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ABSTRACT: We report the reactivity and characterization of hydride, methyl, and bromo Ni
II
 complexes with a new class of elec-

tron-rich and sterically hindered PNP pincer ligands, Me4PNP
R
 (R = 

i
Pr, 

t
Bu), in which a classical metal-ligand cooperative mode of 

reactivity via CH2 arm deprotonation is blocked by methylation. This enables new, uncommon modes of PNP ligand dearomatiza-

tion that involve reactivity in the para-position of the pyridine ring. In particular, the reduction of [(Me4PNP
iPr

)Ni
II
Me]B(Ar

F
)4 with 

KC8 leads to the formation of a new C–C bond via dimerization of two complexes through the para-position. This reactivity stands 

in sharp contrast to the previously reported bromo or chloro complexes, where stable Ni
I
 halogen moieties are formed. Computa-

tional analysis showed a greater propensity for ligand-centered radical formation for the presumed intermediate Ni
I
Me species. 

Homolysis of the Ni
II
-Me bond in [(Me4PNP

iPr
)Ni

II
Me]B(Ar

F
)4 leads to the formation of a Me radical detected by radical traps and 

Ni
I
 intermediates that can be trapped in the presence of halide ions to give previously characterized, stable Ni

I
 halogen complexes. 

In addition, treatment of bromo-complexes [(Me4PNP
R
)Ni

II
Br]BPh4 with a powerful hydride source, LiBEt3H, leads to the reduc-

tion of the pyridine ring and the formation of Ni
II
 complexes with an anionic amide-donor reduced pincer ligand, although aromatic 

Ni
II
 hydride complexes could also be obtained with a weaker hydride source. We have observed that steric bulk at the phosphine 

donors controls the reactivity of the resulting Ni
II
H complexes. While t-Bu-substituted [(Me4PNP

tBu
)Ni

II
H]Y (Y = BPh4, B(Ar

F
)4) 

does not react with O2, the less sterically hindered 
i
Pr-substituted [(Me4PNP

iPr
)Ni

II
H]Y reacts instantaneously to give an unstable 

superoxide adduct that can be observed by EPR.  

INTRODUCTION 

Pincer complexes have been a focus of organometallic re-

search for multiple decades since their initial description and 

characterization by Shaw
1
 and van Koten

2, 3
 in the 1970s. 

Since then, pincer ligands have been modified in countless 

ways to improve the electronic and steric properties required 

for different applications, from catalytic reactions to small 

molecule activation and stabilization of high- and low-valent 

metal complexes. Some of the most well-known pincer motifs 

include the PCP,
4-15

 POC(sp
2
)OP,

16-22
 POC(sp

3
)OP,

23
 POCN,

24-

28
 PNP,

29-37
 PONOP,

38-45
 PIMCOP,

46
 and NNN

47-49
 amongst 

others. 

Catalytic applications of pincer complexes with precious and 

non-precious metals such as Pd, Pt, Ru, Co, and Ni have been 

studied extensively over the past several decades. 
50-56

 Among 

them, nickel pincer complexes have been widely used and 

studied, mostly because of their ease of preparation, the wide 

range of catalytic activity, and rich reactivity in small mole-

cule activation.
57, 58

 For example, nickel hydrides supported by 

pincer ligands are known to be active in hydroborations
59

, 

hydrosilylations,
60, 61

 dehydrogenative coupling of aldehydes,
62

 

reduction of CO2,
22, 63

 as well as reactivity with acetylene
64, 65

 

and other small molecules.
13, 66

 In addition, alkyl complexes of 

nickel with pincer ligands are known to engage in insertion of 

CO2
13, 67

, reactivity with electrophiles
66

, and carbon-halide 

bond activation.
68

 

In pyridine-based PNP pincer complexes, one of the most 

common reactions/activation pathways involves deprotonation 

of the ligand’s CH2 arms. This leads to the formation of a 

dearomatized complex, which can sometimes engage in metal-

ligand cooperative bond activation.
69

 However, the drawback 

of the acidic phosphine arms’ CH2 groups is their high reactiv-

ity, which sometimes leads to irreversible ligand framework 

modification and/or prevents reactivity at the metal.
70

  

Inducing metal-based reactivity may be instrumental in study-

ing base metal-mediated small molecule activation. In particu-

lar, nickel complexes in the less common oxidation states of 

+1 and +3 have been implicated in CO2 activation,
71, 72

 O2 

reactivity,
57, 58

 C–C coupling
73, 74

 and methanogenesis in Ni-

containing enzymes.
75, 76

  

We have previously reported new, sterically hindered, elec-

tron-rich Me4PNP pincer ligands,
77

 in which four Me groups 

are introduced in the pincer “arms” to prevent dearomatization 

of the pyridine ring.
69, 70

 We were able to obtain unusually 

stable Ni
I
 complexes, whose geometry is controlled by the 

steric properties of the ligand (i.e. 
t
Bu vs. 

i
Pr) (Scheme 1). 

EPR and DFT studies showed that these complexes have a 

metalloradical character with spin density essentially localized  



 

Scheme 1. Formation of stable Ni
I
 complexes with different 

geometries as previously reported.
77

 

 

at the metal center, explaining the lack of reactivity at the lig-

and framework. 

In this work, we set out to investigate nickel hydride and me-

thyl complexes with Me4PNP as these species possess a more 

electron-rich metal center and participate in classical reactions 

such as hydrogen activation. We wanted to study the effect of 

introducing steric bulk and the blocking of metal-ligand coop-

erativity on their reactivity in small molecule activation and in 

chemical reduction. We found that although traditional metal-

ligand cooperativity at the pincer “arms” has been blocked, we 

were able to observe reactivity at the para-position of the pyr-

idine ring in reactions with strong chemical reducing agents, 

leading to unusual types of pyridine ring dearomatization. We 

were also able to indirectly observe the formation of a transi-

ent, three coordinate Ni
I
 species through homolysis of the Ni–

Me bond under strong UV irradiation. In traditional small 

molecule activation reactivity (CO, CO2, ethylene, O2), we 

found that introducing extreme steric bulk through 
t
Bu substit-

uents on the phosphine groups effectively blocks all reactivity, 

leading to exceptionally stable Ni hydride complexes that can 

be stored under air for several weeks, both in solution and the 

solid state, whereas the less bulky 
i
Pr-substituted ligand does 

allow for O2 reactivity, leading to the formation of a transient 

superoxide species.  

RESULTS AND DISCUSSION 

Synthesis and characterization of Ni
II
 complexes. The Ni

II
 

complexes were prepared by reacting previously reported Ni
II
 

halide complexes [(Me4PNP
R
)NiBr]Br (R = 

i
Pr, 

t
Bu)

77
 with 

either sodium tetraphenylborate (NaBPh4) or sodium 

tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaB(Ar
F
)4) in 

dry THF to form [(Me4PNP
R
)NiBr]BPh4 (R = 

i
Pr [1]BPh4,  

t
Bu [2]BPh4) or previously reported [(Me4PNP

R
)NiBr]B(Ar

F
)4 

(R = 
i
Pr [1]B(Ar

F
)4, 

t
Bu [2]B(Ar

F
)4)

77
 (Scheme 2). Reacting 

these complexes with 10 equivalents of sodium borohydride 

(NaBH4) in anhydrous THF over 4 to 18 hours produced hy-

dride complexes [(Me4PNP
R
)NiH]B(Ar

F
)4 (R = 

i
Pr [3]B(Ar

F
)4, 

t
Bu [4]B(Ar

F
)4) and [(Me4PNP

R
)NiH]BPh4 (R = 

i
Pr [3]BPh4, 

t
Bu [4]BPh4) in high yields. Reacting complexes [1] and [2] 

with either methyllithium, lithium dimethylcuprate, or dime-

thylzinc over 5 minutes to 2 hours formed the methyl com-

plexes [(Me4PNP
R
)NiMe]B(Ar

F
)4 (R = 

i
Pr [5]B(Ar

F
)4, 

t
Bu 

[6]B(Ar
F
)4) and [(Me4PNP

R
)NiMe]BPh4 (R = 

i
Pr [7]BPh4, 

t
Bu 

[8]BPh4) in 80% to 97% yield (See Scheme 2).  

The use of ZnMe2 resulted in clean and selective formation of 

the desired Ni-Me complexes after 2h, and the same complex 

could be obtained by a reaction with CuMe2Li after a shorter 

reaction time of only 5 min, albeit in a less selective manner. 

Although Ni–Me complex formation was also observed by 

using MeLi alone after ca. 1 h of reaction time, this reagent 

was the least selective among the three.  

The 
1
H NMR spectra for hydride complexes [3] and [4] show 

a hydride signal in the highly upfield region of -18 ppm as a 

triplet due to splitting from two phosphorous atoms (JHP ≈ 55 

Hz). The methyl complexes [5] and [6] show the characteristic 

Me group signal from around 0 to -0.23 ppm split by two P 

atoms. The 
13

C{
1
H} spectra for the methyl complexes show 

the Ni-CH3 signal from -16 to -21 ppm. As observed previous-

ly for the halogen species, complexes that have bulky 
t
Bu 

groups show broadened signals in 
1
H NMR for the arm and 

phosphine methyls, caused by the hindered rotation of 
t
Bu 

groups around the phosphine atom due to crowding from the 

methylated ligand arms.  

Most complexes in this study have been analyzed by X-ray 

diffraction studies, NMR, HRMS and elemental analysis. 

Structural data for the complexes reported in Table 1 show 

almost ideal square planar geometry around the nickel center. 

The ORTEP diagrams of complexes [3]BPh4, [4]BPh4, 

[5]BPh4, and [6]BPh4 are shown in Figure 1. All aromatized 
i
Pr complexes show an “up-down” conformation in the crys-

tals where one of the methyl groups on the arms is over the 

pyridine plane while the other is under the plane. This is also 

the case for all 
t
Bu-substituted complexes except for complex 

[2]BPh4 (see below). 

Scheme 2. Preparation of nickel(II) cationic complexes [1]-[6]  

 

a
 Complexes were previously reported.

77
  



 

 

Table 1. Bond distances [Å] and angles [deg] for complexes [1]-[6] according to XRD data.
a
  

Complex Ni1–N1 Ni1–X Ni1–P1 Ni1–P2 ∠ P1–Ni1–P2 ∠ N1–Ni1–X 4’
b 4

b 

[1]B(ArF)4
c,d 1.9095(13) 2.2827(2) 2.1786(4) 2.1805(4) 172.320(18) 176.66(4) 0.06 0.08 

[1]BPh4 1.9133(11) 2.2932(2) 2.1833(4) 2.1863(4) 173.064(15) 179.60(4) 0.03 0.05 

[2]B(ArF)4
c,e 1.9236(15) 2.2877(12) 2.2324(12) 2.2454(13) 171.87(5) 178.84(7) 0.04 0.07 

[2]BPh4
e,f

 1.924(7) 2.2981(9) 2.2314(17) 2.2418(17) 171.40(7) 178.6(4) 0.05 0.07 

[3]B(ArF)4
 1.9234(10) 1.45(2) 2.1424(3) 2.1366(3) 175.547(14) 179.3(8) 0.02 0.03 

[3]BPh4
 1.9193(12) 1.367(19) 2.1297(4) 2.1468(4) 176.300(19) 178.7(8) 0.03 0.03 

[4]B(ArF)4
d 1.9228(19) 1.34(3) 2.1430(6) 2.1452(6) 176.43(3) 179.9(18) 0.01 0.02 

[4]BPh4 1.9182(8) 1.469(15) 2.1555(2) 2.1574(2) 174.368(10) 178.4(6) 0.04 0.05 

[5]B(ArF)4 1.9567(9) 1.9471(11) 2.1691(3) 2.1619(3) 170.614(12) 178.03(5) 0.06 0.08 

[5]BPh4 1.9626(8) 1.9547(10) 2.1790(3) 2.1704(3) 170.919(10) 179.03(4) 0.04 0.07 

[6]B(ArF)4 1.9610(14) 1.9520(18) 2.2252(5) 2.2110(5) 171.544(19) 179.39(8) 0.04 0.06 

[6]BPh4 1.9515(13) 2.0012(15) 2.2085(4) 2.2072(5) 170.554(19) 178.30(7) 0.05 0.08 
aAtom numbering corresponds to that of Figure 1; X = Br, H or Me. bGeometrical indexes τ4′ and τ4 for the nickel centers are calculated 

according to refs.78, 79 cComplexes were previously reported.77 dThere are two complexes in the asymmetric cell (Z’ = 2); data are tabulated 

for the first one. e Data are listed for the main disordered component. fData are tabulated for the experiment collected using MoKα radiation. 

 

As a result of multiple crystallization attempts, we were only 

able to obtain the structure of [2]BPh4 in the “up-up” confor-

mation for both components of disorder, where two methyl 

groups are located over the pyridine plane, even though the 

very closely related complex with a B(Ar
F
)4 counterion crys-

talizes in the “up-down” conformation.
77

 DFT analysis of the 

geometry-optimized structures show that “up-up” and “up-

down” complexes are expected to have only a minor energy 

difference in vacuo, with the “up-up” isomer being only 2.11 

kcal mol
-1

 higher in energy than the “up-down” isomer, well 

within the bound of error expected from DFT and also suscep-

tible to small solid state energy differences due to crystal 

packing (see Supp. Info for details). Nevertheless, we cannot 

completely exclude the presence of an undetected disordered 

component with the “up-down” conformation in the crystals. 

Reactivity of Ni
II
 complexes leading to pyridine ring 

dearomatization. Interestingly, while screening various hy-

dride sources for the formation of Ni hydride complexes, we 

found that the reaction of bromide complexes [1]BPh4 and  

 

Figure 1. ORTEP diagrams of complexes [3]BPh4 (a), [4]BPh4 

(b), [5]BPh4 (c), and [6]BPh4 (d) with the thermal ellipsoids set at 

50% probability level. Most hydrogen atoms except for those on 

the nickel center, a minor disorder component for [5]BPh4, and 

counterions are omitted for clarity. 

Scheme 3. Synthesis of complexes 7-9 

 

[2]BPh4 with lithium triethylborohydride (LiBEt3H, Superhy-

dride) leads to ligand-based reactivity to give complexes 7 and 

8 as major products, in which the pyridine ring is reduced, as 

evidenced from single crystal X-ray diffraction and NMR 

studies, while the Ni–Br bond remains intact (Scheme 3).  

This reactivity resembles reduction of the pyridine ring in 

PONOP complexes with Superhydride reported by Jones et 

al.
42

 and shows that in the presence of a strong reductant, the 

pyridine ring in our new, sterically-hindered PNP ligands dis-

plays non-innocent character.  

Complex 7 was isolated in 87% yield while complex 8 was 

isolated in 77% yield, and they were both characterized by 

NMR, X-ray diffraction and HRMS. For complex 8, 0.8 eq. of 

Superhydride was used instead of 1 equivalent because it fur-

nished product of the higher purity, where unreacted starting 

material can be easily removed by filtration in diethyl ether.  

When 
i
Pr-substituted complex [1]BPh4 was treated with 2 

equiv of LiBEt3H, a new dearomatized hydride complex 9 was 

formed as a major product and characterized by NMR spec-

troscopy. Notably, when the 
t
Bu-substituted analog [2]BPh4 

was reacted with 2 equiv of LiBEt3H under same conditions, a 

mixture of complex 8 as a major product and a presumed 

dearomatized hydride species as a minor product was observed 

by NMR spectroscopy (Figure S58). Lower reactivity of the 
t
Bu-substituted analog compared to [1]BPh4 is likely due to a 

combination of steric and electronic factors preventing further 

nucleophilic substitution with LiBEt3H.  

 



 

Table 2. Bond distances [Å] and angles [deg] for complexes 7, 8, and 10 according to XRD data.
a 

Complex Ni1–N1 Ni1–X Ni1–P1 Ni1–P2 C1–C2 C2–C3 
∠ P1–Ni1–

P2 

∠ N1–Ni1–

X 
4’

b 4
b 

7c 1.8768(15) 2.3370(3) 2.1821(5) 2.1857(5) 1.337(3) 1.498(3) 170.67(2) 176.60(5) 0.07 0.09 

8d 1.8810(12) 2.3071(3) 2.2297(4) 2.2205(4) 1.3386(19) 1.5060(19) 170.621(15) 178.29(4) 0.05 0.08 

10e 1.9028(17) 1.954(2) 2.1510(6) 2.1585(6) 1.343(3) 1.509(3) 171.19(2) 177.29(9) 0.06 0.08 
aAtom numbering corresponds to that of Figures 2 and 4; X = Br or Me. bGeometrical indexes τ4’ and τ4 for the nickel centers are calculat-

ed according to refs.78,79 cThere are two complexes in the asymmetric cell (Z’ = 2); data are tabulated for the first one. dData are listed for 

the main disordered component; a hydride species is present as the minor disordered component with occupancy of 0.3331(10), and the 

Ni1–H1 bond length is 1.52(2) Å (see Supp. Info). eThe asymmetric cell contains half of the molecule (Z’ = 0.5); C3–C3i 1.570(4) Å.  

 

 

Figure 2. ORTEP diagrams of complexes 7 (a) and 8 (b) with the 

thermal ellipsoids set at 50% probability level. Hydrogen atoms 

except for those on the heterocycle are not shown. Complex 7 has 

two complexes in the asymmetric unit, only the first component is 

shown. Only the main component of the disorder is shown for 

complex 8. 

The X-ray diffraction study of complexes 7 and 8 revealed that 

the atom C3 deviates from the plane defined by atoms C1, C2, 

C4, C5, and N1 by 0.317(2) Å and 0.4470(15) Å, respectively, 

highlighting the loss of aromaticity of the heterocyclic moiety. 

The Ni1–N1 bond lengths for complexes 7 and 8 of 

1.8768(15) Å and 1.8810(12) Å are shorter than their parent 

complexes [1]BPh4 and [2]BPh4, with Ni1-N1 bond lengths of 

1.9133(11) Å and 1.924(7) Å, respectively. The dearomatiza-

tion of the pyridine ring can be seen by the shorter bond length 

for C1–C2 and C4–C5 compared to C2–C3 and C3–C4. For 

complex 7, C1–C2 and C4–C5 bond lengths have double bond 

character with 1.337(3) and 1.338(3) Å bond distances, while 

C2–C3 and C3–C4 have single bond character with 1.498(3) 

and 1.497(3) Å bond distances. Similar bond lengths are pre-

sent in complex 8, with C1–C2, C4–C5 displaying double-

bond character with 1.3386(19) and 1.3437(19) Å, while C2–

C3, C3–C4 have structural single-bond character with 

1.5060(19) and 1.5055(19) Å. The dearomatization of the pyr-

idine ring is also evident from solution NMR of 7 and 8, 

which shows upfield shifts for the heterocycle protons that 

now appear in the range of 2.8 to 4.2 ppm.  

The propensity of our sterically bulky ligands to reduction at 

the para position is a feature that was originally not entirely 

desirable as the ligands were usually designed to prevent met-

al-ligand cooperation/dearomatization pathways, but also not 

entirely unexpected due to Jones’ earlier PONOP report.
42

 

However, as mentioned previously, it was possible to obtain 

all the non-dearomatized hydride species with a less reducing 

NaBH4 reagent cleanly. It is worth to consider that Superhy-

dride reduction of the pyridine ring in the para position even-

tually provides a pathway for in situ formation of an anionic 

PNP ligand, which, as suggested by previous literature, might 

eventually enable different reactivity pathways as compared to 

neutral PNP ligands.
71, 80

 Such pyridine reduction reactivity 

also resembles the NAD
+
/NADH redox couple in biological 

systems and NADH-model compounds that are used as a res-

ervoir of hydride ions.
81-83

 The para position reactivity of the 

hydrides suggested that we may be able to get different out-

comes upon electrochemical or chemical reduction of com-

plexes 5-6 as compared to the halogen complexes and their 

associated stable and unreactive Ni
I
X (X= Br, Cl) species ear-

lier reported by us.
77

 

Reactivity of Ni
II
(Me) complexes with strong reductants 

leading to pyridine ring dearomatization. Accordingly, we 

next studied the reactivity of Ni
II
 methyl complexes with 

strong chemical reductants. Previously, we reported that Ni
II
 

bromide and chloride complexes could be reduced by cobalto-

cene to form stable paramagnetic Ni
I
 complexes. In the case of 

Ni
II
–Me complexes, cobaltocene was not a sufficiently strong 

reductant and no reduced product could be observed. Cyclic 

voltammetry studies gave us more insight into the different 

reactivity of these complexes when compared to their halide 

counterparts (Figure 3, a). For example, the reduction potential 

of complex [5]B(Ar
F
)4 (−1.72 V) is much more negative than 

the reduction potential of cobaltocene, at around −1.33 V (in 

CH2Cl2)
84

. The reduction wave of complex [5]B(Ar
F
)4 is elec-

trochemically irreversible (Ep = 0.54 V), suggesting that a 

Ni
I
–Me species might be unstable after generation, or that it 

undergoes significant changes upon oxidation.
85

 

The cyclic voltammogram of [6]BPh4 showed a quasireversi-

ble reduction wave at a less negative potential (−1.21 V) indi-

cating that the presence of bulky 
t
Bu-substituents might con-

tribute to greater stabilization of the initial reduced product, at 

least on the electrochemical timescale. 

For comparison, cyclic voltammograms of hydride complexes 

[3]B(Ar
F
)4 and [4]BPh4 show completely irreversible reduc-

tion waves at very negative potentials, −2.39 and −2.42 V 

respectively, suggesting that the reduction products are likely 

unstable and very strong reductants are required for chemical 

reduction
84, 85

 (Figure 3, b and Table 3). 

Attempted reduction of [3]B(Ar
F
)4 and [4]BPh4 by using 1 

equivalent of a strong reductant, KC8, initially gives a mixture 

paramagnetic products, as observed by EPR spectroscopy (See 

Figures S118 and S119). According to NMR analysis of the 

reaction mixtures, a complex mixture of diamagnetic products 

is eventually formed during the reduction of [3]B(Ar
F
)4 and 

[4]BPh4; free ligand was also present among the reaction 

products after reduction of [3]B(Ar
F
)4. We were unable to 

identify the products of reduction of hydride complexes due to 

their low stability. 



 

 

Figure 3. Cyclic voltammograms of Ni methyl and hydride com-

plexes in the cathodic region: a) complexes [5]B(ArF)4 (1 mM; 

red line) and [6]BPh4 (0.5 mM, dashed black line); b) complexes 

[3]B(ArF)4 (1 mM; red line) and [4]BPh4 (1 mM; dashed black 

line). Experimental conditions: 0.1 M nBu4NPF6/MeCN solution 

at 23 °C, scan rate 0.1 V s-1, 1.0 mm GC disk working electrode; 

the arrow indicates initial scan direction. 

Table 3. Electrochemical properties of complexes 

[3]B(Ar
F
)4, [4]BPh4, [5]B(Ar

F
)4 and [6]BPh4.

a
 

Complex 
Epf

 

(V)b
 

Epr
 

(V)c 

E 

(V)d 

E1/2 

(V)e

[3]B(ArF)4 -2.389 - - - 

[4]BPh4 -2.422 - - - 

[5]B(ArF)4 -1.720 -1.180 0.540 - 

[6]BPh4 -1.209 -1.075 0.134 -1.142 

aCyclic voltammograms for complexes [3]B(ArF)4 (1 mM), 

[4]BPh4 (1 mM), [5]B(ArF)4 (1 mM) and [6]BPh4 (0.5 mM) in a 

0.1 M solution of nBu4NPF6 as supporting electrolyte in MeCN at 

23°C; 100 mV/s scan rate; GC disk electrode (d = 1.6 mm); all 

peaks were referenced versus ferrocene. bPotential of the forward 

peak. cPotential of the return peak. dThe peak-to-peak separation 

E was calculated as Epf  - Epr. 
eE1/2 was estimated as ½(Epf + Epr)  

Interestingly, chemical reduction of the Ni
II
–Me complex 

[5]B(Ar
F
)4 with a very strong reductant (KC8, potassium 

graphite) led to the formation of a new diamagnetic complex 

10, which was isolated in 33% yield and characterized by X-

ray crystallography and NMR spectroscopy. According to the 

X-ray structure shown in Figure 4, 10 is a dimer, with a new 

C–C bond formed in the para-position of the pyridine rings, 

leading to overall pyridine ring reduction and dearomatization. 

Similar to the dearomatized complex 7, complex 10 shows 

bent heterocycle rings, and double bond character between the 

ortho and meta carbons. The geometry around the nickel cen-

ter is also close to an ideal square planar geometry. The atom 

C3 deviates from the plane defined by atoms C1, C2, C4, C5, 

and N1 by a distance of 0.4235(19) Å. The C3–C3
i
 bond 

length of 1.570(4) Å is longer than the C2–C3 (1.509(3) Å) 

and C3–C4 (1.505(3) Å) single bonds in the pyridine ring, 

which are longer than the olefinic C1–C2 (1.343(3) Å) and 

C4–C5 (1.341(3) Å) bonds. NMR analysis of complex 10 

shows that the heterocyclic protons are also significantly up-

field shifted from the parent complex and fall in the range of 

4.5 to 3.6 ppm, consistent with pyridine ring dearomatization.  

This result shows that the reactivity of complex [5]B(Ar
F
)4, 

with its more electron-rich Ni–Me center, is predominantly 

ligand-based. In the previously reported Ni
II
 bromide and chlo-

ride complexes metal-based reduction was observed exclusive-

ly. The reasons behind ligand-based reactivity observed for 

Ni–Me complexes were analyzed through computational stud-

ies and are discussed below in more detail.  

The attempted reduction [6]BPh4 with KC8 under the same 

conditions afforded a mixture of paramagnetic products, how-

ever, these products could not be characterized or isolated in a 

pure form. Increased steric bulk in [6]BPh4
 
could prevent di-

merization and clean formation of the C-C coupled dimer 

analogous to 10, thus leading to other degradation pathways of 

the initial reduced product (see computational analysis below). 

Scheme 4. Reduction of Nickel(II) methyl complex 

[5]B(Ar
F
)4 to form 10. 

 

 

Figure 4. ORTEP diagram of complex 10 with the thermal ellip-

soids set at 50% probability level. Hydrogen atoms except for 

those on the heterocycle are not shown. Selected interatomic dis-

tances (Å) and angles (deg.): Ni1–N1 1.9028(17), Ni1–C24 

1.954(2), Ni1–P1 2.1510(6), Ni1–P2 2.1585(6), N1–C1 1.405(3), 

N1–C5 1.408(3), C1–C2 1.343(3), C2–C3 1.509(3), C3–C4 

1.505(3), C4–C5 1.341(3), C3–C3i 1.570(4), ∠P1–Ni1–P2 

171.19(2), ∠N1–Ni1–C24 177.29(9). Equivalent atoms are la-

beled with the superscript i (–x, 1–y, 1–z). 

UV-induced homolysis of Ni
II
-Me bond. An alternative way 

to access a transient Ni
I
 species from an organometallic Ni

II
 

complexes would be a homolysis of a Ni–C bond.
86

 We inves-



 

tigated the reactivity of Ni
II
-Me complexes [5]B(Ar

F
)4 and 

[6]B(Ar
F
)4  under irradiation by mercury lamp at RT in an 

acetone solution in the presence or absence of radical traps. 

Interestingly, initial trial experiments where we irradiated the 

solution of [5]B(Ar
F
)4 without any additives produces a pink-

colored solution already after 5 min.  

To confirm whether Ni
II
–Me bond homolysis occurs under 

these conditions, we performed the experiment in the presence 

of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as a radical trap, 

which could help to detect a transient Me radical. When we 

performed the irradiation for 1 hour at room temperature in the 

presence of an excess of DMPO, we observed a new signal of 

a DMPO-methyl adduct with g = 2.007, AN = 14.25 G and AH 

= 21.10 G (Figure 5, Scheme 5). The superhyperfine splitting 

parameters of the trapped radical are similar to those reported 

in the literature for a DMPO-Me radical adduct in acetone (AN 

= 14.2 G, AH = 21.6 G in acetone under gamma irradiation).
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When the solution of [5]B(Ar
F
)4 was irradiated in the absence 

of a radical trap, the low temperature EPR spectrum showed 

only a weak signal with g values in the range from 2.17 to 

2.04 (See Figure S114), which might indicate possible for-

mation of metalloradical Ni
I
 species. However, the low inten-

sity of the signal suggests that in the absence of stabilizing 

ligands, the resulting cationic Ni
I
 is likely to be unstable and to 

undergo further transformations. This transient Ni species 

could be either a T-shaped three-coordinate Ni
I
 species similar 

to those reported by the Lee
88

 or Gade
57

 groups or a solvent-

stabilized tetracoordinate species.  

In order to reliably detect the formation of possible Ni
I
 species, 

we performed the reaction in the presence of Br
–
 or Cl

–
 ions 

that can act as stabilizing ligands to form previously character-

ized stable (Me4PNP
iPr

)Ni
I
Br or (Me4PNP

iPr
)Ni

I
Cl complexes, 

respectively (Scheme 5). To our satisfaction, irradiation of an 

acetone solution of [5]B(Ar
F
)4 in the presence of 1 equiv. of 

n
Bu4NBr for 1h gave a pink-colored solution, whose EPR 

spectrum at 95 K shows a new rhombic signal with g-values of 

2.328, 2.307, and 1.998, close to the g-values of the previously 

characterized (Me4PNP
iPr

)Ni
I
Br complex (g = 2.316, 2.309, 

and 1.993).
77

 Similarly, a rhombic signal (g = 2.329, 2.307, 

and 1.998) was also observed in the presence of 1 equiv. of 
n
Bu4NCl, although the reaction was less clean (See Supporting 

Information).  

Scheme 5. UV-induced reactivity of [5]B(Ar
F
)4. 

 

 

Figure 5. Experimental (black line) and simulated (red line) EPR 

spectra after UV irradiation of a) [5]B(ArF)4 after UV irradiation 

for 1 h at 298 K in the presence of excess DMPO; b) [5]B(ArF)4 

in the presence 1 equiv of nBu4NBr after UV irradiation for 1h at 

95 K. Parameters for simulation: a) g = 2.007, AN = 14.25 G, AH = 

21.10 G. b) gx = 2.328, gy = 2.307, gz = 1.998 (giso = 2.211).  

In direct contrast with the less bulky 
i
Pr substituents, when 

t
Bu 

substituted complex [6]B(Ar
F
)4 was irradiated in the presence 

of DMPO trap, we could not observe clean Ni–Me homolysis 

reactivity. No signals of DMPO-Me adduct were evident, with 

only a low intensity broad isotropic signal with a g-value of 

2.164 observed (See Figure S115 in SI).  

NMR analysis of [6]B(Ar
F
)4 under UV irradiation shows even-

tual decomposition on the ligand framework as is seen by mul-

tiple new weak signals in the aromatic and aliphatic regions. 

However, the signal of the methyl group at around 0.13 ppm 

remains, showing that the Ni–Me bond persists. 

Small molecule activation reactivity. We hypothesized that 

introducing significant steric hindrance through the influence 

of four Me groups and 
t
Bu or 

i
Pr substituents at the phosphines 

might alter the reactivity of the nickel methyl and hydride 

complexes towards small molecule activation. Indeed, the 

attempted reactions of complexes [3]X, [4]X, [5]X, and [6]X 

(X = B(Ar
F
)4 or BPh4) with CO, CO2, and ethylene failed to 

give significant amounts of any adducts or insertion products 

even up to 24 hours at 50 °C. Some minor degradation was 

observed upon prolonged heating of [3]BPh4 under CO atmos-

phere for 8 h, however, no CO adducts could be detected by 

IR spectroscopy. The nature of the counter anion, B(Ar
F
)4 or 

BPh4, did not affect the reactivity.  

 

Figure 6. Experimental (black line) and simulated (red line) EPR 

spectra of the complex formed from the reaction of [3]B(ArF)4 

with O2 in frozen acetone at 84K. Parameters for simulation: g┴ = 

2.003, g║ = 2.088 

Reactivity of complexes 3-6 with oxygen. We then set out to 

study the reactivity of Ni hydride complexes with O2, to de-

termine if any oxygen adducts can be detected. The less steri-

cally hindered 
i
Pr-substituted complex [3]BPh4 readily reacts 



 

with O2 in a deuterated acetonitrile solution, which leads to an 

immediate solution color change from light yellow to red then 

quickly to orange within a few minutes. The first species ob-

served by 
1
H NMR 2 minutes after reaction with O2 appears to 

be partially paramagnetic; the disappearance of a characteristic 

Ni–H signal can also be observed. Upon prolonged reaction 

time, the paramagnetic species disappears to reveal only a 

mixture of unidentified diamagnetic complexes. (Figures S70-

S71 in SI)  

The EPR spectrum recorded after reacting [3]B(Ar
F
)4 with O2 

for 1 hour shows an axial signal with g║ and g┴ values of 

2.088 and 2.003, respectively (Figure 6). These g-values that 

remain close to 2 are similar to the signals reported for known 

Ni superoxide complexes with NNN pincer ligands described 

by Gade et al.
58

 We also recorded the EPR spectrum of the 

reaction of [3]B(Ar
F
)4 with O2 in the presence of an excess of 

DMPO, and obtained the spectrum shown in Figure S113 of 

supporting information with superhyperfine splitting constants 

(AN = 13.2 G, AH = 8.11 G, g = 2.0025), resembling those re-

ported for characterized or proposed metal-superoxide adducts 

(for example, Co superoxide DMPO adduct, AN = 12.8 G, AH = 

7.68 G, g = 2.008).
89

 Although we could not isolate or further 

characterize the product of the reaction with O2 due to its low 

stability and further decomposition, we propose that the for-

mation of a similar Ni superoxide complex could occur in this 

case.
89, 90

 

Interestingly, although Ni
II
 hydrides are usually considered to 

be highly reactive species, highly sterically hindered 
t
Bu-

substituted Ni
II
 hydride [4]BPh4 was stable under air or pure 

O2 atmosphere for at least 24 hours according to 
1
H and 

31
P{

1
H} NMR studies (Figures S72-S73 in SI). The Ni

II
 me-

thyl complexes [5]B(Ar
F
)4 and [6]B(Ar

F
)4 did not react with 

O2 even after 24 hours at 50° C. 

These results demonstrate that controlling steric bulk of the 

pincer ligands leads to drastic differences in the stability and 

the reactivity towards small molecule activation. Imposing 

significant steric hindrance can lead to stabilization of normal-

ly highly reactive Ni–H and Ni–Me species in the presence of 

an O2 atmosphere.  

Computational studies of the reactivity of (Me4PNP
R
)Ni 

complexes. To shed light on the difference in reactivity of Ni
II
 

halide, which leads to stable Ni
I
 complexes, and the reactivity 

of Ni
II
 methyl complexes that leads to dimerization through 

the para-position of the pyridine ring, we performed frontier 

orbital analysis of the cationic species [5]
+
 and [6]

+
 as well as 

tentative one-electron reduced  neutral radical species [5]
•
 and 

[6]
•
 (Figure 7) and analyzed their spin density distribution 

(Figure 8). 

 

Figure 7. DFT-optimized structures of cationic NiII-Me [5]+ (a), 

[6]+ (c) and their one-electron-reduced products, neutral species 

[5]• (b), [6]• (d) (DFT optimized geometry. B3LYP, 6-

311++G**/lanl2dz(Ni)). 

 

Figure 8. Spin density plots for complexes [5]
• (a) and [6]

• (b) 
(DFT optimized geometry, B3LYP, 6-311++G**/lanl2dz(Ni), 

isovalue = 0.0007). 

Frontier orbital analysis shows that the LUMO of starting un-

reduced complexes [5]
+
 and [6]

+ 
(Figure 9) essentially has a 

pyridine-based character, while the HOMO is metal based, 

with a mostly 𝑑𝑧2 character. By contrast, in complexes [5]
•
 and 

[6]
•
 the spin density is predominantly localized at the ligand, 

with highest spin density at the para-carbon positions of the 

pyridine rings (0.492 and 0.47, respectively), while the spin 

density at the Ni centers was found to be close to zero.  

Previously, we reported that the spin density in neutral 

(Me4PNP
R
)NiX complexes (R = 

i
Pr or 

t
Bu; X = Br or Cl; ana-

logues of [5]
•
 and [6]

•
) is largely localized at the metal center, 

which is consistent with EPR studies that showed metal-based 

radical character.
77

  



 

 

Figure 9. Molecular orbital diagram and HOMO, SOMO, and 
LUMO representation of [5]+ and [5]

•
 (DFT optimized geometries, 

B3LYP, 6-311++G**/lanl2dz(Ni), alpha orbital representations, 

isovalue = 0.04). 

Therefore, if one-electron reduction of [5]
+
 and [6]

+
 leads to 

the initial formation of transient [5]
•
 and [6]

•
, it is expected 

that the resulting ligand-based radical character will lead to 

their dimerization, which was observed experimentally for 5. 

The localization of the spin density at the ligand as opposed to 

the metal is likely due to the more electron-rich alkyl ligand vs. 

halogens.  

In addition, to explain the lack of reactivity of the Ni–methyl 

complexes towards CO, CO2, and ethylene, we tried to opti-

mize the geometry of the tentative five-coordinate adduct of 

(Me4PNP
R
)Ni

II
Me with CO as a model compound, using vari-

ous initial geometries (square pyramid or trigonal bipyramid) 

and different orientations of CO relative to the complex coor-

dination planes (See Figures S145-S146). In the case of the 

square pyramid starting geometry with the CO in the “up” 

fashion ([5]CO-up and [6]CO-up), no stable adducts with CO 

could be found, and CO remained outside of coordination 

sphere of the metal after optimization (Ni–C distance exceed-

ing 5 Å), which is an uphill process with G of 5.8 kcal∙mol
-1

 

for 
i
Pr and 6.3 kcal∙mol

-1
 for 

t
Bu

 
. In case of the same geome-

try with the CO in the “down” fashion ([5]CO-down and 

[6]CO-down) as well as the starting geometry where the CO 

is in in a trigonal bipyramidal fashion ([5]CO-bipy or [6]CO-

bipy), the geometry of tentative CO adducts showing Ni–C 

distances of 2.18-2.24 Å were optimized. However, in all cas-

es binding of CO was found to be an uphill process with G of 

14.7 kcal∙mol
-1

 or 18.6 kcal∙mol
-1

, with the highest energy 

belonging to a 
t
Bu complex (see Figures S147-S148). 

SUMMARY AND CONCLUSION 

We showed that designing the PNP pincer ligand in which 

dearomatization through deprotonation of the phosphine arms 

is blocked by methylation leads to ligand reactivity at the para 

carbon position with strong reductants. We reported two types 

of pyridine ring dearomatization, one via reduction in the pa-

ra-position with a hydride source, and another through dimeri-

zation with the formation of a new C–C bond. DFT studies 

confirmed that the proposed transient, one-electron reduced 

(Me4PNP
R
)Ni–Me species are expected to demonstrate ligand-

based radical, rather than the metal-based radical character 

previously observed in (Me4PNP
R
)Ni

I
-X (X = Br, Cl) com-

plexes, explaining their para-carbon based reactivity. These 

results suggest that if such ligand-based reactivity is to be 

avoided for further development of bulky, electron-rich PNP 

ligand, the para and possibly meta positions of the pyridine 

ring should be protected. The ligand based radical could pos-

sibly be stabilized by a 
t
Bu moiety installed at the para carbon 

to avoid reactivity at the pyridine backbone. This may lead to 

a stable ligand based organic radical and a Ni
II
 center. These 

types of complexes may have interesting spectroscopic proper-

ties, and especially with other first-row metal centers, may be 

explored in metal-ligand spin coupling applications. 

In addition, we showed that steric hindrance affects the out-

come of Ni–Me and Ni–H complexes’ reactivity in small mol-

ecule activation. In the case of significantly sterically hindered 

Me4PNP
tBu

 ligand, we were able to obtain an unexpectedly 

stable Ni hydride complex that did not react with typical gase-

ous reagents and O2 even after a prolonged reaction time. Re-

ducing sterics by using the Me4PNP
iPr

 ligand led to the obser-

vation of a transient superoxide species.  

EXPERIMENTAL SECTION 

All operations were performed using standard Schlenk or 

glovebox techniques under an N2 atmosphere unless indicated 

otherwise. Unless otherwise indicated, all solvents and rea-

gents were used as received. Non-deuterated solvents were 

taken from a solvent purification system (MBRAUN SPS). 

Acetone-d6 was vacuum distilled over dried magnesium sul-

fate at low temperature. All other deuterated solvents were 

added to activated 3 Å molecular sieves. Methyl lithium 1M in 

diethyl ether and sodium tetraphenylborate were purchased 

from Kanto Chemicals. Sodium borohydride and lithium tri-

ethylborohydride were purchased from Tokyo Chemical In-

dustry Co. Ltd. Copper(I) iodide was purchased from Nacalai 

Tesque Inc. Dimethylzinc 1M in heptane was purchased from 

Sigma. Potassium graphite was purchased from Strem Chemi-

cals, Inc. Electrochemical grade tetrabutylammonium hex-

afluorophosphate (
n
Bu4NPF6) from Fluka was used as the sup-

porting electrolyte. 

Complexes [(Me4PNP
R
)Ni

II
Br]Br and 

[(Me4PNP
R
)Ni

II
Br]B(Ar

F
)4 (R = 

i
Pr, 

t
Bu) were synthesized 

according to previously reported procedures.
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Cyclic voltammetry experiments were performed on an ALS 

CHI 660E electrochemical workstation. Electrochemical 

measurements were done under an N2 atmosphere. Acetoni-

trile used for the solutions was dried through an MBRAUN 

SPS solvent system. A glassy carbon disk electrode (d = 1.6 

mm) was used as working electrodes for cyclic voltammetry. 

A non-aqueous Ag-wire reference electrode assembly was 

filled with 0.01M AgNO3 in 0.1 M 
n
Bu4NPF6/MeCN solution 

as a reference electrode. A Pt-wire was used as an auxiliary 

electrode. The reference electrodes were calibrated against 

FeCp2 (Fc), where the Fc/Fc
+
 couple vs Ag/AgNO3/MeCN 

non-aqueous reference is 102 V in 0.1 M 
n
Bu4NPF6/MeCN. 

NMR spectra were recorded using JEOL ECZR-400 MHz or 

ECZR-600 MHz. Chemical shifts are reported in ppm (δ) and 

referenced internally to the residual solvent signals (
1
H and 



 

13
C: 7.26 and 77.16 ppm for CDCl3; 2.05 and 29.84, 206.26 

ppm for acetone-d6; 1.94, 1.32 and 118.26 ppm for CD3CN, 

and 7.16 and 128.08 ppm for C6D6). The signal abbreviations 

are as follows: d – doublet, t – triplet, v – virtual, q – quartet, 

br - broad, m – multiplet. X-band EPR spectra were recorded 

using an X-band JEOL JES-X330 instrument using a liquid 

nitrogen-cooled cryostat in 5 mm diameter quartz tubes. Fou-

rier transform infrared (FT-IR) spectra were recorded for crys-

talline samples under an Ar atmosphere on Cary 630 with an 

attenuated-total-reflectance (ATR) module. Abbreviations are 

as follows: w – weak, m – medium, s – strong. UV-vis spectra 

were recorded on a Cary 60 UV-vis spectrophotometer be-

tween 200 and 1200 nm. 

The X-ray diffraction data for the single crystals were collect-

ed on a Rigaku XtaLab PRO instrument (an ω-scan mode) 

with a PILATUS3 R 200K hybrid pixel array detector and a 

MicroMax
TM

-003 microfocus X-ray tubes using MoKα 

(0.71073 Å) or CuKα (1.54184 Å) radiation at low tempera-

ture. Images were indexed and integrated using the CrysAlis
Pro

 

data reduction package. Data were corrected for systematic 

errors and absorption using the ABSPACK module: Numerical 

absorption correction based on Gaussian integration over a 

multifaceted crystal model and empirical absorption correction 

based on spherical harmonics according to the point group 

symmetry using equivalent reflections. The GRAL module 

were used for analysis of systematic absences and space group 

determination.  The XRD experiment for [2]BPh4 using MoKα 

radiation was performed on a Bruker D8 Venture diffractome-

ter (a φ/ω-scan mode) equipped with a PHOTON II CPAD 

detector, an IµS 3.0 microfocus X-ray source, and an Oxford 

Cryostream LT device. Images were indexed and integrated 

using the APEX3 data reduction package. Data were corrected 

for systematic errors and absorption by means of SADABS 

based on the Laue symmetry using equivalent reflections. 

XPREP was used for analysis of systematic absences and 

space group determination. All structures were solved by the 

direct methods using SHELXT
91

 and refined by the full-matrix 

least-squares on F
2
 using SHELXL.

92
 Non-hydrogen atoms 

were refined anisotropically. The hydrogen atoms were insert-

ed at the calculated positions and refined as riding atoms, ex-

cept for hydrogens atoms on the nickel center, which were 

found using the difference Fourier maps. The positions of the 

hydrogen atoms of methyl groups were found using rotating 

group refinement with idealized tetrahedral angles. The disor-

der, if present, was resolved using free variables and reasona-

ble restraints on geometry and anisotropic displacement pa-

rameters. Complexes [4]B(Ar
F
)4 and 10 were resolved using 

the SQUEEZE routine of PLATON.
93

 

[(Me4PNP
iPr

)Ni
II
Br]BPh4, [1]BPh4. Sodium tetraphenyl-

borate (NaBPh4) (36.4 mg, 0.106 mmol) was added to a solu-

tion of [(Me4PNP
iPr

)Ni
II
Br]Br (60.3 mg, 0.098 mmol) in THF 

and stirred at rt for 5 minutes. The solution was then evapo-

rated and washed with diethyl ether to remove the remaining 

salt. The insoluble complex was collected on a short celite 

plug and washed with acetone and then evaporated to give a 

light orange solid (58 mg, 0.068 mmol, 70%). Yellow crystals 

suitable for X-ray diffraction were grown from a concentrated 

acetonitrile solution at -30 °C under an N2. 1H NMR (400 

MHz, CDCl3): 1.16-1.22 (m, 12H, PCH-CH3), 1.51-1.55 (m 

overlap, 12H + 12 H, PCH-CH3 + P-C(CH3)2Cpy), 2.47-2.56 

(m, 4H, P-CHCH3), 6.57 (d, JHH = 7.9 Hz, 2H, Cpy-Hmeta), 6.88 

(t, JHH = 7.3 Hz, 4H, BCAr-Hpara), 7.02 (t, JHH = 7.3 Hz, 8H, 

BCAr-Hmeta), 7.16 (t, JHH = 8.0 Hz, 1H, Cpy-Hpara), 7.42 (br m, 

8H, BCAr-Hortho). 
13

C{
1
H} NMR (101 MHz, CDCl3):  19.17 

(PCH-CH3), 19.73 (PCH-CH3), 23.39 (vt, JPC = 10.7 Hz, PCH-

CH3), 28.01 (P-C(CH3)2Cpy), 49.99 (vt, JPC = 8.2 Hz, P-

C(CH3)Cpy), 120.52 (vt, JPC = 4.4 Hz, Cpy,meta), 121.88 (B-

CAr,para), 125.67-125.74 (m, B-CAr,meta), 136.43 (B-CAr,ortho), 

144.57 (Cpy,para), 164.27 (dd, JBC = 49.2 Hz, B-CAr,ipso), 172.38 

(vt, JPC = 7.1 Hz, Cpy,ortho). 
31

P{
1
H} NMR (162 MHz, CDCl3) 

73.74. ATR-IR (cm
-1

): 3045 (w), 2973 (w), 2874 (w), 1571 

(w), 1457 (m), 1388 (w), 1369 (w). 1287 (w), 1244 (w), 1152 

(w), 1100 (w), 1032 (w), 932 (w), 884 (w), 844 (w), 811 (w), 

732 (m), 701 (s), 653 (m). UV-vis (THF, [1·10
-4

 M]), max, nm 

(, L mol
-1 

cm
-1

): 259 (21703), 276 (sh, 10429), 300 (6290), 

345 (13442), 466 (1855). Anal. Calcd. For C47H63NP2NiBrB: 

C, 66.15; H, 7.44; N, 1.64. Found: C, 65.92; H, 7.30; N, 2.27. 

[(Me4PNP
tBu

)Ni
II
Br]BPh4, [2]BPh4. The same procedure to 

prepare [1]BPh4 was used to prepare [2]BPh4 starting from the 

previously reported [(Me4PNP
tBu

)Ni
II
Br]Br (50.0 mg, 0.075 

mmol) and NaBPh4 (26.8 mg, 0.078 mmol, 1.05 eq.) to afford 

a pink solid (59 mg, 0.065 mmol, 87%). Red crystals suitable 

for X-ray diffraction were grown from a concentrated acetone 

solution at r.t. 
1
H NMR (400 MHz, CD3CN):  1.42-1.45 (m, 

18 H, Me of 
t
Bu), 1.56-1.87 (br m, 18H, Me of 

t
Bu), 1.90-1.96 

(m overlapping with CD3CN, 6H, P-C(CH3)2Cpy), 2.05-2.07 

(m, 6H, P-C(CH3)2Cpy), 6.85 (t, JHH = 8.0 Hz, 4H, BCAr-Hpara), 

7.00 (t, JHH = 7.3 Hz, 8H, BCAr-Hmeta), 7.28 (t, JHH = 6.2 Hz, 

8H, BCAr-Hortho), 7.37 (d, JHH = 8.1 Hz, 2H, Cpy-Hmeta), 8.05 (t, 

JHH = 8.0 Hz, 1H, Cpy-Hpara). 
13

C{
1
H} NMR (101 MHz, 

CD3CN):  24.88 (P-C(CH3)2Cpy), 32.15 (Me of 
t
Bu), 32.94 

(br, Me of 
t
Bu), 36.05 (P-C(CH3)2Cpy), 40.11 (Cquat of 

t
Bu), 

41.55 (vt, JPC = 5.7 Hz, Cquat of 
t
Bu), 53.12 (vt, JPC = 4.9 Hz, 

P-C(CH3)2Cpy), 121.44 (Cpy,meta), 122.74 (B-CAr,para), 126.54-

126.62 (m, B-CAr,meta), 136.99 (B-CAr,ortho), 144.35 (Cpy,para), 

164.74 (dd, JBC = 49.3 Hz, B-CAr,ipso), 174.01 (Cpy,ortho). 
31

P{
1
H} NMR (162 MHz, CD3CN):  87.15. ATR-IR (cm

-1
): 

3051 (w), 3036 (w), 2998 (w), 2973 (w), 2936 (w), 2875 (w), 

1599 (w), 1579 (w), 1563 (w), 1458 (m), 1427 (m), 1388 (w), 

1367 (w), 1267 (w), 1243 (w), 1181 (w), 1146 (w), 1129 (w), 

1100 (w), 1065 (w), 1047 (w) 1032 (m), 932 (w), 885 (w), 848 

(w), 811 (w), 757 (m), 129 (s), 701 (s), 673 (m). UV-vis (THF, 

[1·10
-4

 M]), max, nm (, L mol
-1 

cm
-1

):. Anal. Calcd. For 

C51H71NP2NiBrB: C, 67.35; H, 7.87; N, 1.54. Found: C, 66.72; 

H, 7.64; N, 1.56. 

[(Me4PNP
iPr

)Ni
II
H]B(Ar

F
)4, [3]B(Ar

F
)4. Sodium tetrakis[3,5-

bis(trifluoromethyl)phenyl]borate (NaB(Ar
F
)4) (14.7 mg, 

0.017 mmol) was added to a THF solution of 

[(Me4PNP
iPr

)Ni
II
Br]Br (10.0 mg, 0.017 mmol) and stirred for 5 

minutes. The mixture was then filtered over a short celite plug 

and sodium tetrahydroborate (NaBH4) (6.3 mg, 0.17 mmol) 

was added followed by vigorous stirring for 4 hours to give a 

light-yellow solution. The solution was evaporated, and dieth-

yl ether was added to dissolve the complex without dissolving 

the salts. The solution was filtered on a short celite plug and 

the solvent was evaporated to obtain a pale-yellow powder (23 

mg, 0.017 mmol, 100 %). Yellow crystals suitable for X-ray 

diffraction were obtained by slow crystallization of a concen-

trated toluene solution of [3]B(Ar
F
)4 at -30 °C under an N2 

1
H 

NMR (400 MHz, acetone-d6):  -18.05 (t, JPH = 54.8 Hz, 1H, 

Ni-H), 1.17-1.22 (m, 12H, PCH-CH3), 1.40-1.46 (m, 12H, 

PCH-CH3), 1.77-1.79 (m, 12H, PCH-CH3), 2.54-2.62 (m, 4H, 

PCH-CH3), 7.62 (d, JHH = 7.9 Hz, 2H, Cpy-Hmeta), 7.67 (br s, 

BCAr-Hpara), 7.77-7.79 (m, 8H, BCAr-Hortho), 8.23 (tt, JHH = 8.0, 

1.3 Hz, 1H, Cpy-Hpara). 
13

C{
1
H} NMR (101 MHz, acetone-d6): 



 

 20.68 (PCH-CH3), 21.11 (PCH-CH3), 24.20 (vt, JPC = 11.5 

Hz, PCH-CH3), 26.15 27.89 (P-C(CH3)2Cpy), 51.27 (vt, JPC = 

7.6 Hz, P-C(CH3)2Cpy), 118.37-118.53 (m, B-CAr,para), 120.52 

(vt, JPC = 4.6 Hz, Cpy,meta), 125.36 (q, JCF = 271.8 Hz, BCAr,meta-

CF3), 130.00 (qdd, JCF = 30.5 Hz; JCB = 5.7 Hz; JCF= 2.7 Hz, 

B-CAr,meta CF3), 135.52 (B-CAr,ortho), 143.16 (Cpy,para), 162.58 

(dd, JBC = 49.9 Hz, B-CAr,ipso), 172.28 (vt, JPC = 7.2 Hz, 

Cpy,ortho). 
31

P{
1
H} NMR (162 MHz, acetone-d6):  85.06 

19
F 

NMR (376 MHz, acetone-d6):  -63.14. ATR-IR (cm
-1

): 2972 

(w), 2940 (w), 1878 (w), 1925 (w), 1610 (w), 1564 (w), 1467 

(w), 1389 (w), 1353 (s), 1270 (s), 1160 (s), 1118 (s), 1045 (m), 

950 (w), 928 (w), 885 (m), 839 (m), 812 (w), 759 (w), 744 (w), 

715 (m), 681 (m), 668 (s). UV-vis (THF, [1·10
-4

 M]), max, nm 

(, L mol
-1 

cm
-1

): 238 (35148), 242 (sh, 32044), 263 (sh, 

18636), 269 (19436), .295 (7079), 381 (1688), 418 (sh, 827). 

Anal. Calcd. For C55H56NP2NiBF24: C, 50.10; H, 4.28; N, 1.06. 

Found: C, 49.15; H, 3.98; N, 1.04. 

[(Me4PNP
iPr

)Ni
II
H]BPh4, [3]BPh4. To a solution of 

[(Me4PNP
iPr

)Ni
II
Br]Br (100.0 mg, 0.163 mmol) in dry THF 

under an N2 atmosphere was added NaBPh4 (58.5 mg, 0.171 

mmol) and stirred for 5 minutes. The mixture was filtered over 

a short celite plug and to the solution is added NaBH4 (61.6 

mg, 1.63 mmol) and allowed to stir vigorously for 18 hours to 

give a dark solution. The solution is filtered on a short celite 

plug and the solvent is evaporated. Then, a minimum amount 

of acetonitrile or THF was added and the remaining salts were 

precipitated by adding pentane. The solids were filtered on a 

short celite pad and washed with a small amount of THF or 

acetonitrile to dissolve most of the complex. The solvent was 

evaporated to obtain a pale-yellow powder (114 mg, 0.147 

mmol, 91%). Yellow crystals suitable for X-ray diffraction 

were obtained by slow crystallization of a concentrated THF 

solution of [3]BPh4 at -30 °C under an N2. 
1
H NMR (400 MHz, 

CD3CN):  -18.23 (t, JPH = 54.9 Hz, 1H, Ni-H), 1.09-1.15 (m, 

12H, PCH-CH3), 1.34-1.40 (m, 12H, PCH-CH3), 1.64-1.66 (m, 

12H, P-C(CH3)2Cpy), 2.42-2.51 (m, 4H, PCH-CH3), 6.84 (tt, 

JHH = 7.3 Hz, JPH = 1.6 Hz, 4H, BCAr-Hpara), 6.99 (t, JHH = 7.4 

Hz, 8H, BCAr-Hmeta), 7.25-7.30 (m, 8H, BCAr-Hortho), 7.38 (t, 

JHH = 8.0 Hz, 2H Cpy-Hmeta), 8.02 (tt, JHH = 8.0 Hz, JPH = 1.3 

Hz, 1H, Cpy-Hpara). 
13

C{
1
H} NMR (101 MHz, CD3CN): 

 .20.68 (PCH-CH3), 21.12 (PCH-CH3), 24.21 (vt, JPC = 11.5 

Hz, PCH-CH3), 27.94 (P-C(CH3)Cpy), 51.21 (vt, JPC = 7.6 Hz, 

P-C(CH3)2Cpy), 120.39 (vt, JPC = 3.8 Hz, Cpy,meta), 122.76 (B-

CAr,para), 126.58 (vdd, JBC = 4.8 Hz, 2.4 Hz, B-CAr,meta), 136.73 

(B-CAr,ortho), 142.90 (Cpy,para), 164.79 (dd, JBC = 98.4 Hz, 49.2 

Hz, B-CAr,ipso), 172.22 (vt, JPC = 7.2 Hz, Cpy,ortho). 
31

P{
1
H} 

NMR (162 MHz, CD3CN):  84.91. ATR-IR (cm
-1

):3055 (w), 

3029 (w), 2893 (w), 2971 (w), 2958 (w), 2931 (w), 2869 (w), 

2290 (w), 1579 (w), 1563 (w), 1455 (w), 1427 (w), 1384 (w), 

1367 (w), 1256 (w), 1240 (w), 1186 (w), 1151 (w), 1129 (w), 

1116 (w), 1098 (w), 1068 (w), 1032 (w), 932 (w), 885 (w), 

842 (w), 813 (w), 745 (m), 731 (m), 701 (s), 663 (m). UV-vis 

(THF, [1·10
-4

 M]), max, nm (, L mol
-1 

cm
-1

): 260 (sh, 14681), 

266 (sh,1 2426), 275 (8605), 300 (4526), 340 (4702), 369 

(sh ,3445). Anal. Calcd. For C47H64NP2NiBrB: C, 72.89; H, 

8.33; N, 1.81. Found: C, 72.04; H, 8.06; N, 2.24. 

[(Me4PNP
tBu

)Pyridine)Ni
II
H][B(Ar

F
)4], [4]B(Ar

F
)4. The 

same procedure to prepare [3]B(Ar
F
)4 was used to prepare 

[4]B(Ar
F
)4 using [(Me4PNP

tBu
)Ni

II
Br]Br (10.0 mg, 0.015 

mmol), NaB(Ar
F
)4 (13.2 mg, 0.0149 mmol) and NaBH4 (5.6 

mg, 0.15 mmol). A pale-yellow solid was obtained (22 mg, 

0.016 mmol, 100%). Yellow crystals suitable for X-ray dif-

fraction were grown from a concentrated anhydrous THF solu-

tion of [4]B(Ar
F
)4 at -30 °C under an N2. 

1
H NMR (400 MHz, 

acetone-d6):  -17.95 (t, JHP = 50.4 Hz, 1H, Ni-H), 1.46-1.49 

(m, 36H, Me of 
t
Bu), 1.95-1.97 (m, 12H, P-C(CH3)Cpy), 7.58 

(d, JHH = 8.1 Hz, 2H, Cpy-Hmeta), 7.67 (br s, 4H, BCAr-Hpara), 

7.76-7.80 (m, 8H, BCAr-Hortho), 8.22 (t, JHH = 8.1 Hz, 1H, Cpy-

Hpara). 
13

C{
1
H} NMR (101 MHz, acetone-d6):  29.27-30.42 

(overlap acetone-d6 and P-C(CH3)2Cpy), 31.65 (Me of 
t
Bu), 

38.00 (vt, JPC = 7.0 Hz, Cquat of 
t
Bu), 54.41 (vt, JPC = 3.9 Hz, 

P-C(CH3)2Cpy), 118.38-118.53 (m, B-CAr,para), 119.90 (vt, JPC 

= 4.2 Hz, Cpy,meta), 125.36 (q, JCF = 271.9 Hz, BCAr,meta-CF3), 

130.00 (qdd, JCF = 31.6 Hz; JCB = 5.3 Hz; JCF= 2.6 Hz, B-

CAr,meta CF3), 135.52 (B-CAr,ortho), 143.31 (Cpy,para), 162.58 (dd, 

JBC = 49.9 Hz, B-CAr,ipso), 172.68 (vt, JPC = 7.0 Hz, Cpy,ortho). 
31

P{
1
H} NMR (162 MHz, acetone-d6):  108.22. 

19
F NMR 

(376 MHz, acetone-d6):  -63.12. ATR-IR (cm
-1

): 3003 (w), 

2965 (w), 2906 (w), 1919 (w), 1606 (w), 1564 (w), 1467 (w), 

1392 (w), 1353 (m), 1270 (m), 1170 (m), 1125 (s), 1019 (w), 

926 (w), 888 (m), 835 (w), 809 (w), 711 (m), 674 (m). UV-vis 

(THF, [1·10
-4

 M]), max, nm (, L mol
-1 

cm
-1

): 274 (14904), 356 

(6089), 477 (278). ESI-HRMS (m/z) calculated for 

[C27H52NNiP2]
+
 = 510.2923, and for [C32H12BF24]

-
 = 863.0649. 

Found for [C27H52NNiP2]
+
 = 510.2912, and for [C32H12BF24]

-
 = 

863.0632. Anal. Calcd. For C59H64NP2NiBF24: C, 51.55; H, 

4.69; N, 1.02. Found: C, 51.30; H, 4.81; N, 1.15. 

[(Me4PNP
tBu

)Ni
II
H]BPh4, [4]BPh4. The same procedure to 

prepare [3]BPh4 was used to prepare [4]BPh4 using 

[(Me4PNP
tBu

)Ni
II
Br]Br (50.0 mg, 0.075 mmol), NaBPh4 (26.8 

mg, 0.078 mmol), and NaBH4 (28.2 mg, 0.75 mmol) to afford 

a white solid (60 mg, 0.072 mmol, 97%). Crystals suitable for 

X-ray diffraction were obtained by slow crystallization of a 

concentrated THF solution of [4]BPh4 at -30 °C under an N2. 
1
H NMR (400 MHz, CDCl3):  -18.13 (t, JHP = 50.5 Hz, 1H, 

Ni-H), 1.36-1.40 (m, 36H, Me of 
t
Bu), 1.68-1.71 (m, 12H, 

Cquat of 
t
Bu), 6.79 (d, JHH = 8.0 Hz, 2H, Cpy-Hmeta), 6.89 (t, JHH 

= 7.1 Hz, 4H, BCAr-Hpara), 7.03 (t, JHH = 7.3 Hz, 8H, BCAr-

Hmeta), 7.39 (t, JHH = 8.1 Hz, 1H (overlaps), Cpy-Hpara), 7.41-

7.44 (m, 8H (overlaps), BCAr-Hortho). 
13

C{
1
H} NMR (101 MHz, 

CDCl3):  29.98 (br, P-C(CH3)2Cpy), 31.54 (Me of 
t
Bu), 37.48 

(vt, JPC = 6.7 Hz, Cquat of 
t
Bu), 53.48 (vt, JPC = 3.8 Hz, P-

C(CH3)2Cpy), 118.69 (vt, JPC = 4.0 Hz, Cpy,meta), 121.78 (B-

CAr,para), 125.61-125.69 (m, B-CAr,meta), 136.48 (B-CAr,ortho), 

143.21 (Cpy,para), 164.39 (dd, JBC = 49.4 Hz, B-CAr,ipso), 171.08 

(vt, JPC = 7.1 Hz, Cpy,ortho). 
31

P{
1
H} NMR (162 MHz, CDCl3):  

107.78. ATR-IR (cm
-1

): 3057 (w), 2995 (w), 2971 (w), 2901 

(w), 1896 (w), 1579 (w), 1560 (w), 1478 (w), 1456 (W), 1427 

(w), 1393 (w), 1366 (w), 1255 (w), 1176 (w), 1154 (w), 1128 

(w), 1105 (w), 1069 (w), 1031 (w), 994 (w), 822 (w), 846 (w), 

812 (w), 743 (s), 711 (s). UV-vis (THF, [1·10
-4

 M]), max, nm 

(, L mol
-1 

cm
-1

): 260 (sh, 11568), 267 (sh, 9859), 275 (6506), 

289 (4217), 341 (4154), 372 (sh, 2673). ESI-HRMS (m/z) 

calculated for [C27H52NNiP2]
+
 = 510.2923, and for [C24H20B]

-
 

= 319.1653. Found for [C27H52NNiP2]
+
 = 510.2905, and for 

[C24H20B]
-
 = 319.1652. Despite multiple attempts, satisfactory 

elemental analysis could not be obtained. However, the sample 

was pure from other organometallic impurities according to 
1
H, 

13
C and 

31
P NMR (See Supporting Information) 

[(Me4PNP
iPr

)Ni
II
Me]B(Ar

F
)4, [5]B(Ar

F
)4. 

Method 1. NaB(Ar
F
)4 (88.0 mg, 0.099 mmol) was added to a 

20 mL vial containing a solution of [(Me4PNP
iPr

)Ni
II
Br]Br 

(60.0 mg, 0.099 mmol) in THF (10 mL). After stirring for 5 

minutes, MeLi (1.17 M in THF, 85 μL, 0.099 mmol) was add-



 

ed to the solution, which was stirred at r.t. for an hour. The 

solution was then evaporated, washed with hexanes, filtered 

through a short celite pad and evaporated to afford a yellowish 

powder (106 mg, 0.079 mmol, 80%). Yellow crystals suitable 

for X-ray diffraction were obtained by slow crystallization in 

THF at -30°C. 

Method 2. NaB(Ar
F
)4 (66.0 mg, 0.075 mmol) was added to a 

20 mL vial containing a solution of [(Me4PNP
iPr

)Ni
II
Br]Br 

(45.0 mg, 0.0745 mmol) in THF (10 mL) and stirred for 5 

minutes. In another 5 mL vial a homogeneous solution of cop-

per(I) iodide (14.1 mg, 0.075 mmol) in diethyl ether (2 mL) 

was added to a cold solution of MeLi (1.17 M in THF, 127 uL, 

0.149 mmol). A yellow solid, lithium dimethylcuprate, precip-

itates instantly and the whole solution in the 5 mL vial was 

transferred quickly to the 20 mL vial, followed by a rapid col-

or change to black. The solution was immediately filtered 

through a short celite pad, evaporated and washed with hex-

anes, filtered on celite and evaporated to afford a yellowish 

powder (92 mg, 0.069 mmol, 93%). 

Method 3. NaB(Ar
F
)4 (72.1 mg, 0.0814 mmol) was added to a 

20 mL vial containing a solution of [(Me4PNP
iPr

)Ni
II
Br]Br 

(50.0 mg, 0.0814 mmol) in THF (10 mL). After stirring for 5 

minutes, ZnMe2 (1.0 M in hexanes, 163 uL, 0.163, mmol, 2.0 

eq.) was added to the reaction, which was stirred at r.t. for 2 

hours before gradually turning black. The solution filtered on 

through a short celite pad, evaporated, washed with diethyl 

ether, and dried under vacuum to afford a yellowish powder 

(85 mg, 0.064 mmol, 79%). 
1
H NMR (400 MHz, acetone-d6): 

 -0.16 (t, JPH = 8.5 Hz, 3 H, Ni-CH3), 1.21-1.26 (m, 12H, 

PCH-CH3), 1.43-1.49 (m, 12H, PCH-CH3), 1.80-1.83 (m, 12H, 

P-C(CH3)2Cpy), 2.59-2.68 (m, 4H, PCH-CH3), 7.57 (d, JHH = 

7.3 Hz, 2H, Cpy-Hmeta), 7.66 (br s, 4H, BCAr-Hpara), 7.77-7.79 

(br m, 8H, BCAr-Hortho), 8.18 (t, JHH = 8.0 Hz, 1H, Cpy-Hpara). 
13

C{
1
H} NMR (101 MHz, acetone-d6):  -16.33 (t, JPC = 21.6 

Hz, Ni-CH3), 19.31 (PCH-CH3), 19.91 (PCH-CH3), 23.06 (vt, 

JPC = 10.1 Hz, PCH-CH3), 28.21 (P-C(CH3)2Cpy), 50.55 (vt, 

JPC = 8.1 Hz, P-C(CH3)2Cpy), 118.37-118.53 (m, B-CAr,para), 

120.39 (vt, JPC = 4.2 Hz, Cpy,meta), 125.36 (q, JCF = 271.6 Hz, 

BCAr,meta-CF3), 129.99 (qdd, JCF = 31.7 Hz; JCB = 5.0 Hz; JCF= 

2.4 Hz, B-CAr,meta CF3), 135.52 (B-CAr,ortho), 142.91 (Cpy,para), 

162.57 (dd, JBC = 50.0 Hz, B-CAr,ipso), 171.95 (vt, JPC = 6.9 Hz, 

Cpy,ortho). 
31

P{
1
H} NMR (162 MHz, acetone-d6):  70.15. 

19
F 

NMR (376 MHz, acetone-d6):  -63.14. ATR-IR (cm
-1

): 2969 

(w) 2879 (w), 1605 (w), 1567 (w), 1464 (w), 1391 (w), 1352 

(m), 1271 (s), 1157 (m), 1118 (s), 1038 (w), 928 (w), 886 (m), 

835 (w), 815 (w), 751 (m), 711 (m), 674 (m). UV-vis (THF, 

[1·10
-4

 M]), max, nm (, L mol
-1 

cm
-1

): 274 (14904), 356 

(6089). ESI-HRMS (m/z) calculated for [C24H46NNiP2]
+
 = 

468.2453, and for [C32H12BF24]
-
 = 863.0643. Found for 

[C24H46NNiP2]
+
 = 468.2443 and for [C32H12BF24]

-
 = 863.0661. 

Despite multiple attempts, satisfactory elemental analysis 

could not be obtained due to traces of solvent. However, the 

sample was pure from organic/organometallic impurities ac-

cording to 
1
H, 

13
C and 

31
P NMR (See Supporting Information). 

[(Me4PNP
iPr

)Ni
II
Me]BPh4, [5]BPh4. This complex was pre-

pared following Method 3 described for the preparation of 

[5]B(Ar
F
)4 using [(Me4PNP

iPr
)Ni

II
Br]Br (50.0 mg, 0.0814 

mmol), NaBPh4 (27.8 mg, 0.0814 mmol), and ZnMe2 (1.0 M 

in hexanes, 163 uL, 0.163 mmol). Washing was done with 

hexanes then the solid was solubilized with a minimal amount 

of THF or acetonitrile and evaporated to afford an off-white 

powder (56 mg, 0.071 mmol, 87%). Pale yellow crystals suit-

able for X-ray diffraction were obtained by slow crystalliza-

tion of a concentrated solution of [5]BPh4 in THF at -30 °C 

under an N2 atmosphere. 
1
H NMR (600 MHz, CD3CN):  -

0.23 (t, JPH = 8.3 Hz, 3H Ni-CH3), 1.13-1.16 (m, 12H, PCH-

CH3), 1.38-1.41 (m, 12H, PCH-CH3), 1.68-1.70 (m, 12H, P-

C(CH3)2Cpy), 2.48-2.57 (m, 4H, PCH-CH3), 6.84 (t, JHH = 7.1 

Hz, 4H, BCAr-Hpara), 6.99 (t, JHH = 7.3 Hz, 8H, BCAr-Hmeta), 

7.27-7.28 (m, 8H, BCAr-Hortho), 7.33 (d, JHH = 8.1 Hz, 8H,  

Cpy-Hmeta), 7.98 (t, JHH = 8.0 Hz, 1H, Cpy-Hpara). 
13

C{
1
H} NMR 

(151 MHz, CD3CN):  -16.49 (t, JPC = 21.8 Hz, Ni-CH3), 

19.35 (PCH-CH3), 19.93 (PCH-CH3), 23.09 (vt, JPC = 10.1 Hz, 

PCH-CH3), 28.27 (s, P-C(CH3)2Cpy), 50.51 (vt, JPC = 8.0 Hz, 

P-C(CH3)2Cpy), 120.27 (vt, JPC = 4.0 Hz, Cpy,meta), 122.75 (B-

CAr,para), 126.5-126.6 (m, B-CAr,meta), 136.73 (B-CAr,ortho), 

142.67 (Cpy,para), 164.79 (dd, JBC = 49.2 Hz, B-CAr,ipso), 171.88 

(vt, JPC = 7.2 Hz, Cpy,ortho). 
31

P{
1
H} NMR (243 MHz, CD3CN): 

 70.09. ATR-IR (cm
-1

): 3042 (w), 2972 (w), 2878(w), 1709 

(w), 1591 (w), 1570 (w), 1455 (w), 1389 (w), 1361 (w), 1266 

(w), 1247 (w), 1153 (w), 1123(w), 1100 (w), 1072 (w), 1028 

(w), 931 (w), 885 (w), 841 (w), 814 (w), 733 (m), 698 (s), 661 

(m). UV-vis (THF, [1·10
-4

 M]), max, nm (, L mol
-1 

cm
-1

): 267 

(sh, 8014), 274 (sh, 5368), 291 (2999), 349 (3399), 383 (sh, 

1861). ESI-HRMS (m/z) calculated for [C24H46NNiP2]
+
 = 

468.2453, and for [C24H20B]
-
 = 319.1653. Found for 

[C24H46NNiP2]
+
 = 468.2442, and for [C24H20B]

-
 = 319.1652 

Anal. Calcd. For C48H66NP2NiB: C, 73.12; H, 8.44; N, 1.78. 

Found: C, 72.81; H, 8.12; N, 1.90. 

[(Me4PNP
tBu

)Ni
II
Me]B(Ar

F
)4, [6]B(Ar

F
)4. This complex was 

prepared using the Method 3 described for the preparation of 

[5]B(Ar
F
)4 using [(Me4PNP

tBu
)Ni

II
Br]Br (50.0 mg, 0.0746 

mmol), NaB(Ar
F
)4 (66.1 mg, 0.0746 mmol), and ZnMe2 (1.0 

M in hexanes. 149 uL, 0.149 mmol), giving a yellowish pow-

der (100 mg, 0.072 mmol, 97%). Orange crystals suitable for 

X-ray diffraction studies were obtained by vapor diffusion of 

diethyl ether into a concentrated benzene solution of 

[6]B(Ar
F
)4 at RT. 

1
H NMR (400 MHz, CD3CN):  0.06 (t, JHP 

= 8.2 Hz, 3H, Ni-CH3), 1.24-1.35 (m, 18H, Me of 
t
Bu), 1.62-

1.75 (m, 18H, Me of 
t
Bu), 1.81-1.88 (m, 6H, P-C(CH3)2Cpy), 

1.96-2.01 (m, 6H, P-C(CH3)2Cpy), 7.34 (d, JHH = 8.1 Hz, 2H, 

Cpy-Hmeta), 7.65-7.68 (m, 4H, BCAr-Hpara), 7.68-7.72 (m, 8H, 

BCAr-Hortho), 7.99 (t, JHH = 8.2 Hz, 1H, Cpy-Hpara). 
13

C{
1
H} 

NMR (101 MHz, CD3CN):  -20.04 (weak signal, Ni-CH3), 

24.54 (P-C(CH3)2Cpy), 31.97 (Me of 
t
Bu), 32.56 (br, Me of 

t
Bu), 36.07 (P-C(CH3)2Cpy), 38.53 (Cquat of 

t
Bu), 39.26 (Cquat of 

t
Bu), 52.56 (vt, JPC = 4.7 Hz, P-C(CH3)2Cpy), 120.00 (Cpy,meta), 

125.42 (q, JCF = 272.5 Hz, BCAr,meta-CF3), 129.90 (qdd, JCF = 

31.6 Hz; JCB = 5.9 Hz; JCF= 2.9 Hz, B-CAr,metaCF3), 135.64 (B-

CAr,ortho), 142.78 (Cpy,para), 161.86-163.34 (m, B-CAr,ipso), 

172.04 (Cpy,ortho). 
31

P{
1
H} NMR (162 MHz, CD3CN):  86.05. 

19
F NMR (471 MHz, CDCl3):  -63.14. ATR-IR (cm

-1
): 2972 

(w), 2874 (w), 1605 (w), 1460 (w), 1392 (w), 1352 (m), 1271 

(s), 1165 (m), 1124 (s), 1026 (m), 1014 (m), 927 (w), 887 (m), 

834 (w), 807 (w), 40 (w), 709 (m), 674 (m). UV-vis (THF, 

[1·10
-4

 M]), max, nm (, L mol
-1 

cm
-1

): 269 (sh, 13790), 279 

(sh, 9966), 358 (3957), 455 (544). ESI-HRMS (m/z) calculated 

for [C28H54NNiP2]
+
 = 524.3079, and for [C32H12BF24]

-
 = 

863.0643. Found for [C28H54NNiP2]
+
 = 524.3072 and for 

[C32H12BF24]
-
 = 863.0654. Despite multiple attempts, satisfac-

tory elemental analysis could not be obtained due to traces of 

solvent. However, the sample was pure from organometallic 

impurities according to 
1
H, 

13
C and 

31
P NMR (See Supporting 

Information). 



 

[(Me4PNP
tBu

)Ni
II
Me]BPh4, [6]BPh4. This complex was pre-

pared following method 3 described for the preparation of 

[5]B(Ar
F
)4 using [(Me4PNP

tBu
)Ni

II
Br][Br] (50.0 mg, 0.0746 

mmol), NaBPh4 (25.5 mg, 0.0746 mmol), and ZnMe2 (1.0 M 

in hexanes, 149 uL, 0.149 mmol). Washing was done with 

hexanes, then the solid was solubilized with a minimal amount 

of THF or acetonitrile and evaporated to afford a light yellow 

powder (51 mg, 0.062 mmol, 81%). Yellow crystals suitable 

for X-ray diffraction were obtained by slow crystallization of a 

concentrated solution of [6]BPh4 in THF at -30 °C under an 

N2 atmosphere. 
1
H NMR (600 MHz, CD3CN):  0.06 (t, JPH = 

8.3 Hz, 3H, Ni-CH3), 1.23-1.38 (br s, 18H, Me of 
t
Bu), 1.62-

1.74 (br s, 18H, Me of 
t
Bu), 1.79-1.88 (br s, 6H. P-

C(CH3)2Cpy), 1.95-2.00 (br s, 6H), 6.84 (t, JHH = 7.6 Hz, 4H, 

BCAr-Hpara), 6.99 (t, JHH = 7.7 Hz, 8H, BCAr-Hmeta), 7.23-7.31 

(br m, 8H, BCAr-Hortho), 7.34 (d, JHH = 8.9 Hz, 2H, Cpy-Hmeta), 

7.98 (t, JHH = 8.1 Hz, 1H,  Cpy-Hpara). 
13

C{
1
H} NMR (151 

MHz, CD3CN):  -20.06 (weak signal, Ni-CH3), 24.58 (P-

C(CH3)Cpy), 32.02 (Me of 
t
Bu), 32.57 (br, Me of 

t
Bu), 36.09 

(P-C(CH3)2Cpy), 38.54 (Cquat of 
t
Bu), 39.29 (Cquat of 

t
Bu), 52.59 

(P-C(CH3)2Cpy), 120.03 (Cpy,meta), 122.76 (B-CAr,para), 126.57 

(B-CAr,meta), 136.73 (B-CAr,ortho), 142.85 (Cpy,para), 164.79 (q, 

JBC = 49.5 Hz, B-CAr,ipso), 172.03 (Cpy,ortho). 
31

P{
1
H} NMR (243 

MHz, CD3CN):  86.10. ATR-IR (cm
-1

): 3032 (w), 2976 (w), 

2897 (w), 2318 (w), 2288 (w), 1706 (w), 1573 (w), 1453 (w), 

1361 (w), 1256 (w), 1167 (w), 1065 (w), 1026 (w), 925 (w), 

841 (w), 809 (w), 734 (m), 701 (s). UV-vis (THF, [1·10
-4

 M]), 

max, nm (, L mol
-1 

cm
-1

): 274 (14904), 356 (6089). ESI-

HRMS (m/z) calculated for [C28H54NNiP2]
+
 = 524.3079, and 

for [C24H20B]
-
 = 319.1653. Found for [C28H54NNiP2]

+
 = 

524.3043 and for [C24H20B]
-
 =319.1323 Despite multiple at-

tempts, satisfactory elemental analysis could not be obtained 

due to traces of solvent that could not be fully removed under 

vacuum.  

(Me4PNP
iPr·H)Ni

II
Br, 7. To a solution of [1]BPh4 (50 mg, 

0.058 mmol) in THF, LiBEt3H (1.0 M in THF, 58 L, 0.058 

mmol, 1 eq) was added and the solution instantly changed 

color to green. The solution was concentrated to 1 mL under 

reduced pressure, then diethyl ether was added and the solid 

was removed by filtration on a short celite plug. The diethyl 

ether solution was then evaporated under reduced pressure to 

obtain a green powder (27 mg, 0.050 mmol, 87%). Green crys-

tals suitable for X-ray diffraction were grown from layering of 

diethyl ether on a concentrated benzene solution of 7 at rt un-

der an N2. 
1
H NMR (400 MHz, C6D6):  1.28-1.31 (m, 12H, P-

C(CH3)2Cpy), 1.34-1.39 (m, 12H, PCH-CH3), 1.55-1.60 (m, 

12H, PCH-CH3), 2.23-2.32 (m, 4H, PCH-CH3), 2.95 (m, 2H, 

Chydropy-Hpara), 4.23 (m, 2H, Chydropy-Hmeta). 
13

C{
1
H} NMR (101 

MHz, C6D6):  18.45 (PCH-CH3), 20.25 (PCH-CH3), 23.68 (vt, 

JPC = 9.1 Hz, PCH-CH3), 24.94 (Chydropy,para), 26.11 (P-

C(CH3)2Chydropy,ortho), 43.78 (vt, JPC= 8.8 Hz, P-

C(CH3)2Chydropy,ortho), 91.35 (vt, JPC = 6.6 Hz, Chydropy,meta), 

160.99 (vt, JPC = 6.9 Hz, Chydropy,ortho).
31

P{
1
H} NMR (162 MHz, 

C6D6):  62.48. ATR-IR (cm
-1

): 2958 (w), 2919 (w), 2867 (w), 

2838 (w), 2746 (w), 2163 (w), 1962 (w), 1646 (w), 1600 (w), 

1459 (w), 1380 (w), 1333 (w), 1298 (w), 1240 (w), 1205 (w), 

1160 (w), 1125 (w), 1095 (w), 1027 (m), 989 (w), 932 (w), 

885 (w), 804 (w), 804 (w), 752 (w), 720 (w), 695 (m), 657 (s). 

UV-vis (CH2Cl2, [0.5·10
-4

 M]), max, nm (, L mol
-1 

cm
-1

): 233 

(32419), 259 (sh, 16945), 286 (8256), 322 (13815), 352 (sh, 

7213), 433 (2105), 656 (1001). ESI-HRMS (m/z) calculated 

for [C23H44NBrNiP2]
+
 = 532.1402. Found for 

[C23H44NBrNiP2]
+
 = 532.1390. Despite multiple attempts, 

satisfactory elemental analysis could not be obtained. 

(Me4PNP
tBu·H)Ni

II
Br, 8. To a solution of [2]BPh4 (16.0 mg, 

0.0176 mmol) in THF, LiBEt3H (1.0 M in THF, 14 L, 0.014 

mmol, 0.8 eq) was added and the solution instantly changed 

color to green. The solution was concentrated to a volume of 

less than 1 mL, and 5 mL of diethyl ether was added. The pre-

cipitate was filtered on a short celite pad, and the remaining 

diethyl ether solution was then evaporated under reduced pres-

sure to afford a green powder (8 mg, 0.014 mmol, 77%). 

Green crystals suitable for X-ray diffraction were grown from 

the reaction of 1 equivalent of LiBEt3H via layering of diethyl 

ether into a concentrated benzene solution of 8 at rt under an 

N2. Crystals of 8 are disordered with a hydride species, which 

is not observed in 7. 
1
H NMR (400 MHz, C6D6):  1.32-1.37 

(m, 6H, P-C(CH3)2Chydropy), 1.50-1.92 (m (overlap), 6H + 36H, 

P-C(CH3)2Cpy + Me of 
t
Bu), 2.73-2.88 (m, 2H, Chydropy-Hpara), 

4.20-4.25 (m, 2H, Chydropy-Hmeta). 
13

C{
1
H} NMR (101 MHz, 

C6D6): δ 23.26 (P-C(CH3)2Chydropy), 24.53 (Chydropy,para), 31.98 

(br, Me of 
t
Bu), 33.88 (P-C(CH3)2Cdehydropy), 39.14 (Cquat of 

t
Bu), 39.72 (Cquat of 

t
Bu), 47.77 (P-C(CH3)2Chydropy), 91.35 (vt, 

JPC = 6.3 Hz, Chydropy,meta), 161.41 (vt, JPC = 6.4 Hz, Chydropy,ortho). 
31

P{
1
H} NMR (162 MHz, C6D6): δ 71.18. ATR-IR (cm

-1
): 

2964 (m), 2893 (m), 2867 (s), 2732 (s), 2658 (m), 2511 (w), 

2467 (w), 2318 (w), 2290 (w), 1191 (w), 1846 (w), 1642 (m), 

1595 (w), 1457 (s), 1387 (m), 1365 (m), 1332 (m), 1298 (m), 

1245 (w), 1169 (s), 1123 (m), 1024 (m), 933 (m), 895 (m), 809 

(m), 718 (m), 687 (m). UV-vis (CH2Cl2, [1·10
-4

 M]), max, nm 

(, L mol
-1 

cm
-1

):.242 (28803), 282 (7740), 341 (14606), 466 

(1125), 718 (254). ESI-HRMS (m/z) calculated for 

[C27H53NBrNiP2]
+
 = 590.2185. Found for [C23H44NBrNiP2]

+
 = 

590.2172. Despite multiple attempts, satisfactory elemental 

analysis could not be obtained. 

(Me4PNP
iPr·H)Ni

II
H, 9. To a solution of [1]BPh4 (30 mg, 

0.049 mmol) in THF (10 mL) was added a 1M solution of 

LiBEt3H in THF (98 L, 0.098 mmol, 2.0 eq.). The solution 

quickly turns green then dark brown upon addition. The sol-

vent is evaporated, and the solid washed with diethyl ether, the 

insoluble precipitate is filtered through a short celite pad, and 

the solvent evaporated to afford a brown solid. We do not re-

port the yield because we could not isolate this complex clean-

ly, and some side products are still present. 
1
H NMR (600 

MHz, C6D6): δ -18.14 (t, JPH = 56.2 Hz, 1H, Ni-H), 1.18-1.23 

(m, 12H, PCH-CH3), 1.30-1.33 (m 12H, PCH-CH3 ), 1.41-

1.43 (m, 12H, P-C(CH3)2Chydropy) 1.93-2.00 (m, 4H, PCH-

CH3), 3.48-3.50 (td, JHH = 3.4, 1.7 Hz, 2H, Chydropy-Hpara), 

4.18-4.20 (m, 2H, Chydropy-Hmeta). 
13

C{
1
H} NMR (151 MHz, 

C6D6): δ 20.28 (PCH-CH3), 20.64 (PCH-CH3), 24.05 (vt, JPC = 

9.8 Hz, PCH-CH3), 26.28 (Chydropy,para), 26.60 (P-

C(CH3)2Chydropy), P-C(CH3)2Chydropy), 86.02 (vt, JPC = 5.6 Hz, 

Chydropy,meta), 161.14 (vt, JPC = 7.7 Hz, Chydropy,ortho). 
31

P{
1
H} 

NMR (162 MHz, C6D6): δ 81.10.  

[(Me4PNP
iPr

dearom)Ni
II
Me]2, 10. To a solution of [5]B(Ar

F
)4 

(10.4 mg, 0.0078 mmol) in THF at rt, KC8 (2.3 mg, 0.017 

mmol, 2.2 eq.) was added and it was stirred for 1h. The solu-

tion was then filtered through a short celite plug and then 

evaporated to 1 mL and left to crystalize at -30 °C to obtain 

orange crystals (2.4 mg, 0.0026 mmol, 33%) that were suitable 

for X-ray diffraction. 
1
H NMR (400 MHz, C6D6):  -0.56 (t, 

JPH = 8.2 Hz, 6H, Ni-CH3), 1.11-1.17 (m, 24H, P-C(CH3)2Cpy), 

1.44-1.50 (m, 12H, PCH-CH3), 1.50-1.53 (m, 12H, PCH-CH3), 

1.51-1.58 (m, 12H, PCH-CH3), 1.56-1.59 (m, 12H, PCH-CH3), 



 

2.03-2.12 (m, 4H, PCH-CH3), 2.16-2.25 (m, 4H, PCH-CH3), 

3.26-3.31 (m, 2H, Cpy-Hpara), 4.49-4.54 (m, 4H, Cpy-Hmeta). 
13

C{
1
H} NMR (101 MHz, C6D6):  -22.60 (vt, JPC=24.0 Hz, 

Ni-CH3), 17.40 (P-C(CH3)2Cpy), 19.42 (P-C(CH3)2Cpy), 19.75 

(PCH-CH3), 20.90 PCH-CH3) 22.25 (vt, JPC = 7.5 Hz, PCH-

CH3), 24.02 (vt, JPC = 8.5 Hz, PCH-CH3), 24.29 (PCH-CH3), 

29.88 (PCH-CH3), 43.20 (Cpy,para), 45.71 (vt, JPC = 8.5 Hz, P-

C(CH3)2Cpy), 90.12 (vt, JPC = 5.8 Hz, Cpy,meta), 159.27 (vt, JPC = 

7.6 Hz, Cpy,ortho).
31

P{
1
H} NMR (162 MHz, C6D6):  64.43. 

Despite multiple attempts, satisfactory elemental analysis 

could not be obtained due to a starting material impurity that 

could not be completely removed after multiple recrystalliza-

tions. 
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