
A Dynamic Neural Network Approach to
Generating Robot's Novel Actions: A Simulation
Experiment

著者（英） Jungsik Hwang, Jun Tani
journal or
publication title

2018 15th International Conference on
Ubiquitous Robots

page range 355-361
year 2018-08-23
出版者 IEEE
権利 (C) 2018 IEEE. Personal use of this material

is permitted. Permission from IEEE must be
obtained for all other uses, in any current or
future media, including
reprinting/republishing this material for
advertising or promotional purposes, creating
new collective works, for resale or
redistribution to servers or lists, or reuse
of any copyrighted component of this work in
other works.

URL http://id.nii.ac.jp/1394/00001191/
doi: info:doi/10.1109/URAI.2018.8441824

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OIST Institutional Repository

https://core.ac.uk/display/327172497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract— In this study, we investigate how a robot can
generate novel and creative actions from its own experience of
learning basic actions. Inspired by a machine learning approach
to computational creativity, we propose a dynamic neural
network model that can learn and generate robot’s actions. We
conducted a set of simulation experiments with a humanoid
robot. The results showed that the proposed model was able to
learn the basic actions and also to generate novel actions by
modulating and combining those learned actions. The analysis on
the neural activities illustrated that the ability to generate
creative actions emerged from the model’s nonlinear memory
structure self-organized during training. The results also showed
that the different way of learning the basic actions induced the
self-organization of the memory structure with the different
characteristics, resulting in the generation of different levels of
creative actions. Our approach can be utilized in human-robot
interaction in which a user can interactively explore the robot’s
memory to control its behavior and also discover other novel
actions.

I. INTRODUCTION

Imagine an entertaining robot which can learn actions from
its user. If the robot is only capable of reproducing the
behaviors that it has learned, the user might easily lose his/her
interests in the interaction with the robot. In addition, it is
cumbersome for the user to teach every single behavior of the
robot. Therefore, it would be desirable if the robot can generate
not only the learned behaviors but also novel ones by
combining and manipulating the already learned actions.

In this study, we employ a dynamic neural network
approach to investigate how a humanoid robot can generate
novel and creative actions from its own experience of learning
basic actions. A machine learning approach to creativity has
been one of the emerging topics [1-4] and it provides a suitable
platform to investigate creativity “in relation with knowledge”
[5, 6]. We assume that robot’s novel actions may emerge while
combining and manipulating the basic actions that are learned
previously and stored in the robot’s memory.

To examine our approach, we propose a dynamic neural
network model and conduct a set of simulation experiments
using a humanoid robot. The dynamic neural network model in
this study is composed of the two modules: an action encoding
module and an action generation module. The action encoding
module encodes the robot’s high-dimensional sequential
actions in the low-dimensional continuous space. The action
generation module learns the robot’s sequential actions in a
hierarchical structure and generates them in accordance with

This work was supported by the Industrial Strategic Technology

Development Program (10044009) funded by the Ministry of Knowledge
Economy in Korea and Okinawa Institute of Science and Technology
Graduate University in Japan.

the action encoding module. During the training process, the
model learns basic actions in a holistic manner. That is, the
action generation module learns the body dynamics while the
action encoding module learns to map robot’s high-
dimensional actions into the low-dimensional space. After the
training process, the model generates the learned actions as
well as the novel actions through modulation and combination
of the learned actions. This approach can be seen from the
dynamic memory perspective. In [5], it was argued that the
source of novelty is the nonlinear memory dynamics of the
network. In our study, the model self-organizes the nonlinear
memory structure in the action encoding module.
Consequently, the proposed model can generate not only
learned behaviors but also the novel behaviors.

There have been several studies on generating robot’s
novels actions using machine learning techniques [5, 7, 8]. In
[5], the generation of creative goal-directed behaviors by
exploiting cortical chaos was investigated. They showed that
novel actions can be generated from the memory dynamics
self-organized from the consolidative learning of the
exemplars. In [7], the cognitive architecture for artificial
creativity was proposed and it was used to generate humanoid
robot’s dance movements. Recently, Augello, et al. [8] showed
how a robot can generate novel dance behaviors using the
variational encoder. In line with those previous studies, this
study aims to investigate the generation of novel action from a
dynamic neural network perspective.

II. DYNAMIC NEURAL NETWORK MODEL

A. Overview

The proposed model consists of the two modules: the action
encoding module and the action generation module (Fig. 1).
The action encoding module encodes the robot’s actions in the
continuous low-dimensional spaces. The action generation
module generates the action encoded in the action encoding
module. The similar architecture was introduced in [9] where
the two different modules encoded the body dynamics and the
tool dynamics features respectively.

There are several key features of the proposed model. First,
the model encodes robot’s high-dimensional actions in the low-
dimensional continuous spaces in the action encoding module.
Instead of categorizing robot’s action discretely, the proposed
model encodes the actions in the continuous space without any
human intervention, resulting in more flexible generation of
robot’s action. Second, the model is able to proactively
generate robot’s action with given action encoding values

Jungsik Hwang is with the school of Electrical Engineering in Korea
Advanced Institute of Science and Technology (KAIST), Daejeon, South
Korea and Okinawa Institute of Science and Technology (OIST), Okinawa,
Japan (e-mail: jungsik.hwang@gmail.com). Jun Tani is a corresponding
author and he is with OIST (e-mail: tani1216jp@gmail.com).

A Dynamic Neural Network Approach to Generating Robot’s Novel
Actions: A Simulation Experiment

Jungsik Hwang and Jun Tani

through the top-down process, without any external inputs.
Consequently, the model can mentally anticipate the possible
incoming signals without any external information from the
environment (i.e. mental simulation) [10, 11].

B. Action Encoding Module

The action encoding module maps the robot’s high-
dimensional actions in the low-dimensional continuous space.
The action encoding module is composed of a set of parametric
bias (PB) neurons introduced in [12-14]. Usually, the PB is a
static vector input to the model and it acts as the bifurcation
parameter [13]. Previous studies [12-14] showed that robot’s
continuous actions can be encoded in the PB space. In our
model, the PB is static vector input to the action generation
module. That is, the action encoding module is unidirectionally
connected to each layer in the action generation module. The
neurons in each layer (except PI and PO layer) of the action
generation module receive inputs from the action encoding
module. The activation value of the jth neuron in the action
encoding module is computed as follow:

�� = tanh(ρ�) (1)

where ρ� is the internal state of the jth PB neuron. ρ� is
obtained from the learning process in the process of
minimizing the training error. In other words, the PB vector ρ�

is handled as a learnable parameter of the model during training
(See Section II.D also). Then, the model can generate different
actions by feeding different PB values in the action encoding
module. Note that ρ� is obtained for each training pattern.

C. Action Generation Module

The action generation module generates the robot’s
sequential actions based on the given PB values (�) from the
action encoding module. The input and the output of the model
is a proprioceptive signal (i.e. joint position values). At each
time step, the proprioceptive signal is given to the input of the
model and then, the model predicts the proprioceptive signal in
the next time step.

A hierarchical continuous time recurrent neural network
called multiple timescales recurrent neural network (MTRNN)
[15] was used to implement the action generation module. In
general, an MTRNN model consists of a set of layers exhibiting

different timescales dynamics. This characteristic can be
achieved by imposing different temporal constraints on each
layer of the MTRNN model. Previous studies have [15-17]
shown that MTRNN can decompose the robot’s action into the
primitives and compose them in a hierarchical structure.

In our study, five MTRNN layers are implemented:
Proprioception Input and Output (PI, PO), Proprioception Fast
(PF), Proprioception Middle (PM) and Proprioception Slow (PS)
layers. Those layers are bidirectionally connected to the
neighboring layers. Also, the neurons in each layer have the
recurrent connections to the neurons in the same layer. The
different temporal constraints are imposed on each MTRNN
layer to achieve different timescales dynamics. Particularly, the
progressively larger time constants are assigned from the
lower-level layers to the higher-level layers as suggested in the
previous studies [15-17]. Consequently, the neurons in the
higher-level layer with the larger time constants exhibit
relatively slower dynamics compared to the ones in the lower-
level layers.

The internal states u and the activation y of the ith neuron
at each time step t in the action generation module are
computed as follow:

��
� = �1 −

1

��

� ��
��� +

1

��

� � ����� + � �����
��� + ��

�∈������∈��

�

(2)

y�
� = �

exp(��
�)

∑ exp���
���∈��

 �� � ∈ ��

tanh(��

�) ��ℎ������

 (3)

τ is the time constant, j denotes the PB neuron in the action
encoding module and k denotes the neurons in the neighboring
MTRNN layers as well as the current layer in the action
generation module. ��� is the connection weight from the jth
neuron in the action encoding module to the ith neuron in
action generation module, b is the bias, ��� is the connection
weight from the kth neuron to the ith neuron in action
generation module, and P is the activation value of PB in the
action encoding module. The softmax activation function was
used in the output layer (PO) and hyperbolic tangent was used
elsewhere.

D. Training the Model

The model is trained in a supervised manner in which the
dynamic proprioceptive patterns are provided as a teaching
signal. The training data can be obtained from the kinesthetic
teaching [18, 19] process where the robot is manually operated
by the experimenter. We train the model to generate one-step
look-ahead prediction using backpropagation through time
(BPTT) [20]. During the training process, the training error E
is defined as the discrepancy between the generated signal (y)
and the teaching signal (�) and it is represented by the
Kullback-Leibler divergence between those signals (4).

� = � � ���
����

���
�

��
�

��

 (4)

Where i and t denote the softmax neuron in PO and the time
step respectively. Then, the model’s learnable parameters, such
as weights (w), biases (b) and the internal states of the action
encoding module (ρ) are optimized to minimize the error with

Fig. 1. The proposed neural network model consists of the action encoding
module (left) and the action generation module (right). The action generation
module consists of Proprioception Input (PI), Proprioception Output (PO),
Proprioception Fast (PF), Proprioception Middle (PM) and Proprioception Slow
(PS).

the learning rate �. Note that the internal states of the neurons
in the action encoding module (ρ) are considered as learnable
variables, meaning that those values are obtained during the
training in the process of minimizing the training error E. The
model’s learnable parameters including weights and biases are
same for all the training patterns whereas the PB values are
obtained separately for each training pattern.

In our study, three different types of learning method are
compared [10]. The first method is called open-loop training.
In this method, the input to the model ��

� is obtained from the
training dataset (y*) and this can be done by setting the closed-
loop ratio γ as 0.0 in (5). The second method is called closed-
loop training. In this method, γ is set to 1.0, meaning that the
prediction output of the model (��) is fed back into the input of
the model in the next time step. Consequently, the model is able
to generate robot’s action without external inputs. Assuming
that the model’s output as the proprioceptive signals, this
process can be considered as the mental simulation of action
where the robot anticipates its own actions [11, 16, 17]. The
third method is called half closed-loop training. In this method,
γ is set to 0.5. Consequently, both training data and the
prediction output of the model in the previous time step are
used as an input to the model at the current time step.

��
� = ����

� + (1 − �)�∗
�
� � ∈ �� (5)

III. METHOD

A. Robotic Platform

A simulated humanoid robot NAO was used in this study
(Fig. 2). NAO has 25 degrees of freedom distributed on its
head, arms, hands and legs. In our study, eight joints in the arms
(right shoulder pitch, right shoulder roll, right elbow yaw, right
elbow roll, left shoulder pitch, left shoulder roll, left elbow yaw
and left elbow roll) were used to generate robot’s action.

The robot was first tutored to generate six basic actions that
can be found in boxing such as left jab, right straight, left hook
right hook, left uppercut and right uppercut (See the
supplementary video). During the tutoring process, the real
NAO robot was used to obtain the training data. The
experimenter grasped the robot’s arms and manually operated
the robot to demonstrate such actions (i.e. kinesthetic teaching
[18, 19]). Then, the position values of the robot’s joints were
collected at each time step.

B. Network Settings

There were 40, 20 and 10 neurons in PF, PM and PS layers
respectively. The size of the action encoding module (the
number of the PB nodes) was limited to two dimensions.
Although the size of the dimension is low, an infinite number
of robot’s actions can be embedded in the continuous PB space.
In addition, two-dimensional spaces can be visualized easily,
so that the user can easily understand the robot’s actions
mapped in the action encoding module. There were 80 neurons
in PI and PO layers, representing 8 groups of joint position value
each represented by 10 softmax neurons (See Section III.C for
details).

Regarding the time constant settings, progressively larger
time constants were assigned from the lower-level layers to the
higher-levels layers as suggested in the previous studies [15].

To be more specific, we assigned the 2, 4 and 8 on PF, PM and
PS layer respectively. There is no time constant for the PB
neurons in the action encoding module and the values of the
PB nodes did not change (static) while generating the actions
(1). The time constant of the PI and PO layers were set to 1.
These values of the hyper-parameters were found empirically
in the preliminary experiments.

C. Softmax Transformation

To enhance learning, the softmax transform [10] was used
in our study. That is, instead of using the joint position values
in radian (analog form), we converted them to the sparse forms.
For example, one-dimensional joint position value in radian
can be converted into the sparse form using (6).

�������� =

exp �
− ������������ − ��������

�

� �

∑ exp �
− ������������ − ��������

�

� ��∈�

 (6)

�������� refers to the non-negative value of the jth
softmax neuron. J is the number of softmax units, indicating
how many softmax neurons are used to represent one-
dimensional analog value (analog). ���� is the value of the jth
reference point. The reference points are linearly spaced vector
between the minimum and maximum of analog in the training
dataset. � is another parameter determining a shape of the
transformed value, and it is chosen empirically to minimize the
conversion error during the softmax transformation.

In our experiment, J was set to 10, meaning that each joint
position value was represented by 10 non-negative softmax
values. Consequently, there were eight groups of sparse
representations of the joint position values where each group is
composed of 10 softmax neurons. In our study, � was set to 0.5.
During testing, the model’s output in the softmax form was
converted to radian using (7)

������ = � �������� × ����������
�∈�

 (7)

Fig. 2. The simulated NAO robot used in the experiment. The robot was
trained to generate six basic actions that can be found in boxing such as left
jab, right straight, left hook right hook, left uppercut and right uppercut (See
the supplementary video).

D. Training and Action Generation

During training, the model was trained to generate the six
different basic actions. The model was trained on Tensorflow
[21] using the ADAM optimizer [22] and it was trained for
100,000 epochs with the initial learning rate of 0.001. The
learnable parameters, such as weights (w), biases (b) and
parametric biases (ρ) were initialized with the neutral values at
the beginning of training. Note that the different PB values
were obtained for each training pattern whereas the other
parameters were same across the training patterns. In our
experiment, we compared the three conditions with the
different closed-loop ratio (γ) during the training process: 0.0
(open-loop), 0.5 (half closed-loop) and 1.0 (closed-loop).

During testing, the training epoch with the lowest training
error was selected and the robot’s actions were generated by
setting the PB values. Specifically, each PB neuron consisted
of 200 linearly spaced values between -1 and 1. As the action
encoding module was composed of 2 PB neurons, a total
number of 40,000 PB values were prepared. Then, the model
generated the robot’s actions (N = 40,000) with the given PB
values in the closed-loop method (i.e. mental simulation).

E. Measures

There is no well-grounded measure of creative action
generation of robots. Instead of qualitatively analyzing the
level of creativeness and novelty of individual action generated
by the model, we focused on three aspects of the generated
action: appropriateness, novelty, and diversity.

First, we examined whether the generated patterns were
appropriate to be used for the robot’s action
(Appropriateness). For instance, if the joint position values
change too quickly (Fig. 3 (b). left), they cannot be used
because it may harm the actuators in the robot. Also if the joint
position values do not change over time (Fig. 3 (b). right), they
cannot be used to generate ‘action’. Therefore, those
‘inappropriate’ patterns were filtered out and we calculated the
ratio of the ‘appropriate’ patterns among the entire generated
patterns (N = 40,000). To filter out highly fluctuating patterns,
we limited the maximum joint angular velocity to be 150% of
that of the basic actions in the training data.

Second, we measured the signal similarity between the
generated patterns and the training patterns (novelty).
Intuitively, if a generated pattern differs significantly from the
learned patterns, it might be considered as novel. To be more
specific, we measured the minimum dynamic time warping
(DTW) distance between the generated pattern and the learned
patterns. Then, the average of those minimum DTW distances
was computed. Therefore, if the average of the minimum DTW
distance between the generated pattern and the training patterns
is huge, it implies that the generated patterns are generally
different from the learned patterns. The novelty was computed
iteratively (30 times) with randomly selecting 30 generated
patterns at each iteration.

Third, the signal similarity between the generated patterns
(diversity) was measured. Even if the generated patterns are
different from the learned patterns, it would be more desirable
if the generated patterns are different from each other.
Therefore, we measured the average DTW distance between
the generated patterns. Therefore, if the average DTW distance
among the generated patterns is huge, it implies that the diverse

actions are generated by the model. The diversity was also
computed iteratively (30 times) with randomly selecting 30
generated patterns at each iteration.

IV. RESULTS

The learning converged in all conditions (Fig. 2), meaning
that the model was able to learn the six basic patterns. In
general, the open-loop training method (γ=0.0) converged
faster than the other methods. Under the closed-loop training
method (γ=1.0), a bit more fluctuating learning curve was
observed.

 Table I illustrates the experiment results in terms of three
measures used in this study. Regarding appropriateness, the
ratio of appropriate patterns among the entire generated pattern
(N = 40,000) is reported (subtotal). In order to understand what
sorts of patterns were generated, we additionally classified
those appropriate patterns into the two categories: unlearned
and learned actions. If the minimum DTW distance between
the generated pattern and the training patterns was higher than
the threshold (10.0), the generated pattern was considered the
unlearned action. Otherwise, the generated pattern was
considered learned action (i.e. training data).

It was observed that the most of the generated patterns were
considered appropriate (97.97%) under the closed-loop
condition (γ=1.0). In other words, the majority of the patterns
generated by the model can be used. In other conditions, the
percentage of the appropriate pattern decreased to 82%.
However, the classifying the appropriate patterns into two
categories showed an interesting result. In the closed-loop
condition, about 40% of the appropriate patterns were similar
to the training patterns. On the other hand, only 7.58% of the
appropriate patterns in the half closed-loop condition (γ=0.5)

Fig. 2. The learning curve. The model was trained for 100,000 epochs under
the three different conditions: (from the top) closed-loop (γ=1.0, blue), half
closed-loop (γ=0.5, green) and open-loop (γ=0.0, red).

TABLE I. THE EXPERIMENT RESULT

 Closed-loop Ratio (�) during Training

 0.0 0.5 1.0

Appropriateness
(%)

Unlearned 72.21 75.26 57.95

Learned 11.23 7.58 40.02

Subtotal 83.44 82.84 97.97

Novelty 26.02 31.71 18.53

Diversity 43.12 48.03 35.96

were considered as the training pattern. This implies that the
model trained under the closed-loop manner can reproduce
what it has learned well, but it might be less ‘creative’ than the
model trained under the half closed-loop method.

The similar finding was also observed in the measure of
novelty. The half closed-loop condition showed the highest
degree of novelty (31.71). This suggests that the generated
patterns in this condition are more different from the training
actions than ones in the other conditions. On the other hand, the
lowest level of novelty was observed (18.53) in the closed-loop
condition, implying that the generated patterns are more similar
to the learned actions than ones in the other conditions. This
finding is in line with the measure of appropriateness.

 The similar trend was also observed in the measure of
diversity. The half-closed loop condition showed the highest
level of diversity (48.03) whereas the closed-loop condition

showed the lowest level of diversity (35.96). That is, the
patterns generated in the half-closed loop condition were
different from each other.

In sum, the result revealed that the most creative patterns
were generated in the half-closed loop training condition. The
closed-loop condition elicited stable performance where
almost all generated patterns were considered appropriate, but
those patterns were similar to the training patterns. In contrast,
the model trained in the half-closed loop condition generated
not only appropriate patterns but also novel and diverse
patterns.

This result indicates that the learning method had an
important impact on the model’s capability of generating
creative robot actions. As similar to [5], we assumed that the
source of novelty in our model was the nonlinear memory
dynamics, particularly in the action encoding module (PB). We
hypothesized that the different memory structure had been self-
organized during training depending on the condition.
Therefore, we additionally analyzed the model’s internal
memory structure in the action encoding module.

A. Internal Structure in the Action Encoding Module

In order to investigate the internal memory structure self-
organized in the action encoding module, we visualized the PB
spaces (Fig. 4). The colors denote the corresponding basic
actions used in training and the contrasts indicate the levels of
similarity (high contrast for a higher level of similarity). The X
and the Y axes indicate the first and the second neurons in the
action encoding module (PB nodes).

In all three conditions, the clusters each encoding specific
type of the basic action were observed. That is, each basic
action was encoded in a distinct region of the PB space in the
action encoding module, and the nearby PB space produced
similar patterns (See the supplementary video).

It was observed that the memory structure became simpler
when the closed-loop ratio (γ) increased. In the closed-loop
condition (γ=1.0), relatively huge spaces encoded the six basic
actions. In contrast, in the open-loop condition (γ=0.0), the size
of the regions encoding the basic actions decreased. Moreover,
the size of those regions was uneven among the basic patterns.
For instance, the size of the regions that generated left and right
uppercut (L.Upper and R.Upper) were much smaller than the
size of the region encoding left hook (L.Hook). With this
memory structure, it might be difficult for the model to
generate such actions. In the half closed-loop condition
(γ=0.5), the size of the region encoding right straight
(R.Straight) was bigger than those of the other regions, but the
size of the regions that encoded the basic action was similar in
general.

As can be seen from Fig. 4, the relatively huge amount of
the PB space in the closed-loop condition was occupied by the
six clusters encoding the training pattern (40.02%). Therefore,
the model in this condition was able to reproduce the learned
pattern well, but it was less likely to generate novel actions (See
Table I). In the half closed-loop condition, the regions
encoding the basic actions occupy the smaller amount of the
PB space (7.58%). Consequently, the model trained in this
condition was able to generate more diverse and novel actions.

(a)

(b)

(c)

Fig. 3. The patterns generated in the half-closed loop condition. The X axis
represents the time steps and the Y axis represents the eight joint position
values in radian. The solid and dashed lines represent the joint position values
of the right and left arm respectively. (a) Six basic actions used in training.
Top row: Left Hook (left) and Left Jab (right). Middle row: Left Uppercut
(left) and Right Uppercut (right). Bottom row: Right Hook (left) and Right
Straight (right). (b) Example of inappropriate actions filtered out in our result.
Highly fluctuating (left) and non-moving (left) patterns. (c) Example of novel
actions. A combination of right straight and right uppercut (left) and a
combination of left jab and right straight (right). Note that those basic actions
in the novel actions are slightly different from the training pattern in (a).

 In addition, the analysis revealed a quite ‘rugged’
landscape of the PB space (Fig. 5). This resulted in abrupt
changes in robot’s action with a small change in the PB values.
As the values of PB changed, the actions generated by the
network changed. For instance, Fig. 5 (a) ~ (c) show a
transition of an action from right straight (R.Straight) to left jab
(L.Jab). As can be seen from the figure, the model’s output
totally changed to another action with different PB values.
Also, it was found that the region between R.Straight and L.Jab
encoded the combination of those two actions (Fig. 5 (b)).
Sometimes, small changes in PB induced big differences in

generated actions (See the supplementary video). These results
imply that the model has a nonlinear and complex memory
structure. As argued in [5], this highly nonlinear landscape of
the PB space is assumed to be the source of ‘creative’ robot’s
action in our model. In [5], it was shown that the memory
structure could become highly nonlinear when the number of
training patterns increased. The findings in this study suggest
that the memory structure can be highly nonlinear depending
on the learning method as well, even with a smaller number of
training data.

 (a) (b) (c)

Fig. 4. The PB space in the three different training condition: (a) Open-loop (γ = 0.0) (b) half closed-loop (γ = 0.5) and (c) closed-loop (γ = 1.0). The X and Y
axes represent the two PB nodes in the action encoding module. The value of each PB node varies from -1 to 1 with the step size of 0.01. Consequently, the PB
space was visualized with 200 × 200 generated patterns (i.e. resolution). The colors and the texts represent the type of basic action used in training. The regions
in purple and in pink encode highly fluctuating and non-moving patterns respectively and they were filtered out in our results (See the supplementary video
also).

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5. The model’s output with given PB values in the half closed-loop (γ = 0.5) condition. (a) PB1: 0.36, PB2: 0.12 (b) PB1: 0.36, PB2: 0.03 (c) PB1: 0.39,
PB2: -0.02 (d) PB1: 0.44, PB2: -0.21 (e) PB1: 0.44, PB2: -0.38 (f) PB1: 0.19, PB2: -0.21. In each subplot, the PB space (left) and the model’s output (right) are
depicted. The yellow point in the PB space denotes the location of the current PB value.

V. CONCLUSION

In this study, we investigated how a robot can generate
novel actions from its own experience of learning basic
actions. We proposed a dynamic neural network model which
could encode robot’s actions in its own memory and reproduce
them. The results showed that the proposed model was not
only able to reproduce what it had learned but also to generate
novel and creative actions through modulating and combining
those learned actions. The analysis of the internal memory
structure illustrated that the ability to generate novel actions
emerged from the nonlinear memory structure self-organized
during training in the action encoding module. It was found
that the different way of learning the basic actions induced the
self-organization of the memory structure with the different
characteristics, resulting in the generation of different level of
creative actions.

Although this study was conducted in a simulation
environment, the method of visualizing the robot’s memory
structure and generating actions can be implemented in the
real robot setting. Consequently, the proposed approach to
novel action generation can be utilized in human-robot
interaction in which a user can interactively explore the
robot’s memory to control the robot’s behavior and also to
discover novel actions.

APPENDIX

Supplementary videos are available at
https://youtu.be/xsJnJb5zfJ0

REFERENCES

[1] J. Schmidhuber, "Formal Theory of Creativity, Fun, and Intrinsic
Motivation (1990-2010)," IEEE Trans. Auton. Mental Develop.,
vol. 2, no. 3, pp. 230-247, 2010.

[2] Proceedings of the Seventh International Conference on
Computational Creativity. 2016.

[3] R. Saunders and P. Gemeinboeck, "Accomplice: creative robotics
and embodied computational creativity," in Proc. 50th
Anniversary Convention of the AISB Symposium, 2014.

[4] A. Nguyen, J. Yosinski, and J. Clune, "Understanding Innovation
Engines: Automated Creativity and Improved Stochastic
Optimization via Deep Learning," Evolutionary computation, vol.
24, no. 3, pp. 545-72, Fall 2016.

[5] H. Arie, T. Endo, T. Arakaki, S. Sugano, and J. Tani, "Creating
novel goal-directed actions at criticality: a neuro-robotic
experiment," New Mathematics and Natural Computation, vol. 05,
no. 01, pp. 307-334, 2009.

[6] M. Cherti, B. Kégl, and A. Kazakçı, "Out-of-class novelty
generation: an experimental foundation," presented at the
Constructive Machine Learning Workshop 2016 at NIPS, 2016.

[7] I. Infantino, A. Augello, A. Manfré, G. Pilato, and F. Vella,
"Robodanza: Live performances of a creative dancing humanoid,"
in Proc. Proceedings of the Seventh International Conference on
Computational Creativity, 2016.

[8] A. Augello, E. Cipolla, I. Infantino, A. Manfre, G. Pilato, and F.
Vella, "Creative Robot Dance with Variational Encoder," arXiv
preprint arXiv:1707.01489, 2017.

[9] K. Takahshi, T. Ogata, H. Tjandra, Y. Yamaguchi, Y. Suga, and
S. Sugano, "Tool-body assimilation model using a neuro-
dynamical system for acquiring representation of tool function and
motion," in Proc. 2014 IEEE/ASME International Conference on
Advanced Intelligent Mechatronics, 2014, pp. 1255-1260.

[10] J. Tani, Exploring robotic minds: actions, symbols, and
consciousness as self-organizing dynamic phenomena. New York,
NY, USA: Oxford University Press, 2016.

[11] M. Jeannerod, Motor cognition: What actions tell the self (Oxford
Psychology Series 42). New York, NY, USA: Oxford University
Press, 2006.

[12] M. Ito and J. Tani, "On-line imitative interaction with a humanoid
robot using a dynamic neural network model of a mirror system,"
Adapt. Behav., vol. 12, no. 2, pp. 93-115, 2004.

[13] J. Tani, "Learning to generate articulated behavior through the
bottom-up and the top-down interaction processes," Neural
networks : the official journal of the International Neural Network
Society, vol. 16, no. 1, pp. 11-23, Jan 2003.

[14] R. Yokoya, T. Ogata, J. Tani, K. Komatani, and H. G. Okuno,
"Experience Based Imitation Using RNNPB," in Proc. 2006
IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2006, pp. 3669-3674.

[15] Y. Yamashita and J. Tani, "Emergence of functional hierarchy in
a multiple timescale neural network model: a humanoid robot
experiment," PLoS Computational Biology, vol. 4, no. 11, p.
e1000220, 2008.

[16] J. Hwang, J. Kim, A. Ahmadi, M. Choi, and J. Tani, "Predictive
Coding-based Deep Dynamic Neural Network for Visuomotor
Learning," presented at the IEEE Int. Conf. Dev. Learn. Epigenetic
Robot. (ICDL-EpiRob), Lisbon, Portugal, 2017.

[17] J. Hwang, J. Kim, A. Ahmadi, M. Choi, and J. Tani, "Dealing With
Large-Scale Spatio-Temporal Patterns in Imitative Interaction
Between a Robot and a Human by Using the Predictive Coding
Framework," IEEE Trans. Syst., Man, Cybern., Syst, pp. 1-14,
2018.

[18] S. Cho and S. Jo, "Incremental online learning of robot behaviors
from selected multiple kinesthetic teaching trials," IEEE Trans.
Syst., Man, Cybern., Syst, vol. 43, no. 3, pp. 730-740, 2013.

[19] E. Ugur, Y. Nagai, H. Celikkanat, and E. Oztop, "Parental
scaffolding as a bootstrapping mechanism for learning grasp
affordances and imitation skills," Robotica, vol. 33, no. 5, pp.
1163-1180, 2015.

[20] D. E. Rumelhart, J. L. McClelland, and P. R. Group, Parallel
distributed processing. Cambridge, MA, USA: MIT Press, 1987.

[21] M. Abadi et al., "Tensorflow: Large-scale machine learning on
heterogeneous distributed systems," arXiv preprint
arXiv:1603.04467, 2016.

[22] D. Kingma and J. Ba, "Adam: A method for stochastic
optimization," presented at the Int. Conf. Learn. Represent.
(ICLR), Banff, Canada, 2015.

