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Abstract— In this study, we investigate how a robot can 
generate novel and creative actions from its own experience of 
learning basic actions. Inspired by a machine learning approach 
to computational creativity, we propose a dynamic neural 
network model that can learn and generate robot’s actions. We 
conducted a set of simulation experiments with a humanoid 
robot. The results showed that the proposed model was able to 
learn the basic actions and also to generate novel actions by 
modulating and combining those learned actions. The analysis on 
the neural activities illustrated that the ability to generate 
creative actions emerged from the model’s nonlinear memory 
structure self-organized during training. The results also showed 
that the different way of learning the basic actions induced the 
self-organization of the memory structure with the different 
characteristics, resulting in the generation of different levels of 
creative actions. Our approach can be utilized in human-robot 
interaction in which a user can interactively explore the robot’s 
memory to control its behavior and also discover other novel 
actions. 

I. INTRODUCTION 

Imagine an entertaining robot which can learn actions from 
its user. If the robot is only capable of reproducing the 
behaviors that it has learned, the user might easily lose his/her 
interests in the interaction with the robot. In addition, it is 
cumbersome for the user to teach every single behavior of the 
robot. Therefore, it would be desirable if the robot can generate 
not only the learned behaviors but also novel ones by 
combining and manipulating the already learned actions.  

In this study, we employ a dynamic neural network 
approach to investigate how a humanoid robot can generate 
novel and creative actions from its own experience of learning 
basic actions. A machine learning approach to creativity has 
been one of the emerging topics [1-4] and it provides a suitable 
platform to investigate creativity “in relation with knowledge” 
[5, 6]. We assume that robot’s novel actions may emerge while 
combining and manipulating the basic actions that are learned 
previously and stored in the robot’s memory.  

To examine our approach, we propose a dynamic neural 
network model and conduct a set of simulation experiments 
using a humanoid robot. The dynamic neural network model in 
this study is composed of the two modules: an action encoding 
module and an action generation module. The action encoding 
module encodes the robot’s high-dimensional sequential 
actions in the low-dimensional continuous space. The action 
generation module learns the robot’s sequential actions in a 
hierarchical structure and generates them in accordance with 
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the action encoding module. During the training process, the 
model learns basic actions in a holistic manner. That is, the 
action generation module learns the body dynamics while the 
action encoding module learns to map robot’s high-
dimensional actions into the low-dimensional space. After the 
training process, the model generates the learned actions as 
well as the novel actions through modulation and combination 
of the learned actions. This approach can be seen from the 
dynamic memory perspective. In [5], it was argued that the 
source of novelty is the nonlinear memory dynamics of the 
network. In our study, the model self-organizes the nonlinear 
memory structure in the action encoding module. 
Consequently, the proposed model can generate not only 
learned behaviors but also the novel behaviors.  

There have been several studies on generating robot’s 
novels actions using machine learning techniques [5, 7, 8]. In 
[5], the generation of creative goal-directed behaviors by 
exploiting cortical chaos was investigated. They showed that 
novel actions can be generated from the memory dynamics 
self-organized from the consolidative learning of the 
exemplars. In [7], the cognitive architecture for artificial 
creativity was proposed and it was used to generate humanoid 
robot’s dance movements. Recently, Augello, et al. [8] showed 
how a robot can generate novel dance behaviors using the 
variational encoder. In line with those previous studies, this 
study aims to investigate the generation of novel action from a 
dynamic neural network perspective. 

II. DYNAMIC NEURAL NETWORK MODEL 

A. Overview 

The proposed model consists of the two modules: the action 
encoding module and the action generation module (Fig. 1). 
The action encoding module encodes the robot’s actions in the 
continuous low-dimensional spaces. The action generation 
module generates the action encoded in the action encoding 
module. The similar architecture was introduced in [9] where 
the two different modules encoded the body dynamics and the 
tool dynamics features respectively.  

There are several key features of the proposed model. First, 
the model encodes robot’s high-dimensional actions in the low-
dimensional continuous spaces in the action encoding module. 
Instead of categorizing robot’s action discretely, the proposed 
model encodes the actions in the continuous space without any 
human intervention, resulting in more flexible generation of 
robot’s action. Second, the model is able to proactively 
generate robot’s action with given action encoding values 
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through the top-down process, without any external inputs. 
Consequently, the model can mentally anticipate the possible 
incoming signals without any external information from the 
environment (i.e. mental simulation) [10, 11].  

B. Action Encoding Module 

The action encoding module maps the robot’s high-
dimensional actions in the low-dimensional continuous space. 
The action encoding module is composed of a set of parametric 
bias (PB) neurons introduced in [12-14]. Usually, the PB is a 
static vector input to the model and it acts as the bifurcation 
parameter [13]. Previous studies [12-14] showed that robot’s 
continuous actions can be encoded in the PB space. In our 
model, the PB is static vector input to the action generation 
module. That is, the action encoding module is unidirectionally 
connected to each layer in the action generation module. The 
neurons in each layer (except PI and PO layer) of the action 
generation module receive inputs from the action encoding 
module. The activation value of the jth neuron in the action 
encoding module is computed as follow: 

�� = tanh(ρ�) (1) 

where ρ�  is the internal state of the jth PB neuron. ρ�  is 
obtained from the learning process in the process of 
minimizing the training error. In other words, the PB vector ρ� 

is handled as a learnable parameter of the model during training 
(See Section II.D also). Then, the model can generate different 
actions by feeding different PB values in the action encoding 
module. Note that ρ� is obtained for each training pattern. 

C. Action Generation Module 

The action generation module generates the robot’s 
sequential actions based on the given PB values (�) from the 
action encoding module. The input and the output of the model 
is a proprioceptive signal (i.e. joint position values). At each 
time step, the proprioceptive signal is given to the input of the 
model and then, the model predicts the proprioceptive signal in 
the next time step.  

A hierarchical continuous time recurrent neural network 
called multiple timescales recurrent neural network (MTRNN) 
[15] was used to implement the action generation module. In 
general, an MTRNN model consists of a set of layers exhibiting 

different timescales dynamics. This characteristic can be 
achieved by imposing different temporal constraints on each 
layer of the MTRNN model. Previous studies have [15-17] 
shown that MTRNN can decompose the robot’s action into the 
primitives and compose them in a hierarchical structure.  

In our study, five MTRNN layers are implemented:  
Proprioception Input and Output (PI, PO), Proprioception Fast 
(PF), Proprioception Middle (PM) and Proprioception Slow (PS) 
layers. Those layers are bidirectionally connected to the 
neighboring layers. Also, the neurons in each layer have the 
recurrent connections to the neurons in the same layer. The 
different temporal constraints are imposed on each MTRNN 
layer to achieve different timescales dynamics. Particularly, the 
progressively larger time constants are assigned from the 
lower-level layers to the higher-level layers as suggested in the 
previous studies [15-17]. Consequently, the neurons in the 
higher-level layer with the larger time constants exhibit 
relatively slower dynamics compared to the ones in the lower-
level layers.  

The internal states u and the activation y of the ith neuron 
at each time step t in the action generation module are 
computed as follow: 
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τ is the time constant, j denotes the PB neuron in the action 
encoding module and k denotes the neurons in the neighboring 
MTRNN layers as well as the current layer in the action 
generation module. ���  is the connection weight from the jth 
neuron in the action encoding module to the ith neuron in 
action generation module, b is the bias, ���  is the connection 
weight from the kth neuron to the ith neuron in action 
generation module, and P is the activation value of PB in the 
action encoding module. The softmax activation function was 
used in the output layer (PO) and hyperbolic tangent was used 
elsewhere. 

D. Training the Model 

The model is trained in a supervised manner in which the 
dynamic proprioceptive patterns are provided as a teaching 
signal. The training data can be obtained from the kinesthetic 
teaching [18, 19] process where the robot is manually operated 
by the experimenter. We train the model to generate one-step 
look-ahead prediction using backpropagation through time 
(BPTT) [20]. During the training process, the training error E 
is defined as the discrepancy between the generated signal (y) 
and the teaching signal ( � ) and it is represented by the 
Kullback-Leibler divergence between those signals (4).  

� =  � � ���
����

���
�

��
�

��

 (4) 

Where i and t denote the softmax neuron in PO and the time 
step respectively. Then, the model’s learnable parameters, such 
as weights (w), biases (b) and the internal states of the action 
encoding module (ρ) are optimized to minimize the error with 

 
Fig. 1. The proposed neural network model consists of the action encoding 
module (left) and the action generation module (right). The action generation 
module consists of Proprioception Input (PI), Proprioception Output (PO), 
Proprioception Fast (PF), Proprioception Middle (PM) and Proprioception Slow 
(PS).  



  

the learning rate �. Note that the internal states of the neurons 
in the action encoding module (ρ) are considered as learnable 
variables, meaning that those values are obtained during the 
training in the process of minimizing the training error E. The 
model’s learnable parameters including weights and biases are 
same for all the training patterns whereas the PB values are 
obtained separately for each training pattern.  

In our study, three different types of learning method are 
compared [10]. The first method is called open-loop training. 
In this method, the input to the model ��

� is obtained from the 
training dataset (y*) and this can be done by setting the closed-
loop ratio γ as 0.0 in (5). The second method is called closed-
loop training. In this method, γ is set to 1.0, meaning that the 
prediction output of the model (��) is fed back into the input of 
the model in the next time step. Consequently, the model is able 
to generate robot’s action without external inputs. Assuming 
that the model’s output as the proprioceptive signals, this 
process can be considered as the mental simulation of action 
where the robot anticipates its own actions [11, 16, 17]. The 
third method is called half closed-loop training. In this method, 
γ is set to 0.5. Consequently, both training data and the 
prediction output of the model in the previous time step are 
used as an input to the model at the current time step. 

��
� =  ����

� + (1 − �)�∗
�
�           � ∈ �� (5) 

 

III. METHOD 

A. Robotic Platform 

A simulated humanoid robot NAO was used in this study 
(Fig. 2). NAO has 25 degrees of freedom distributed on its 
head, arms, hands and legs. In our study, eight joints in the arms 
(right shoulder pitch, right shoulder roll, right elbow yaw, right 
elbow roll, left shoulder pitch, left shoulder roll, left elbow yaw 
and left elbow roll) were used to generate robot’s action.  

The robot was first tutored to generate six basic actions that 
can be found in boxing such as left jab, right straight, left hook 
right hook, left uppercut and right uppercut (See the 
supplementary video). During the tutoring process, the real 
NAO robot was used to obtain the training data. The 
experimenter grasped the robot’s arms and manually operated 
the robot to demonstrate such actions (i.e. kinesthetic teaching 
[18, 19]). Then, the position values of the robot’s joints were 
collected at each time step. 

B.  Network Settings 

There were 40, 20 and 10 neurons in PF, PM and PS layers 
respectively. The size of the action encoding module (the 
number of the PB nodes) was limited to two dimensions. 
Although the size of the dimension is low, an infinite number 
of robot’s actions can be embedded in the continuous PB space. 
In addition, two-dimensional spaces can be visualized easily, 
so that the user can easily understand the robot’s actions 
mapped in the action encoding module. There were 80 neurons 
in PI and PO layers, representing 8 groups of joint position value 
each represented by 10 softmax neurons (See Section III.C for 
details). 

Regarding the time constant settings, progressively larger 
time constants were assigned from the lower-level layers to the 
higher-levels layers as suggested in the previous studies [15]. 

To be more specific, we assigned the 2, 4 and 8 on PF, PM and 
PS layer respectively. There is no time constant for the PB 
neurons in the action encoding module and the values of the 
PB nodes did not change (static) while generating the actions 
(1). The time constant of the PI and PO layers were set to 1. 
These values of the hyper-parameters were found empirically 
in the preliminary experiments. 

C. Softmax Transformation 

To enhance learning, the softmax transform [10] was used 
in our study. That is, instead of using the joint position values 
in radian (analog form), we converted them to the sparse forms. 
For example, one-dimensional joint position value in radian 
can be converted into the sparse form using (6).  

�������� =  

exp �
− ������������ − ��������

�

� �
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�
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��������  refers to the non-negative value of the jth 
softmax neuron. J is the number of softmax units, indicating 
how many softmax neurons are used to represent one-
dimensional analog value (analog). ���� is the value of the jth 
reference point. The reference points are linearly spaced vector 
between the minimum and maximum of analog in the training 
dataset. �  is another parameter determining a shape of the 
transformed value, and it is chosen empirically to minimize the 
conversion error during the softmax transformation. 

In our experiment, J was set to 10, meaning that each joint 
position value was represented by 10 non-negative softmax 
values. Consequently, there were eight groups of sparse 
representations of the joint position values where each group is 
composed of 10 softmax neurons. In our study, � was set to 0.5. 
During testing, the model’s output in the softmax form was 
converted to radian using (7) 

������ =  � �������� × ����������
�∈�

 (7) 

 
Fig. 2. The simulated NAO robot used in the experiment. The robot was 
trained to generate six basic actions that can be found in boxing such as left 
jab, right straight, left hook right hook, left uppercut and right uppercut (See 
the supplementary video). 
 
 



  

D. Training and Action Generation 

During training, the model was trained to generate the six 
different basic actions. The model was trained on Tensorflow 
[21] using the ADAM optimizer [22] and it was trained for 
100,000 epochs with the initial learning rate of 0.001. The 
learnable parameters, such as weights (w), biases (b) and 
parametric biases (ρ) were initialized with the neutral values at 
the beginning of training. Note that the different PB values 
were obtained for each training pattern whereas the other 
parameters were same across the training patterns. In our 
experiment, we compared the three conditions with the 
different closed-loop ratio (γ) during the training process: 0.0 
(open-loop), 0.5 (half closed-loop) and 1.0 (closed-loop).  

During testing, the training epoch with the lowest training 
error was selected and the robot’s actions were generated by 
setting the PB values. Specifically, each PB neuron consisted 
of 200 linearly spaced values between -1 and 1. As the action 
encoding module was composed of 2 PB neurons, a total 
number of 40,000 PB values were prepared. Then, the model 
generated the robot’s actions (N = 40,000) with the given PB 
values in the closed-loop method (i.e. mental simulation). 

E. Measures 

There is no well-grounded measure of creative action 
generation of robots. Instead of qualitatively analyzing the 
level of creativeness and novelty of individual action generated 
by the model, we focused on three aspects of the generated 
action: appropriateness, novelty, and diversity. 

First, we examined whether the generated patterns were 
appropriate to be used for the robot’s action 
(Appropriateness). For instance, if the joint position values 
change too quickly (Fig. 3 (b). left), they cannot be used 
because it may harm the actuators in the robot. Also if the joint 
position values do not change over time (Fig. 3 (b). right), they 
cannot be used to generate ‘action’. Therefore, those 
‘inappropriate’ patterns were filtered out and we calculated the 
ratio of the ‘appropriate’ patterns among the entire generated 
patterns (N = 40,000). To filter out highly fluctuating patterns, 
we limited the maximum joint angular velocity to be 150% of 
that of the basic actions in the training data.  

Second, we measured the signal similarity between the 
generated patterns and the training patterns (novelty). 
Intuitively, if a generated pattern differs significantly from the 
learned patterns, it might be considered as novel. To be more 
specific, we measured the minimum dynamic time warping 
(DTW) distance between the generated pattern and the learned 
patterns. Then, the average of those minimum DTW distances 
was computed. Therefore, if the average of the minimum DTW 
distance between the generated pattern and the training patterns 
is huge, it implies that the generated patterns are generally 
different from the learned patterns. The novelty was computed 
iteratively (30 times) with randomly selecting 30 generated 
patterns at each iteration. 

Third, the signal similarity between the generated patterns 
(diversity) was measured. Even if the generated patterns are 
different from the learned patterns, it would be more desirable 
if the generated patterns are different from each other. 
Therefore, we measured the average DTW distance between 
the generated patterns. Therefore, if the average DTW distance 
among the generated patterns is huge, it implies that the diverse 

actions are generated by the model. The diversity was also 
computed iteratively (30 times) with randomly selecting 30 
generated patterns at each iteration.  

IV. RESULTS 

The learning converged in all conditions (Fig. 2), meaning 
that the model was able to learn the six basic patterns. In 
general, the open-loop training method (γ=0.0) converged 
faster than the other methods. Under the closed-loop training 
method (γ=1.0), a bit more fluctuating learning curve was 
observed. 

 Table I illustrates the experiment results in terms of three 
measures used in this study. Regarding appropriateness, the 
ratio of appropriate patterns among the entire generated pattern 
(N = 40,000) is reported (subtotal). In order to understand what 
sorts of patterns were generated, we additionally classified 
those appropriate patterns into the two categories: unlearned 
and learned actions. If the minimum DTW distance between 
the generated pattern and the training patterns was higher than 
the threshold (10.0), the generated pattern was considered the 
unlearned action. Otherwise, the generated pattern was 
considered learned action (i.e. training data). 

It was observed that the most of the generated patterns were 
considered appropriate (97.97%) under the closed-loop 
condition (γ=1.0). In other words, the majority of the patterns 
generated by the model can be used. In other conditions, the 
percentage of the appropriate pattern decreased to 82%. 
However, the classifying the appropriate patterns into two 
categories showed an interesting result. In the closed-loop 
condition, about 40% of the appropriate patterns were similar 
to the training patterns. On the other hand, only 7.58% of the 
appropriate patterns in the half closed-loop condition (γ=0.5) 

 
 

Fig. 2. The learning curve. The model was trained for 100,000 epochs under 
the three different conditions: (from the top) closed-loop (γ=1.0, blue), half 
closed-loop (γ=0.5, green) and open-loop (γ=0.0, red).  
 
 

TABLE I.  THE EXPERIMENT RESULT 

 Closed-loop Ratio (�) during Training

  0.0 0.5 1.0 

Appropriateness 
(%) 

Unlearned 72.21 75.26 57.95 

Learned 11.23 7.58 40.02 

Subtotal 83.44 82.84 97.97 

Novelty 26.02 31.71 18.53 

Diversity 43.12 48.03 35.96 

 



  

were considered as the training pattern. This implies that the 
model trained under the closed-loop manner can reproduce 
what it has learned well, but it might be less ‘creative’ than the 
model trained under the half closed-loop method. 

The similar finding was also observed in the measure of 
novelty. The half closed-loop condition showed the highest 
degree of novelty (31.71). This suggests that the generated 
patterns in this condition are more different from the training 
actions than ones in the other conditions. On the other hand, the 
lowest level of novelty was observed (18.53) in the closed-loop 
condition, implying that the generated patterns are more similar 
to the learned actions than ones in the other conditions. This 
finding is in line with the measure of appropriateness.  

 The similar trend was also observed in the measure of 
diversity. The half-closed loop condition showed the highest 
level of diversity (48.03) whereas the closed-loop condition 

showed the lowest level of diversity (35.96). That is, the 
patterns generated in the half-closed loop condition were 
different from each other.  

In sum, the result revealed that the most creative patterns 
were generated in the half-closed loop training condition. The 
closed-loop condition elicited stable performance where 
almost all generated patterns were considered appropriate, but 
those patterns were similar to the training patterns. In contrast, 
the model trained in the half-closed loop condition generated 
not only appropriate patterns but also novel and diverse 
patterns.  

This result indicates that the learning method had an 
important impact on the model’s capability of generating 
creative robot actions. As similar to [5], we assumed that the 
source of novelty in our model was the nonlinear memory 
dynamics, particularly in the action encoding module (PB). We 
hypothesized that the different memory structure had been self-
organized during training depending on the condition. 
Therefore, we additionally analyzed the model’s internal 
memory structure in the action encoding module.  

A. Internal Structure in the Action Encoding Module 

In order to investigate the internal memory structure self-
organized in the action encoding module, we visualized the PB 
spaces (Fig. 4). The colors denote the corresponding basic 
actions used in training and the contrasts indicate the levels of 
similarity (high contrast for a higher level of similarity). The X 
and the Y axes indicate the first and the second neurons in the 
action encoding module (PB nodes). 

In all three conditions, the clusters each encoding specific 
type of the basic action were observed. That is, each basic 
action was encoded in a distinct region of the PB space in the 
action encoding module, and the nearby PB space produced 
similar patterns (See the supplementary video). 

It was observed that the memory structure became simpler 
when the closed-loop ratio (γ) increased. In the closed-loop 
condition (γ=1.0), relatively huge spaces encoded the six basic 
actions. In contrast, in the open-loop condition (γ=0.0), the size 
of the regions encoding the basic actions decreased. Moreover, 
the size of those regions was uneven among the basic patterns. 
For instance, the size of the regions that generated left and right 
uppercut (L.Upper and R.Upper) were much smaller than the 
size of the region encoding left hook (L.Hook). With this 
memory structure, it might be difficult for the model to 
generate such actions. In the half closed-loop condition 
(γ=0.5), the size of the region encoding right straight 
(R.Straight) was bigger than those of the other regions, but the 
size of the regions that encoded the basic action was similar in 
general.  

As can be seen from Fig. 4, the relatively huge amount of 
the PB space in the closed-loop condition was occupied by the 
six clusters encoding the training pattern (40.02%). Therefore, 
the model in this condition was able to reproduce the learned 
pattern well, but it was less likely to generate novel actions (See 
Table I). In the half closed-loop condition, the regions 
encoding the basic actions occupy the smaller amount of the 
PB space (7.58%). Consequently, the model trained in this 
condition was able to generate more diverse and novel actions. 

(a) 
 

(b) 
 

(c) 
 

Fig. 3. The patterns generated in the half-closed loop condition. The X axis 
represents the time steps and the Y axis represents the eight joint position 
values in radian. The solid and dashed lines represent the joint position values 
of the right and left arm respectively. (a) Six basic actions used in training. 
Top row: Left Hook (left) and Left Jab (right). Middle row: Left Uppercut 
(left) and Right Uppercut (right). Bottom row: Right Hook (left) and Right 
Straight (right). (b) Example of inappropriate actions filtered out in our result. 
Highly fluctuating (left) and non-moving (left) patterns. (c) Example of novel 
actions. A combination of right straight and right uppercut (left) and a 
combination of left jab and right straight (right). Note that those basic actions 
in the novel actions are slightly different from the training pattern in (a).  
 



  

 In addition, the analysis revealed a quite ‘rugged’ 
landscape of the PB space (Fig. 5). This resulted in abrupt 
changes in robot’s action with a small change in the PB values. 
As the values of PB changed, the actions generated by the 
network changed. For instance, Fig. 5 (a) ~ (c) show a 
transition of an action from right straight (R.Straight) to left jab 
(L.Jab). As can be seen from the figure, the model’s output 
totally changed to another action with different PB values. 
Also, it was found that the region between R.Straight and L.Jab 
encoded the combination of those two actions (Fig. 5 (b)). 
Sometimes, small changes in PB induced big differences in 

generated actions (See the supplementary video). These results 
imply that the model has a nonlinear and complex memory 
structure. As argued in [5], this highly nonlinear landscape of 
the PB space is assumed to be the source of ‘creative’ robot’s 
action in our model. In [5], it was shown that the memory 
structure could become highly nonlinear when the number of 
training patterns increased. The findings in this study suggest 
that the memory structure can be highly nonlinear depending 
on the learning method as well, even with a smaller number of 
training data.  

   
      (a)        (b)        (c) 

 
Fig. 4. The PB space in the three different training condition: (a) Open-loop (γ = 0.0) (b) half closed-loop (γ = 0.5) and (c) closed-loop (γ = 1.0). The X and Y 
axes represent the two PB nodes in the action encoding module. The value of each PB node varies from -1 to 1 with the step size of 0.01. Consequently, the PB 
space was visualized with 200 × 200 generated patterns (i.e. resolution). The colors and the texts represent the type of basic action used in training. The regions 
in purple and in pink encode highly fluctuating and non-moving patterns respectively and they were filtered out in our results (See the supplementary video 
also).  
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
Fig. 5. The model’s output with given PB values in the half closed-loop (γ = 0.5) condition. (a) PB1: 0.36, PB2: 0.12 (b) PB1: 0.36, PB2: 0.03 (c) PB1: 0.39, 
PB2: -0.02 (d) PB1: 0.44, PB2: -0.21 (e) PB1: 0.44, PB2: -0.38 (f) PB1: 0.19, PB2: -0.21. In each subplot, the PB space (left) and the model’s output (right) are 
depicted. The yellow point in the PB space denotes the location of the current PB value.  
  
 



  

V. CONCLUSION 

In this study, we investigated how a robot can generate 
novel actions from its own experience of learning basic 
actions. We proposed a dynamic neural network model which 
could encode robot’s actions in its own memory and reproduce 
them. The results showed that the proposed model was not 
only able to reproduce what it had learned but also to generate 
novel and creative actions through modulating and combining 
those learned actions. The analysis of the internal memory 
structure illustrated that the ability to generate novel actions 
emerged from the nonlinear memory structure self-organized 
during training in the action encoding module. It was found 
that the different way of learning the basic actions induced the 
self-organization of the memory structure with the different 
characteristics, resulting in the generation of different level of 
creative actions.  

Although this study was conducted in a simulation 
environment, the method of visualizing the robot’s memory 
structure and generating actions can be implemented in the 
real robot setting. Consequently, the proposed approach to 
novel action generation can be utilized in human-robot 
interaction in which a user can interactively explore the 
robot’s memory to control the robot’s behavior and also to 
discover novel actions.  

APPENDIX 

Supplementary videos are available at 
https://youtu.be/xsJnJb5zfJ0 
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