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Fig. 1. Experiment setting. (a) an example of human-human interaction and 
(b) a diagram illustrating interaction between the two neural network models. 
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Abstract— This paper introduces our approach to building a 
robot with communication capability based on the two key 
features: stochastic neural dynamics and prediction error 
minimization. A preliminary experiment showed that the 
humanoid robot was able to imitate other’s action by means of 
those key features. In addition, we found that some sorts of 
communicative patterns emerged between two robots in which 
the robots inferred the intention of another agent behind the 
sensory observation. 
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I. INTRODUCTION 

The ability to communicate with others is one of the most 
fundamental skills for many animals, including humans. In this 
paper, we introduce our approach to building a socially 
interactive agent based on two key principles: stochastic neural 
dynamics and prediction error minimization (PEM). Dealing 
with fluctuating signal is essential for the robot to learn from 
noisy sensorimotor experience. PE minimization is at the core 
of the theory of predictive coding and it has been shown that 
intention behind sensory observation can be inferred by 
minimizing prediction error (e.g., the discrepancy between 
sensory observation and prediction) [1]. Based on these 
principles, we implemented a neural network model and 
conducted a set of synthetic robotic experiments to examine the 
emergence of communication between the agents.  

A few recent studies have illustrated similar approaches. In 
[2], they found that the PE minimization mechanism elicited 
the adaptive behavior of the robot and afforded the robot to 
recover from deformed interaction caused by external 
instability. In [3], the same robotic platform was used and the 
neural network model with precision-weighted PE minimization 
mechanism was examined. They found that the inflexible 
behaviors of the robot were caused by aberrant sensory precision.  

Our approach differs from previous works in three 
important ways. First, we used the neural network model [4] 
which can develop stochastic dynamics to deal with fluctuating 
sensory signals. Second, the other’s behavior is explicitly 
represented in our experiment. The previous studies [2, 3], 
however, used the XY coordinate of the ball as the input to 
represent other agent’s action, undermining communication. 
For instance, “attract” gesture in their studies were not, indeed, 
observed by another agent. Third, we examined the effect of 
the model parameters from the training process whereas the 

previous study [3] modulated the model’s parameter (sensory 
precision) only after training. Consequently, their approach 
could not illustrate the influences of sensory precision on 
learning (neuroplasticity). 

II. NEURAL NETWORK MODEL 

A stochastic hierarchical neural network model based on 
[4] was implemented (Fig. 1 (b)). The model consists of a set 
of context layers showing different (fast and slow) timescale 
neural dynamics. The model predicts two different types of 
signal: proprioceptive and exteroceptive signals indicating the 
robot’s own and other’s action respectively. During training, 
the model is trained to generate predictions of both signals and 
the learnable parameters are optimized in the direction of 
minimizing prediction error.  

The model used in this study has two important features. 
First, the level of stochasticity of neural activation can be 
controlled by a parameter W. In brief, higher W forces the 
neural activation to follow the unit Gaussian distribution, 
meaning that the past information encoded in the internal states 
would be removed and the neural activation would be more 
stochastic. Second, the model provides a PEM mechanism. In 
this scheme, the neural dynamics is updated to minimize PE at 
the output layer. Previous studies [1, 5] showed that the 
underlying intention behind the observed patterns can be 
inferred by minimizing PE.  



TABLE I.  THE IMITATION PERFORMANCE OF THE MODEL 

  Network Conditions 

 W (H) 0.0 
(L) 0.0 

(H) 0.0001 
(L) 0.0001 

(H) 0.01 
(L) 0.01 

(H) 0.01 
(L) 0.0001 

(H) 0.0001 
(L) 0.01 

 ID 1 2 3 4 5 

Short 
Data 

NO PEM 0.48 0.65 0.67 0.66 0.68 

PEM 0.61 0.66 0.68 0.67 0.69 

Long 
Data 

NO PEM 0.55 0.68 0.69 0.68 0.69 

PEM 0.65 0.68 0.69 0.69 0.70 
 

 
Fig. 2. Three examples of communication patterns between two agents 
(Agent A and Agent B). X and Y axis represent the times steps and joint 
position values respectively. The colors represent 6 joints of the robot used 
in our study. (a) no actions and (b) repetitive actions and (c) emergent 
communicative patterns between the agents. See the supplementary video for 
more examples (https://youtu.be/VfBK-l_chrQ) 

III. EXPERIMENT AND RESULTS 

Two small humanoid robots (ROBOTIS OP2) were used in 
our experiments. Prior to training, the communication patterns 
between the human operators were collected. Then, the model 
was trained with the collected data and tested in different 
situations including Human-Robot and Robot-Robot Interaction.  

A. Data Collection from Human-Human Interaction (HHI) 

Prior to training, two operators interacted each other 
through the robots (Fig. 1 (a)). In order to control the robot, we 
used the controller which shared the same joint configuration 
with OP2. During HHI, the encoder values of both controllers 
were collected to represent proprioceptive signal (i.e. own 
action) and exteroceptive signal (i.e. other’s action). A total 
number of 62 sequences consisting of 31 gesture imitation 
tasks under 2 different roles (leading and following the 
imitation) were collected.  

B. Imitation Capability in Human-Robot Interaction (HRI) 

In this setting, we assumed a typical HRI setting where the 
communication between the user and the robot can be 
examined. To compare the model’s performance 
systematically, we provided the same pre-recorded gestures 
(short and long data) to the models with different parameters 
and compared the imitation performance measured as the 
correlation coefficient between other’s gesture and own gesture.  

The result (Table I) revealed that the model with stochastic 
dynamics performed better than the one with deterministic 

dynamics. Particularly, more deterministic higher level 
condition (ID 5) performed the best in both short and long 
gesture cases. In contrast, the deterministic condition (ID 1) 
showed the worst performance. This result highlights the 
importance of embedding stochasticity as suggested in [4]. We 
also found that the model generally performed better in the 
PEM condition, indicating the importance of PEM to adapt to 
fluctuating signals. 

C. Emergence of Communication in Robot-Robot Interaction (RRI) 

In this setting, each robot is operated by a neural network 
model and the robots interact with each other. In each trial, the 
models interacted for 1,000 steps and we conducted 10 trials. 
Then, we examined communication patterns between two agents.  

We found that PEM generally initiated some sorts of social 
interaction (Fig. 2). The effect of W was less obvious than the 
effect of the PEM. When both agents were not performing 
PEM, the communication patterns mostly converged to either 
fixed point (i.e. no social interaction) or limit cycle (i.e. 
repetitive behavior). When at least one of the agents was 
performing PEM, emergent interactions were observed. 
Although “meaningful” social interaction is not strictly defined 
in this context, it can be still observed that inferring other’s 
intention through minimizing PE elicited social interaction 
whereas the model without PEM (i.e. passive perception 
without inference) showed less social behavior, such as 
repetitive or no actions at all.  

IV. CONCLUSION 

In this paper, we introduced our approach to building an 
artificial agent with communicative skills based on the two key 
principles: stochastic neural dynamics and prediction error 
minimization (PEM). The preliminary experiment results 
showed that the neural network model with stochastic 
dynamics was able to deal with fluctuating communication 
patterns. In addition, we found that the ability to infer other’s 
intention by minimizing PE played an essential role in 
communication with another agent. The model imitated the 
gestures better with PEM. Furthermore, it induced the 
emergence of communication between two artificial agents.  
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