2

cosh½βðh1 � ts2Þ�
cosh βh1 þ cosh βh2

�

þ e�
1
2βts1s2

cosh½βðh2 þ ts1Þ�
cosh βh1 þ cosh βh2

�
;

ð8Þ

and note that δFS∣H → 0 as t → 0.

Mutual information. We quantify sensing performance through
the mutual information between the signal and sensor complex I
(S; H), which measures the reduction in the uncertainty (entropy)
in the signal H once the system state S is known and vice versa.
For convenience, we introduce the “output” and “noise” entropies
where output entropy is the entropy of the two-sensor state
distribution S½PS� ¼ S½PHPHPSjH �, whereas the noise entropy is
defined as the average entropy of the conditional probability of
sensor states

P
HPHS½PSjH �. Here, PH is the prior distribution

from which a signal is drawn and the entropy of a distribution is
defined by S½PX � ¼ �PXPX log 2PX . In terms of the output and
noise entropies, the mutual information is given by

IðS;HÞ ¼ S
X

H
PHPSjH

h i
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Output entropy

�
X

H
PHS PSjH

h i
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Noise entropy

; ð9Þ

and we seek the sensing strategy (the coupling J and none-
quilibrium drive t) that maximises the mutual information for
given reliability β and signal priors PH. In practice, we solve this
optimisation problem by a numerical search in the J–t parameter
space using standard numerical-analysis software (see, Code
availability for an example code for numerical optimisation of
mutual information).

Correlated signals. The bias fields at two sensors are generally
different, for example, chemoreceptors with distinct ligand spe-
cificity or exposure, and we consider signals H= (h1, h2), drawn
from a correlated bivariate Gaussian distribution (Fig. 2a),

PH ¼ 1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� α2

p exp � h21 � 2αh1h2 þ h22
2ð1� α2Þ

	 

; ð10Þ

where α∈ [−1, 1] is the correlation between h1 and h2. When we
maximise the mutual information in the J–t parameter space, we
find that the mutual information is maximised by an equilibrium
system (t*= 0) for small β. In Fig. 2b, we show that the optimal
strategy is cooperative (J > 0) at small β and switches to antic-
ooperative (J < 0) around β ~ 1. Below a certain value of β, the
optimal coupling diverges J*→∞ (region I in Fig. 2b). In addi-
tion, sensor cooperativity is less effective for less-correlated sig-
nals because a cooperative strategy relies on output suppression
(which reduces both noise and output entropies). This strategy
works well for more correlated signals as they carry less infor-
mation (low signal entropy), which can be efficiently encoded by
fewer output states. Thus, a reduction in noise entropy increases
mutual information despite the decrease in output entropy. This
is not the case for less-correlated signals, which carry more
information (higher entropy) and which require more output
states to encode effectively. As sensors become less noisy, the
optimal strategy is nonequilibrium (t* ≠ 0; region III in Fig. 2b)
only when the signal redundancy, i.e., the mutual information
between the input signals I(h1; h2), is relatively high. The sensing
strategies t= ±∣t*∣ are time-reversed partners of one another both
of which yield the same mutual information. This symmetry
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results from the fact that the signal prior PH (Eq. (10)) is invariant
under h1↔ h2, hence the freedom in the choice of dominant
sensor (i.e., we can either make J12 > J21 or J12 < J21).

Although Fig. 2b shows the results for positively correlated
signals (α > 0), the optimal sensing strategies for anticorrelated
signals (α < 0) exhibit the same dependence on sensor reliability
and the signal redundancy but with the same nonequilibrium
drive t = ±∣t*∣ and the optimal coupling J* that is opposite to that
in the case α > 0.

Perfectly correlated signals. To understand the mechanisms
behind the optimal sensing strategy for correlated signals, we
consider the limiting case of completely redundant Gaussian
signals (h1= h2), which captures most of the phenomenology
depicted in Fig. 2b. We find that nonequilibrium drive allows
further improvement on equilibrium sensors only for β > 1.7 and
that the nonequilibrium gain remains finite as β →∞ (Fig. 3a). In
Fig. 3b, we show the optimal parameters for both equilibrium and
nonequilibrium sensing. The optimal coupling diverges for sen-
sors with β < 1, decreases with increasing β and exhibits a sign
change at β= 1.4. For β > 1.7, the nonequilibrium drive is finite
and the couplings are distinct J� ≠ J�eq.

Figure 4a compares the output and noise entropies of
equilibrium and nonequilibrium sensing at optimal with that of
noninteracting sensors for a representative β= 4. Here, antic-
ooperativity (J�eq < 0) enhances mutual information in equilibrium
sensing by maximising the output entropy, whereas nonequili-
brium drive produces further improvement by lowering noise
entropy. Compared with the noninteracting case Fig. 4b, optimal
equilibrium sensing distributes the probability of the output states,
PS, more evenly (Fig. 4c), resulting in higher output entropy.
This is because a negative coupling J < 0 favours the states +−
and −+, which are much less probable than ++ and −− in a
noninteracting system subject to perfectly correlated signals
(Fig. 4b). However, this also leads to higher noise entropy, as the
states +− and −+ are equally likely for a given signal (Fig. 4c).
By lifting the degeneracy between the states +− and −+,
nonequilibrium sensing suppresses noise entropy while maintain-
ing a relatively even distribution of output states, Fig. 4d. As
a result, for signals with low redundancy (I(h1; h2)≲ 1), a

nonequilibrium strategy allows no further improvement (Fig. 2b)
because the states of a sensor complex are less likely to be
degenerate (since the probability that h1 ≈ h2 is smaller).

Although anticooperativity increases output entropy more than
noise entropy at β= 4, it is not the optimal strategy for β < 1.4.
For noisy sensors, a positive coupling J > 0 yields higher mutual
information, Fig. 3b. This is because when the noise level is
high, the output entropy is nearly saturated and an increase in
mutual information must result primarily from the reduction of
noise entropy by suppressing some output states–in this case, the
states +− and −+ are suppressed by J > 0.

We emphasise that the nonequilibrium gain is not merely a
result of an additional sensor parameter. Instead of none-
quilibrium drive we can introduce signal-independent biases on
each sensor and keep the entire sensory complex in equilibrium.
Such intrinsic biases can lower noise entropy in optimal sensing
by breaking the degeneracy between the states +− and −+
(Fig. 4b, c). However, favouring one sensor state over the other
results in a greater decrease in output entropy and hence lower
mutual information (see, Supplementary Fig. 1).

Our analysis does not rely on the specific Gaussian form of the
prior distribution. Indeed, for correlated signals the nonequili-
brium improvement in the low-noise, high-correlation limit is
generic for most continuous priors (see, Supplementary Fig. 2).

Time integration. Cells do not generally have direct access to the
receptor state. Instead, chemosensing relies on downstream
readout molecules whose activation and decay couple to sensor
states. Repeated interactions between receptors and a readout
population provide a potential noise-reduction strategy through
time averaging, which can compete with sensor cooperativity and
energy consumption14,16. We generalise our model to incorporate
time integration of the sensor state by a population of readout
molecules and demonstrate that sensor coupling and none-
quilibrium drive remains essential to optimal sensing.

We consider a system of binary sensors S, coupled to signals H
and a readout population r. We expand our original model
(Nonequilibrium coupled sensors) to include readout activation
(r → r+ 1) and decay (r → r− 1), resulting in modified
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Fig. 3 Optimal sensing in the high-signal-correlation limit. For perfectly
correlated Gaussian signals, the nonequilibrium information gain is largest
in the noiseless limit. We consider a sensor complex driven with signal
H = (h, h) with PH ¼ e�h2=2=

ffiffiffiffiffiffi
2π

p
. a The nonequilibrium gain as a function

of sensor reliability β. The gain grows from zero at β= 1.7 and increases
with β, suggesting that the enhancement results from the ability to
distinguish additional signal features. b Optimal sensing strategy for varying
noise levels. For β < 1 (shaded), the mutual information is maximised by an
equilibrium system (t*= 0) with infinitely strong coupling. The equilibrium
strategy remains optimal for β < 1.7 with a coupling J* (solid) that decreases
with β and exhibits a sign change at β= 1.4. At bigger β, the optimal
coupling in the equilibrium case (dashed) continues to decrease but
equilibrium sensing becomes suboptimal. For β > 1.7, the mutual
information is maximised by a finite nonequilibrium drive (dot-dashed) and
negative coupling.
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Fig. 2 Optimal sensing for correlated signals. Nonequilibrium sensing is
optimal in the low-noise, high-correlation limit for correlated Gaussian
signals. a We assume that the signal directly influences both sensors with
varying correlation, Eq. (10). b The optimal coupling J* as a function of
sensor reliability β and the signal redundancy, i.e., the mutual information
between the input signals I(h1; h2). The optimal coupling diverges J* → ∞ at
small β (region I, left of the dashed curve) and decreases with larger β.
Between the dashed and solid curves (region II), the mutual information
I(S; H) is maximised by equilibrium sensors with a finite J* that changes
from cooperative (red) to anticooperative (blue) at the dotted line.
Nonequilibrium sensing is the optimal strategy for signals with relatively
high redundancy in the low-noise limit (region III, above the solid curve).
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transition rates:

ΓS!Sijðr;HÞ ¼ N He
�βsi hi�biþ

P
j≠i
J ijsjþδμir

� �
ð11Þ

Γr!r ± 1jðS;HÞ ¼ N He
±1
2β
P

i
δμisi ð12Þ

where S → Si denotes sensor inversion si → − si, r the readout
population, bi the sensor-specific bias and N H the overall
timescale constant. We also introduce the sensor-dependent
differential readout potential δμi; the sensor state si ¼ sgnðδμiÞ
favours a larger readout population (by increasing activation rate
and suppressing decays), whereas si ¼ �sgnðδμiÞ biases the
readout towards a smaller population. This allows the readout
population to store samplings of sensor states over time, thus
providing a physical mechanism for time integration of sensor
states. The readout population in turn affects sensor inversions:
the larger the readout population, the more favourable si ¼
sgnðδμiÞ over si ¼ �sgnðδμiÞ. This two-way interplay between
sensors and readouts is essential for a consistent equilibrium
description, for one-way effects (e.g., sampling sensor states
without altering the sensor complex) require Maxwell’s demon—
a nonequilibrium process not described by the model.

We further assume a finite readout population r ≤ r0, and that
the readout activation and decay are intrinsically stochastic.
Consequently, a readout population has a limited memory for
past sensor states. Indeed, readout stochasticity sets a timescale
beyond, which an increase in measurement time cannot improve
sensing performance6. To investigate this fundamental limit,
we let the measurement time be much longer than any stochastic

timescale. In this case, the sensor-readout joint distribution Pr,S∣H
satisfies the steady state master equation with the transition rates
in Eqs. (11), (12) (see, Steady state master equation in Methods).

When Jij= Jji, the steady state distribution obeys the detailed
balance condition (see, Coupling symmetry and detailed balance
in Methods) and is given by

P eq
r;SjH ¼ e�βFr;SjH=Z eq

H ð13Þ
with the free energy

Fr;SjH ¼ �
X
i

ðhi � biÞsi �
Xj>i
i;j

J ijsisj �
X
i

δμisir ð14Þ

This distribution results in P eq
rjS;H ¼ Peq

rjS, implying a Markov chain
H → S → r (H affects r only via S), hence the data processing
inequality I(S; H) ≥ I(r; H). That is, in equilibrium, time
integration of sensor states cannot produce a readout population
that contain more information about signals than the sensor
states7 (see, also refs. 18,19). This result applies to any equilibrium
sensing complexes (see, Equilibrium time integration in
Methods).

We now specialise to the case of two coupled sensors S=
(s1, s2) and introduce two new variables, Δ and δ, defined via

δμ1 ¼
1
2
ðΔþ δÞ and δμ2 ¼

1
2
ðΔ� δÞ ð15Þ

For this parametrisation, the effective chemical potentials for
readout molecules are given by

μþþ ¼ Δ; μ�� ¼ �Δ; μþ� ¼ δ; μ�þ ¼ �δ;
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Fig. 4 Mechanisms behind nonequilibrium performance improvement for joint, correlated signals. For perfectly correlated Gaussian signals, in the low-
noise limit, sensor anticooperativity (J < 0) increases the mutual information by maximising the output entropy while nonequilibrium drive (t≠ 0) provides
further improvement by suppressing noise entropy. a We compare the mutual information, output, and noise entropies for three sensing strategies at β=
4: (b grey) noninteracting, (c blue) equilibrium and (d red) nonequilibrium cases. For each case, we find the configuration that maximises the mutual
information under the respective constraints. b–d Signal-sensor joint probability distribution P(S, H), output distribution PS, and the “signal-resolved noise
entropy” PHS½PSjH�, corresponding to the cases shown in a where β= 4. Note that the noise entropy is the area under the signal-resolved curve. As the
optimal coupling is negative (J < 0) at β= 4 (see Fig. 3b), the states −+ and +−, which are heavily suppressed by fully correlated signals in a
noninteracting system (b), become more probable in the interacting cases, resulting in a more even output distribution c, d and thus a larger output
entropy a. However anticooperativity also increases noise entropy in the equilibrium case a since the states −+ and +− are degenerate c. By lifting this
degeneracy (d), a nonequilibrium system can suppress the noise entropy and further increase mutual information a.
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where μS= ∑iδμisi. We see that Δ (δ) parametrises how different
the sensor states ++ and −− ( +− and −+ ) appear to the
readout population. To maximise utilisation of readout states, we
set the sensors biases to bi= δμir0 ∕ 2 where r0 is the maximum
readout population. For optimal equilibrium sensing, we max-
imise mutual information I(r; H) by varying J and δ under the
constraint t= 0, and the noninteracting case corresponds to J=
t= δ= 0.

Figure 5a depicts the readout-signal mutual information for
perfectly correlated Gaussian signals for the cases of optimal
equilibrium sensing (solid) and noninteracting sensors (dashed).
Independent sensors are suboptimal for all β, i.e., we can always
increase mutual information by tuning δ and J away from zero. At
maximum mutual information we find δ= 0 and J ≠ 0. In Fig. 5b,
we show the mutual information as a function of J (at δ= 0). We
see that J�eq ! 1 in the noisy limit (low β) and J�eq < 0 in the low-
noise limit (high β). This crossover from cooperativity to
anticooperativity is consistent with our results in Correlated
signals and Perfectly correlated signals (see also, Figs. 2 and 3b).

To reveal the mechanism behind optimal equilibrium sensing in
the low-noise limit, we examine the joint probability distribution
P(r, h) at β= 4 for noninteracting (Fig. 5c) and optimal
equilibrium sensors (Fig. 5d). We see that anticooperativity
increases mutual information by distributing the output (readout)

states more efficiently (cf. Fig. 4b, c). Noninteracting sensors
partition outputs into large and small readout populations, which
corresponds to positive and negative signals, respectively. This is
because correlated signals favour the chemical potentials μ++=−
μ−−=Δ, which bias the readout population towards r= 0 and r=
r0, and suppress μ+−=−μ−+= δ= 0, which encourage evenly
distributed readout states. By adopting an anticooperative strategy
(J < 0) to counter signal correlation, optimal equilibrium sensors
can use more output states (on average) to encode the signal. The
increase in accessible readout states also raises noise entropy, but
the increase in output entropy dominates in the low-noise limit,
resulting in higher mutual information.

Finally, we demonstrate that energy consumption can further
enhance sensing performance. Figure 5e shows P(r, h) for a
nonequilibrium sensor complex. We see that nonequilibrium
drive lifts the degeneracy in intermediate readout states (0 < r <
r0), leading to a much more effective use of output states. For the
nonequilibrium sensor complex in Fig. 5e, we obtain Ineq(r; h)=
1.75 bits, compared with I�eq ðr; hÞ ¼ 0:96 bits for optimal
equilibrium sensors (Fig. 5a, b) at the same sensor reliability
(β= 4). We note that this nonequilibrium gain relies also on δ ≠ 0
to distinguish the sensor states +− and −+. The staircase of
readout states in Fig. 5e corresponds to the anticorrelated sensor
states +− and −+ which do not always favour higher readouts
at positive signals (see also, Supplementary Figs. 3, 4).

Discussion
We introduce a minimal model of a sensor complex that
encapsulates both sensor interactions and energy consumption.
For correlated signals, we find that sensor interactions can
increase sensing performance of two binary sensors, as measured
by the steady state mutual information between the signal and the
states of the sensor complex.

This result highlights sensor cooperativity as a biologically
plausible sensing strategy11–13. However, the nature of the optimal
sensor coupling does not always reflect the correlation in the
signal; for positively correlated signals, the optimal sensing strat-
egy changes from cooperativity to anticooperativity as the noise
level decreases, see also ref. 17. Anticooperativity emerges as the
optimal strategy through countering the redundancy in correlated
signals by suppressing correlated outputs, and thus redistributing
the output states more evenly. The same principle also applies to
population coding in neural networks17, positional information
coding by the gap genes in the Drosophila embryo20–22 and time-
telling from multiple readout genes23. Surprisingly, we find that
energy consumption leads to further improvement only when the
noise level is low and the signal redundancy high.

We find that sensor coupling and energy consumption remain
important for optimal sensing under time integration of the
sensor state—a result contrary to earlier findings that a coop-
erative strategy is suboptimal even when sensor interaction can
couple to nonequilibrium drive14,16. This discrepancy results
from an assumption of continuous, deterministic time integration
that requires an infinite supply of readout molecules and external
nonequilibrium processes, and which also leads to an under-
estimation of noise in the output; we make no such assumption in
our model. In addition, we use the data processing inequality to
show for any sensing system that time integration cannot
improve sensing performance unless energy consumption is
allowed either in sensor coupling or downstream networks (see
also refs. 5,7).

Our work highlights the role of signal statistics in the context of
optimal sensing. We show that a signal prior distribution is an
important factor in determining the optimal sensing strategy as it
sets the amount of information carried by a signal. With a signal
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Fig. 5 Optimal sensing in the presence of time integration. Sensor
interaction and energy consumption remain important for optimal sensing
in the presence of time integration of sensor states by a population of
readout molecules. We consider a two-sensor complex, driven by signal
H = (h, h) with PH ¼ e�h2=2=

ffiffiffiffiffiffi
2π

p
and coupled to a readout population r

(Eqs. (11), (12)). a Mutual information between the signal and the readout
population for noninteracting sensors (dashed) and optimal equilibrium
sensors (solid). Independent sensors are always suboptimal. b Mutual
information as a function of sensor coupling J at various sensor reliabilities
β (see legend). The optimal equilibrium strategy changes from
cooperativity (J > 0) in the noisy limit to anticooperativity (J < 0) in the
low-noise limit. c–e Joint probability distribution of signal and readout
population at β= 4 for three sensing systems: noninteracting c, optimal
equilibrium (d), and near-optimal nonequilibrium (e) (cf. Fig. 4). Optimal
equilibrium sensors use anticooperativity to increase the probability of the
states +− and −+, which map to intermediate readout populations 0 <
r < r0, and as a result, allows for a more efficient use of output states
compared with noninteracting sensors. Nonequilibrium drive lifts the
degeneracy of intermediate readout states, leading to an even more
effective use of readout states. For the nonequilibrium example in e, we
obtain Ineq= 1.75 bits, compared with I�eq ¼ 0:96 bits for optimal
equilibrium sensors at the same β. In a–e, we use Δ= 1 and r0= 10, and in
e, J=−2, t= 7, and δ=−0.6.
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prior, we quantify sensing performance by mutual information,
which is a generalisation of linear approximations used in pre-
vious works6–8,11,14,16.

To focus on the effects of nonequilibrium sensor cooperation,
we neglect the possibility of signal crosstalk and the presence of
false signals. Limited sensor-signal specificity places an additional
constraint on sensing performance24 (but see, ref. 25). Previous
works have shown that kinetic proofreading schemes3 can miti-
gate this problem for isolated chemoreceptors that bind to correct
and incorrect ligands26,27. Our model can be easily generalised to
include crosstalk, and it would be interesting to investigate
whether nonequilibrium sensor coupling can provide a way to
alleviate the problem of limited specificity.

Although we considered a simple model, our approach pro-
vides a general framework for understanding collective sensing
strategies across different biological systems from chemoreceptors
to transcriptional regulation to a group of animals in search of
mates or food. In particular, possible future investigations include
the mechanisms behind collective sensing strategies in more
complex, realistic models, non-binary sensors, adaptation, and
generalisation to a larger number of sensors. It would also be
interesting to study the channel capacity in the parameter spaces
of both the sensor couplings and the signal prior, an approach
that has already led to major advances in the understanding of
gene regulatory networks28. Finally, the existence of optimal
collective sensing strategies necessitates a characterisation of the
learning rules that gives rise to such strategies.

Methods
Steady state master equation. The steady state probability distribution satisfies a
linear matrix equation X

j

Wijpj ¼ 0 ð16Þ

where pj denotes the probability of the state j. The matrix W is defined such that

Wij ¼ Γj!i for i≠ j and Wkk ¼ �
X
i

Γk!i ð17Þ

where Γj→i denotes the transition rate from the states j to i and Γj→j= 0. The
solution of Eq. (16) corresponds to a direction in the null space of the linear
operator W. For two coupled sensors considered in Nonequilibrium coupled
sensors, Eq. (16) (Eq. (2)) becomes a set of four simultaneous equations, which we
solve analytically for a solution (Eq. (7)) that also satisfies the constraints of a
probability distribution (∑jpj= 1, pi 2 R and pi ≥ 0 for all i). In a larger system an
analytical solution is not practical. For example, in ‘Time integration’ we consider a
44-state system of two sensors with at most 10 readout molecules. In this case we
obtain the null space of the matrix W from its singular value decomposition, which
can be computed with a standard numerical software.

Coupling symmetry and detailed balance. Here we show that the transition rates
in Eq. (1) does not satisfy Kolmogorov’s criterion—a necessary and sufficient
condition for detailed balance—unless Jij= Jji. Consider the sensors si and sj in a
sensor complex S= {s1, s2, …, sN} with N > 1. This sensor pair admits four states
(si, sj) = −−, −+, ++, +−. The transitions between these states form two closed
sequences in opposite directions

ð18Þ

Kolmogorov’s criterion requires that, for any closed loop, the product of all
transition rates in one direction must be equal to the product of all transition rates
in the opposite direction—i.e., ΓaΓbΓcΓd ¼ Γa0Γb0Γc0Γd0 . For the rates in Eq. (1), we
have

ΓaΓbΓcΓd
Γa0Γb0Γc0Γd0

¼ e4βðJij�J jiÞ ð19Þ

therefore, only symmetric interactions satisfy Kolmogorov’s criterion and any

asymmetry in sensor coupling necessarily breaks detailed balance. This result holds
also for the generalised transition rates in Eqs. (11), (12).

Equilibrium time integration. Following the analysis in Supplemental Material of
ref. 7, we provide a general proof that equilibrium time integration of receptor
states cannot generate readout populations that contain more information about
the signals than the receptors. We consider a system of receptors S= (s1, s2, …, sN),
driven by signal H= (h1, h2, …, hN) and coupled to readout populations R=
(r1, r2, …, rM). In equilibrium, this system is described by a free energy

FR;SjH ¼ f ðH; SÞ þ gðS;RÞ ð20Þ
where f(H, S) and g(S, R) describe signal-sensor and sensor-readout couplings,
respectively, and include interactions among sensors and readout molecules. The
Boltzmann distribution for sensors and readouts reads

PR;SjH ¼ e�β½f ðH;SÞþgðS;RÞ�=ZH ð21Þ
with the partition function ZH. Therefore, we have

PRjS;H ¼ PR;SjHP
RPR;SjH

¼ e�βgðS;RÞP
Re

�βgðS;RÞ ¼ PRjS ð22Þ

where the summation is over all readout states. This allows the decomposition of
the joint distribution, PR,S∣H= PR∣S,HPS∣H= PR∣SPS∣H, which implies a Markov chain
H → S → R—that is, H affects R only through S. (This does not mean R does not
affect S, for PS∣R,H still depends on R.) From the data processing inequality, it
immediately follows that I(H; S) ≥ I(H; R). We emphasise that this constraint
applies to any equilibrium sensor complex and downstream networks, which can
be described by the free energy in Eq. (20), regardless of the numbers of sensors
and readout species, sensor characteristics (e.g., number of states), sensor-signal
and sensor-readout couplings (including crosstalk), and interactions among sen-
sors and readout molecules.

Data availability
Data sharing not applicable to this article as no datasets were generated or analysed
during the current study.

Code availability
A Mathematica code for computing the optimal sensor parameters (J*, t*) that maximise
the mutual information between two coupled sensors and correlated Gaussian signals is
available at https://github.com/vn232/NeqCoopSensing.
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