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Abstract 

Lung cancer is one of the major causes of cancer death and clarification of its molecular 

pathology is highly prioritized. The physiological importance of mRNA degradation 

through the CCR4-NOT deadenylase has recently been highlighted. For example, 

mutation in CNOT3, a gene coding for CNOT3 subunit of the CCR4-NOT complex, is 

found to be associated with T-cell acute lymphoblastic leukemia, T-ALL, though its 

contribution to other cancers has not been reported. Here, we provide evidence 

suggesting that CNOT3 is required for the growth of non-small cell lung cancer. 

Depletion of CNOT3 suppresses proliferation of A549 human non-small cell lung 

cancer cells with enhanced mRNA stability and subsequent elevated expression of p21. 

In addition, we identified the mRNA for Krüppel-like factor 2 transcription factor, an 

inducer of p21, as a novel mRNA degradation target of CNOT3 in non-small cell lung 

cancer cells. Aberrant up-regulation of Krüppel-like factor 2 by CNOT3 depletion leads 

to impairment in proliferation of A549 cells. Consistent with these findings, elevated 

mRNA expression of CNOT3 in non-small cell lung cancer in comparison with the 

paired normal lung epithelium was confirmed through scrutinization of the RNA-

sequencing datasets from The Cancer Genome Atlas. Moreover, we found an inverse 

correlation between CNOT3 and CDKN1A (encoding p21) mRNA expression using the 
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combined datasets of normal lung epithelium and non-small cell lung cancer. Thus, we 

propose that up-regulation of CNOT3 facilitates the development of non-small cell lung 

cancer through down-regulation of Krüppel-like factor 2 and p21, contrary to tumor 

suppressive functions of CNOT3 in T-ALL. (251 words/300 words) 
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Introduction 

Lung cancer is the top cause of cancer deaths for both men and women in the 

United States1. Hence, clarification of molecular pathology of lung cancer is highly 

prioritized. Lung cancer is classified into two major pathological types: small-cell lung 

cancer (SCLC) and non-small cell lung cancer (NSCLC)2. NSCLC accounts for 85% of 

all lung cancer cases and is considered as typical type of lung cancer. Further, NSCLC is 

comprised of three main subtypes: lung adenocarcinoma (LADC), lung squamous cell 

carcinoma (LSqCC), and large-cell lung carcinoma, and LADC and LSqCC account for 

most of NSCLC2, 3.  

 Cancer can be developed through the mutation or loss of genes regulating 

mRNA homeostasis because its deviation leads to aberrant protein expression that could 

cause unregulated cell proliferation. MicroRNA is one of the most essential factors for 

determining the fate of its target mRNA expression through mRNA degradation. In fact, 

a variety of microRNAs were identified as oncogenic factors (oncomiRs) or tumor 

suppressors by intense studies4. In addition, mRNA decay after shortening poly(A) tail 

by deadenylases is also a key factor in determining mRNA fate5. The CCR4-NOT 

complex is a major deadenylase in mammals6. Naturally, it is assumed that the CCR4-

NOT also exerts similar functions as microRNAs that are relevant to lung 
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carcinogenesis7. 

Mammalian CCR4-NOT complex consists of eight subunits; CNOT1, CNOT2, 

CNOT3, CNOT6 or 6L, CNOT7 or 8, CNOT9, CNOT10 and CNOT118. Of these 

subunits, CNOT6/6L/7/8 possess deadenylase activities6. CNOT1 is considered as a 

scaffold protein for this complex9 and CNOT3 is also reported to be necessary for the 

integrity of the complex and deadenylase activities10, 11. Recent studies reveal that 

depletion of CNOT3 results in various abnormalities and diseases including impairment 

in embryonic development, leanness, and osteoporosis in mice11-13. Importantly, 

frameshift and missense mutations of the CNOT3 gene have been identified in T-cell 

acute lymphoblastic leukemia (T-ALL) patients by exosome-sequencing14. Moreover, 

knockdown of CNOT3 induces tumor development using sensitized drosophila eye 

cancer model14. These findings suggest that CNOT3 functions as a tumor suppressor in 

T-ALL development. However, the role of CNOT3 in NSCLC development remains 

unknown.  

In this study, we investigated the functions and target mRNAs of CNOT3 using 

human LADC and LSqCC cell lines. We have addressed the status of CNOT3 

expression through scrutinization of RNA-sequencing (RNA-seq) datasets of LADC 

and LSqCC patients from The Cancer Genome Atlas (TCGA). Importantly, we 
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identified the mRNA for KLF2 transcription factor as a novel target of CNOT3 in lungs. 

Our data suggest the possibility that up-regulation of CNOT3 is required for NSCLC 

development by controlling stability of CDKN1A and KLF2 mRNAs, contrary to the 

supposed roles in T-ALL. Our findings would give novel insights into a relationship 

between cancer development and deadenylase-initiated mRNA decay. 
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Results  

CNOT3 mRNA expression is up-regulated in NSCLC. 

We first analyzed the RNA-seq datasets of TCGA database to examine if the expression 

of CNOT3 is altered in human NSCLC compared to normal lung epithelium. Since 

frequent frameshift and missense mutations of CNOT3 were reported in T-ALL, and 

since knockdown of CNOT3 with enhanced Notch signaling resulted in development of 

eye cancer in Drosophila14, CNOT3 was thought to be anti-oncogenic. However, the 

RNA-seq analysis revealed that mRNA expression of CNOT3 is up-regulated in 

NSCLC, both LADC and LSqCC (Figures 1a and b). Because this up-regulation was 

less obvious in LADC than LSqCC, we also examined mRNA expression change of 

CNOT3 in LADC using the microarray datasets downloaded from ONCOMINE 

database15. Up-regulation of CNOT3 mRNA in LADC was commonly observed in all 

the datasets16-20, with statistical significance except for one dataset using the minimum 

sample size in total20(Supplementary Figure S1). Moreover, we examined CNOT3 

promoter activities in primary normal lung epithelial cells and NSCLC cell lines using 

the cap analysis of gene expression (CAGE)21-seq from the Functional ANnoTation Of 

the Mammalian genome 5 (FANTOM5) database22. Higher number of CAGE tag counts 

was detected at p1 promoter of CNOT3 in NSCLC cell lines compared to human 
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primary normal lung epithelium, indicating that NSCLC cells have higher CNOT3 

promoter activity (Figure 1c). These findings indicate that CNOT3 expression is 

elevated in NSCLC compared to normal lung epithelium. 

 

Proliferation of human NSCLC cells is attenuated by CNOT3 depletion. 

According to the CAGE-seq data shown in Figure 1c, CNOT3 promotor activity in 

A549 LADC cell line was about 2-fold higher than its average in normal lung 

epithelium (average; 35.4 and A549 cells; 68.5). Hence, in order to investigate the role 

of CNOT3 in NSCLC cells, we established A549 cells stably expressing tetracycline-

inducible shRNA against CNOT3 targeting two different sequences within exons of 

CNOT3 using lentivirus (A549-T-shCNOT3-1 and -2 cells). About 70-80% knockdown 

of CNOT3 mRNA expression was achieved by their induction (Figure 2a). We found 

that CNOT3 depletion reduces the protein expression of some other CCR4-NOT 

subunits (CNOTs) without decreasing mRNA expression (Figure 2b and Supplementary 

Figure S2) as previously reported in murine embryonic fibroblasts (MEFs)10. CNOT3 

overexpression restored this reduction in the expression of CNOTs (Figure 2c), 

indicating that CNOT3 is essential for the integrity of the CCR4-NOT complex in 

human NSCLC cells as well as MEFs. We also examined subcellular localization of 
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CNOT3 in A549 cells since CNOT3 was also reported to be involved in transcriptional 

activities23 or chromatin modification24. In contrast with the finding that CNOT3 is 

expressed in the nucleus to the same extent with cytoplasm in colorectal cancer cells25, 

CNOT3 expression in the cytoplasm was much higher than nucleus in A549 cells 

(Figure 2d), suggesting that CNOT3 is mainly involved in the regulation of mRNA 

degradation. Next, we checked the effects of CNOT3 knockdown on cell viability or 

proliferation because necroptosis or mitotic arrest was induced in CNOT3-depleted 

MEFs10 or HeLa cells26, respectively. As shown in Figure 2e, increase in dead cells or 

mitotic cells was hardly observed in CNOT3-depleted A549 cells. However, cell 

proliferation rate was reduced by about 50% by induction of two different CNOT3 

shRNAs (Figure 2f). Although exogenous CNOT3 overexpression did not accelerate the 

proliferation of A549 cells (Figure 2g), this growth inhibition of A549-T-shCNOT3-1 

cells was rescued by CNOT3 overexpression (Figure 2h). These findings indicate 

CNOT3 is necessary for the proper growth of A549 NSCLC cells. 

 

CNOT3 depletion induces p21 expression and inhibits the cell cycle progression. 

To know the mechanism by which CNOT3 depletion attenuates the proliferation of 

A549 cells, we examined the status of retinoblastoma (RB) protein, a master regulator 
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of cell cycle progression, when CNOT3 was knocked down. We found that the ratio of 

unphosphorylated form of RB (pRB) to hyperphosphorylated form (ppRB) was 

increased by CNOT3 depletion, while cleavage of poly(ADP-ribose) polymerase 

(PARP) which is essential for caspase-dependent apoptosis was not enhanced (Figure 

3a). We further found the increase in the cell population in G0/G1 phase and no 

alteration in subG1 phase of A549-T-shCNOT3-1 cells by CNOT3 knockdown (Figure 

3b), suggesting that CNOT3 depletion does not induce apoptosis but induces cell cycle 

arrest of A549 cells.  

During G1-to-S transition of cell cycle, cyclin-dependent kinase (CDK) 

inhibitors, CIP/KIP proteins (p21, p27 and p57), function as a brake for cell cycle 

progression through inactivation of Cyclin D-CDK4, Cyclin D-CDK6, and Cyclin E-

CDK2 complex27. We hypothesized that CNOT3 depletion aberrantly up-regulates the 

expression of CIP/KIP proteins via impairment of mRNA decay. Among the CIP/KIP 

proteins, the expressions of p21 was clearly elevated by CNOT3 depletion at both 

mRNA and protein level (Figures 3c and d). Less up-regulation of p27 compared to p21 

at mRNA and protein level, especially in A549-T-shCNOT3-1 cells, was observed, and 

up-regulation of CDKN1C (coding p57) was not observed (Figures 3c and d). Further, to 

rule out a possible involvement of the other CDK inhibitors, the INK4 family, we also 
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checked expression change of CDKN 2C (coding p18) and CDKN2D (coding p19) by 

CNOT3 depletion and their up-regulation was not observed in common with induction 

of shCNOT3-1 and -2 (Figure 3c). CDKN2A (coding p16) and CDKN2B (coding p15) 

alleles are deficient in A549 cells28, 29.  

We next evaluated mRNA stability of CDKN1A (coding p21), CDKN1B 

(coding p27), and CDKN2D using Actinomycin D (ActD; Wako, Osaka, Japan), a 

transcription inhibitor. Quantitative real-time RT-PCR (qRT-PCR) revealed that mRNAs 

of CDKN1A and CDKN1B, but not CDKN2D, were stabilized by CNOT3 depletion in 

A549 cells (Figure 3e). These results suggest that CNOT3 depletion directly up-

regulates the expression of CDKN1A and CDKN1B through their enhanced mRNA 

stabilization. 

 

Identification of KLF2 transcription factor as a target of CNOT3 

Because the expression of p21 was highly up-regulated, we assumed that up-regulation 

of p21 was most likely to be responsible for induction of cell cycle arrest by CNOT3 

depletion. However, stabilization of CDKN1B mRNA was more obvious than CDKN1A 

mRNA, contrary to the results of expression change (Figures 3b and d). Then, we 

hypothesized that CNOT3 also suppresses the expression of p21 through Factor X 
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which induces p21 expression. In other words, we assumed that p21 expression is 

regulated by in direct and indirect ways, the latter being via Factor X (Figure 4a).  

To identify Factor X, we performed microarray analysis and highlighted on up-

regulated genes commonly observed in two types of shCNOT3-induced A549 cells. We 

narrowed down the candidate gene to 110 up-regulated probes based on our criteria and 

we found some transcription-related genes (Figure 4a and Supplementary Table S1, 

green color; transcription-related genes). Transcription factors directly regulate the 

expressions of target genes and are potent candidates. We found the only one 

transcription factor, Krüppel-like factor 2 (KLF2) among the 110 probes, which is also 

called as lung krüppel-like factor (LKLF)30 since its expression is abundant in lungs and 

necessary for lung development31. KLF2 is known to induce p21 expression in Jurkat T-

ALL cells via direct promoter regulation30. In addition, KLF2 was also reported to 

induce less preferentially p27 expression than p21 expression in mouse pre-B cells32. 

Thus, we hypothesized that up-regulation of KLF2 is responsible, at least partly, for p21 

induction by CNOT3 depletion.  

We confirmed up-regulation of KLF2 by CNOT3 depletion by qRT-PCR and 

this up-regulation was suppressed by CNOT3 overexpression (Figures 4b and c). We 

also found that KLF2 mRNA was drastically stabilized by CNOT3 depletion while 



 
Shirai et al. 

15 
 

mRNA of KLF6, another inducer of p21 and p27 in the same KLF family33, was not up-

regulated and was much less stabilized than KLF2 (Supplementary Figure S3 and 

Figure 4d). Furthermore, the poly(A) tail length of KLF2 mRNA was elongated in 

CNOT3-knocked down A549 cells while that of very stable HPRT1 mRNA was not 

changed (Figures 4d and e). These findings indicate that KLF2 transcription factor is a 

bona fide direct target of CNOT3. 

 

KLF2 is at least in part responsible for the growth inhibition by CNOT3 depletion 

To confirm the involvement of KLF2 in the growth inhibition by CNOT3 depletion, we 

established A549-T-shCNOT3-1 cells stably expressing shRNA against KLF2 using 

lentivirus (Figure 5a). The mRNA expression level of CDKN1A under CNOT3 

knockdown was lowered by knockdown of KLF2, in accord with the previous findings 

that KLF2 transcriptionally induces CDKN1A expression34 (Figure 5b). In addition, cell 

proliferation assay revealed that the growth inhibition by CNOT3 depletion was 

significantly attenuated by knockdown of KLF2 (Figure 5c). These findings indicate 

that up-regulation of KLF2 mediates the induction of p21 and growth inhibition by 

CNOT3 depletion, at least partly. 
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p21 and KLF2 are common targets of CNOT3 in human NSCLC 

To determine whether the regulation of KLF2 expression by CNOT3 is commonly 

observed in NSCLC cells or only in A549 cells which harbor KRAS mutation35, we 

examined the expression of KLF2 using siRNA against CNOT3 (siCNOT3) in other 

human LADC and LSqCC cell lines with different mutation or amplification profiles of 

KRAS, TTF1, and EGFR; NCI-H441: KRAS mutation and TTF1 amplification35, NCI-

H520: wild-type, and NCI-H1975: EGFR mutation36. In all the NSCLC cell lines we 

examined, up-regulation of KLF2 mRNA was commonly observed by two different 

siCNOT3 in good agreement with knockdown efficiency of CNOT3 (Figures 6a and 

Supplementary Figure 4), suggesting that KLF2 is a common target of CNOT3 in 

NSCLC, and that this regulation of KLF2 expression by CNOT3 is not limited to the 

NSCLC with some major specific mutations. Importantly, impairment of the 

proliferation by CNOT3 depletion was also observed in all these cell lines 

(Supplementary Figure 5). 

Furthermore, we examined the correlation of CNOT3 and p21 or KLF2 using 

the TCGA datasets for both LADC and LSqCC in order to confirm if the expressions of 

these genes are regulated by CNOT3 in clinical samples in vivo. Since the expressions 

of p21 and KLF2 are supposed to be altered during carcinogenesis based on their tumor 
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suppressive functions, we used combined datasets of NSCLC and paired normal lung 

epithelium to get a more clear correlation, although the paired normal corresponded to 

just some of the cancer samples. In accord with the fact that KLF2 is a direct inducer of 

p21, we confirmed a positive correlation between KLF2 and p21 using these combined 

datasets (Figures 6d and e). Importantly, we found a negative correlation of CNOT3 and 

p21, with comparable extent of Pearson’s correlation value with that of KLF2 and p21 

(Figures 6d and e), suggesting that CNOT3 negatively regulates the expression of p21 

in human lung epithelium. Furthermore, a negative correlation between CNOT3 and 

KLF2 was found in the LSqCC datasets (Figure 6e). These findings indicate that KLF2 

and p21 are common targets of CNOT3 in NSCLC. 

 

Discussion  

The mammalian CCR4-NOT complex is a multi-functional protein assembly 

that regulates transcription, translational inhibition, and mRNA degradation37. 

Increasing reports have demonstrated that individual subunit possesses a unique role in 

cancer development and progression. For instance, CNOT2 was reported to inhibit 

metastasis of mouse breast cancer cells, while CNOT7 promotes it38, 39. In the study 

using MCF7 breast cancer cell lines, cell cycle arrest was induced by knockdown of 
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CNOT1, CNOT340, CNOT7, or CNOT841, while impaired cell survival was observed by 

knockdown of CNOT6 or CNOT6L in addition with cell cycle arrest40. Hence, the role 

of the CCR4-NOT in cancer needs to be clarified by focusing on each subunit, not a 

whole complex, to avoid complexity. Importantly, frequent frameshift and missense 

mutations of CNOT3 were reported in T-ALL recently and CNOT3 was found to be a 

tumor suppressor using sensitized drosophila eye cancer model14. These findings 

propelled us to examine the function of the CCR4-NOT, by focusing on CNOT3, in 

another major cancer, lung cancer.  

CNOT3 is known to be essential for modulation of transcription activities37. 

Importantly, CNOT3 hetero-deficient mice developed impaired heart function through 

dysregulation of chromatin modification24. However, we found that CNOT3 is 

predominantly located in the cytoplasm in A549 cells, not nucleus (Figure 2d), different 

from colorectal cancer cells25. Thus, in the present study, we focused on mRNA 

degradation mediated by CNOT3 which is supposed to take place in the cytoplasm, and 

found stabilization of CDKN1A and CDKN1B mRNA (Figure 3e). 

We also identified KLF2 as a novel common target of CNOT3 in NSCLC 

(Figure 4a and 6a). KLF2 is reported to induce p21 expression in NSCLC cells 

including A549 cells and its expression is associated with lung cancer progression or 
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prognosis 34, 42. It should be noted that KLF2 is included among the up-regulated genes 

by combined knockdown of CNOT7 and CNOT8 in MCF7 cells41. These indicate that 

the CCR4-NOT also participates in the regulation of tumor suppressor KLF2 as well as 

microRNAs43 and long non-coding RNAs44. It is also worth mentioning that some 

important mRNAs such as KLF2 are universally regulated by the CCR4-NOT complex 

in the various organs. 

Tumor suppressor, p53 is another major regulator of p21 and its mRNA was 

reported to be directly regulated by CNOT3 in developing mouse B lymphocytes45. Up-

regulation of TP53 mRNA (encoding p53) by CNOT3 knockdown was not commonly 

observed in A549 cells (Supplementary Figure S6a). In addition, TP53 mRNA was 

strikingly stable in lung cancer cells and was not stabilized by CNOT3 depletion 

(Supplementary Figure S6b), contrary to developing mouse B lymphosites45. These 

suggest that some target mRNAs of the CNOT3 are fairly cell- or tissue-type dependent, 

contrary to the finding regarding KLF2. However, we found that greater increase of p53 

at protein level (average: 2.20 fold) than mRNA level (1.32 fold) by CNOT3 depletion 

in A549-T-shCNOT3-1 cells (Supplementary Figure S6c and d), suggesting the 

possibility that CNOT3 is also involved in the translation inhibition of p53. This 

increase in p53 protein might partly account for the growth inhibition by CNOT3, of 
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which knockdown of KLF2 showed only modest restoration. 

A recent report showed that nuclear CNOT3 is important for colorectal cancer 

progression and highly linked to the prognosis25. We examined the prognosis of NSCLC 

patients by Kaplan-Meier plots with classifications based on the CNOT3 expression 

(top half versus bottom half, top third versus bottom third, and top quartile versus 

bottom quartile) using the Oncolnc (www.oncolnc.org)46. Unfortunately, however, we 

were not able to find significant difference in survival between the two groups (data not 

shown). This finding suggests that CNOT3 is most likely to be involved in the 

carcinogenesis step of NSCLC, rather than progression, through down-regulation of 

tumor suppressors. 

We found up-regulation of CNOT3 in NSCLC (Figure 1 and Supplementary 

Figures S1), however how CNOT3 expression is regulated in body has been scarcely 

investigated. We examined if CNOT3 gene is frequently amplified in NSCLC by 

analyzing the dataset from Campbell et al.47. Gene alteration frequency of CNOT3 

(0.96%, amplification) is much less than that of MYC (8.74%, amplification) or 

CDKN2A (21.07%, deletion) which is one of the most frequently altered gene in terms 

of copy number in this dataset47 (Supplementary Figure S7), suggesting that gene 

amplification is not the cause of up-regulation of CNOT3 in NSCLC. Therefore, it is 
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speculated that CNOT3 expression level is elevated through alteration of other genes or 

cancer microenvironment. Elucidation of the mechanism of CNOT3 up-regulation 

during lung carcinogenesis awaits further studies. 

We also found the expression change of the other subunits commonly observed 

in the LADC and LSqCC: up-regulation of CNOT1, CNOT2, CNOT7, CNOT9, and 

CNOT11 and down-regulation of CNOT6L (Supplementary Figures S8 and 9). We 

further found that depletion of CNOT2 or both CNOT7 and CNOT8 using siRNA 

inhibits the cell proliferation of A549 cells, however, depletion of CNOT1 did not affect 

it unexpectedly (Supplementary Figures S10 and 11). Further studies are necessary for 

elucidation of how CNOT1 and CNOT3 regulate the functions of the CCR4-NOT 

complex or other interacting molecules in a specific way and cause this discrepancy in 

future. 

In conclusion, we demonstrated that CNOT3 depletion attenuates the growth of 

NSCLC through direct and indirect regulation of p21 via mRNA degradation (Figure 7). 

The findings in this study suggest that CNOT3 facilitates development of NSCLC 

through modulation of mRNA decay machinery. 

 

Materials and Methods 
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TCGA and CBio Cancer Genomics Portal Data  

Level 3 RNA-seq data containing gene expression and clinical information for LADC 

and LSqCC were downloaded from TCGA data portal (https://tcga-

data.nci.nih.gov/docs/publications/tcga/) by November 2015. The graphs for the 

mutation and copy number analysis of NSCLC were generated by the CBio Cancer 

Genomics Portal (http://www.cbioportal.org)48, 49 using the dataset from Campbell et 

al.47 which consists of the highest number of NSCLC patients (TCGA data together with 

the data from Imielinski et al.50 : 660 LADC and 484 LSqCC) available on this website 

as of October 2016. 

 

ONCOMINE Data  

Microarray datasets for LADC (condition ; sample number>=20) were downloaded 

from ONCOMINE database (www.oncomine.org)15 by December 2014. There are three 

probes for CNOT3 mRNA expression (203239_s_at, 211141_s_at, and 229143_at) for 

Affymetrix (CA, USA) microarrays. 203239_s_at and 211141_s_at probes were used 

in common and the former one was used as a representative probe because of higher 

sensitivity. A probe for CNOT3 mRNA for Illumina (CA, USA) microarray was 

ILMN_2207393.  
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CAGE Tag Count Analysis 

CAGE data with raw read counts were obtained from FANTOM5 database and analyzed 

as previously reported51, 52. The data used in this study is composed of 16 primary 

normal lung epithelial cell samples (tracheal (TEC1-3), bronchial (BEC1-7), small 

airway (SAEC1-3), and alveolar (AEC1-3) epithelial cells) and 17 NSCLC cell lines 

(LADC(A549, PC-14, NCI-H441, NCI-H358, SW1573, and NCI-H650), LSqCC (EBC-

1, LC-1F, REPF-LC-AI, and KNS-62), lung large cell carcinoma (IA-LM, NCI-H460, 

LU65, and Lu99B), and unclassified NSCLC (ChaGo-K-1 and NCI-H1385)). The 

CAGE tag counts between samples were normalized using edgeR package as described 

previously53, 54.  

 

Cell Culture and Reagents 

A549 cells were obtained from RIKEN Cell Bank. NCI-H441, NCI-H520, and NCI-

H1975 cells were purchased from ATCC. Cells were cultured in DMEM medium 

(Thermo Fisher Scientific, MA, USA) for A549 cell line or RPMI-1640 medium 

(Thermo Fisher Scientific) for NCI-H441, NCI-H520 and NCI-H1975 cell lines. Both 

of the media contained 10% fetal bovine serum (FBS), penicillin (50U/mL), and 
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streptomycin (50U/mL). All the cells were grown up in a 5% CO2 atmosphere at 37 

degrees Celsius. Doxycycline (DOX; TaKaRa, Shiga, Japan) and ActD were used at a 

concentration of 1 or 3 ug/mL and 5 ug/mL, respectively.  

 

Cell Proliferation Assay 

A549-T-shNTC, CNOT3-1, and CNOT3-2 cells, or GFP or CNOT3-overexpressing 

cells (1 to 3 X 104 cells) were seeded in triplicate in 12-well plates (defined as Day0) 

and the cells were treated with DOX on the next day when necessary. Regarding the 

growth assay using siRNA, (5 to 25 X 104 cells) cells were seeded in duplicate or 

triplicate in 6-well or 12-well plates. The number of the cells was counted with 

hemocytometer or 4 or 5 days after DOX treatment or indicated Day (Some results 

using triplicates were obtained from duplicated wells because of technical error). 

Experiments were performed at least twice under similar conditions and representative 

results are shown in Figures.  

 

Cell Cycle Analysis 

A549-T-shCNOT3-1 cells were seeded in 10 cm dishes and the cell were treated with 

DOX on the next day. The cells were collected 3 days after DOX treatment, washed 
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with PBS, and fixed in an ice cold 70% EtOH and stored at -30 degrees Celsius until 

use. Cells were washed in 1xPBS twice, dissociated in staining buffer (PBS, 0.1% 

Triton X-100, 2%FBS) and labeled with 7-aminoactinomycin D (7-AAD; BD 

Biosciences, NJ, USA). FACS ARIA III (BD Biosciences) was used for acquisition of at 

least 30.000 events. Data was analyzed with FlowJo 10.3 software (Tree Star, OR, 

USA) using Dean-Jett-Fox algorithm. SubG1 fraction was calculated as 100-

(G0/G1+S+G2/M). Experiments were performed twice under similar conditions and 

representative results (36 X 104 cells seeded) are shown in Figures.  

 

Lentivirus Production 

We used a lentiviral vector system to establish A549 cells stably expressing coding 

protein, shRNA or tetracycline-inducible shRNA, without sorting after infection. Entry 

vectors for shRNA and tetracycline-inducible shRNA (pENTR4-H1 and pENTR4-

H1tetOx1), destination vectors (CSII-EF-RfA, CS-RfA-EG, and CS-RfA-ETV), GFP-

expressing lentiviral vector (CS-CDF-EG-PRE), packaging vector (pCAV-HIVgp), and 

VSV-G and Rev-expressing vector (pCMV-VSV-G-RSV-Rev) were provided from Dr. 

Hiroyuki Miyoshi (RIKEN, Tsukuba, Japan). Lentivirus was produced basically 

according to the protocol made by Dr. Miyoshi (http://cfm.brc.riken.jp/lentiviral-
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vectors/protocols/). 

 

RNA Analysis 

Total RNAs were extracted using RNeasy Mini Kit or RNeasy Plus Mini Kit (Qiagen, 

Hilden, Germany). First-strand cDNA synthesis was performed as described 

previously55. qRT-PCR was performed using FastStart Universal SYBR Green Master 

(ROX; Roche, Basel, Switzerland) or TB Green™ Premix Ex Taq ™ II (Tli RNaseH 

Plus; TaKaRa) and the ABI PRISM 7900HT Sequence Detection System (Thermo 

Fisher Scientific). All samples were run in triplicate and the value for GAPDH mRNA 

was used for normalization. This GAPDH value was regarded as a fixed value without 

errors when calculating standard deviation of each objective mRNA expression. 

Regarding the measurement of remaining RNA, the control expression was also 

regarded as fixed value for statistics. Comparison of poly(A) tail length was performed 

as previously described10. Primers used in this study are listed in Supplementary Table 

S2. Experiments were performed at least twice under similar conditions and 

representative results are shown in Figures. 

 

Microarray Analysis 
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Microarray analysis was performed using total RNAs extracted as described above and 

Gene Chip Human Genome U133 Plus 2.0 Array (Affymetrix) as described 

previously10. We used GeneSpring 12.6 (Agilent Technologies) to analyze the data using 

the MAS5 algorithm. We excluded the probes which showed Absent expression in all 

the six samples from the analysis. The complete data set has been submitted to the 

NCBI Gene Expression Omnibus56 and can be accessible through GEO Series accession 

number GSE114694 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114694). 

 

RNA Interference and Oligonucleotides 

A549, NCI-H441, NCI-H520, and NCI-H1975 cells were transfected with siRNA for 3 

days using RNAiMAX (Thermo Fisher Scientific) according to the manufacturer’s 

protocol. Targeting sequences of siRNA for NTC, CNOT3#1, CNOT3#226, CNOT1 (the 

same with CNOT1#1 in Ito et al9.), CNOT2, and CNOT79 were previously described 

and the sequence for CNOT8 is as follows : 5’-GACCCUUCUCGAGGACAUUUG-3’. 

shRNA constructs were designed as previously reported57 and targeting sequences are as 

follows : 5’-GCGCGCTTTGTAGGATTCG-3’ (NTC), 5’-

GGACCAGTTTGAGAGTGAAGT-3’ (CNOT3-1), 5’-
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GCCACATGGAGGATGAGATCT-3’ (CNOT3-2), 5’- 

ACCACGATCCTCCTTGACGAG-3’ (KLF2). 

 

Immunoblotting 

Cell were lysed with TNE lysis buffer containing, 0.1% SDS, 50 mM Trs-HCl, 120 mM 

NaCl , 5 mM EDTA, 1% NP-40, and 10-20% Protease inhibitor (Nakalai Tesque, 

Kyoto, Japan or Wako). Western blotting was basically performed as previously 

reported58. TBS buffer containing 5% skim milk or BSA fraction V and 0.1% Tween-20 

was used for blocking. For some blots, Can Get Signal® Immunoreaction Enhancer 

Solution (TOYOBO, Osaka, Japan) was used for enhancement of detection. We used an 

antibody against CNOT3 which is commercially available (H00004849-M01, Abnova, 

Taipei, Taiwan). Antibodies against CNOT1, CNOT2, CNOT6L, CNOT7 were 

described previously10. Rabbit CNOT9 antibody was obtained as described previously59. 

We purchased RB (554136) antibody from BD Biosciences and PARP antibody (#9542) 

from Cell Signaling Technology, MA, USA. Goat Lamin B antibody (sc-6217), mouse 

p53 (sc-126) and -actin (sc-69879) antibodies were from Santa Cruz, TX, USA. p21 

antibodies were from BD biosciences (556430) and Santa Cruz (sc-6246), and p27 

antibodies were from Santa Cruz (sc-528) and abcam, Cambridge, England (ab32034). 
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-tubulin (T9026) was purchased from Sigma-Aldrich, MO, USA. Quantification of the 

bands was performed using Image J in a vertical way. When it was impossible to 

measure in a vertical way because of the continuous band, it was performed in a 

horizontal way. 

 

Subcellular Fractionation 

Fractionation of cytoplasmic and soluble nuclear proteins of GFP or CNOT3-

overexpressing A549-T-shCNOT3-1 cells with or without DOX treatment was 

performed using Subcellular Protein Fractionation Kit for Cultured Cells (Thermo 

Fisher Scientific) according to the manufacturer’s protocol.  

 

Statistical Analysis 

Two-tailed Student’s t-tests or Welch’s t-tests were used for the comparison of two 

samples. Tukey-Kramer post hoc tests were performed for the comparison of the 

multiple samples in Figure 6a and Supplementary Figures S4 and 10b. p values in 

Figure 6d and e were calculated using the Pearson’s correlation value based on 

Student’s t-distribution. p values in Supplementary Figure S1 was derived from 

ONCOMINE15. Results were considered to be statistically significant at p<0.05. 
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Supplementary information is available at Oncogene’s website. 
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Figure Legends 

Figure 1. CNOT3 mRNA expression is up-regulated in NSCLC.  

(a and b) Expression of CNOT3 using the RNA-seq data from TCGA for LADC (a, 

N=57) and LSqCC (b, N=51). Red bar indicates NSCLC sample and blue bar indicates 

normal epithelium sample in the same patient (paired normal). RPKM ; reads per 

kilobase of exon model per million mapped reads. (c) Normalized CAGE tag counts for 

CNOT3 p1 promoter from FANTOM5 database. Primary normal lung epithelium 

(N=16) and NSCLC cell lines (N=16) (Left). The averages of two groups were 

compared (Right). **p<0.01 by two-sided Student’s paired t-test. Data are presented as 

mean ± SD. 

 

Figure 2. Depletion of CNOT3 attenuates the proliferation of human NSCLC cells. 

(a) qRT-PCR for CNOT3 in A549 cells expressing tetracycline-inducible shRNA against 

non-target control (A549-T-shNTC), A549-T-shCNOT3-1, and -2 cells with or without 

DOX. Cells were treated with DOX for 3 days. (b) Cell lysate of each A549 stable with 

or without 3 days of DOX treatment was subjected to immunoblotting with antibodies, 

as indicated under Materials and Methods. (c) A549-T-shCNOT3-1 cells were infected 

with lentivirus expressing GFP or CNOT3. Immunoblotting was performed as described 
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in (b). (d) Subcellular fractionation of each A549 stable with or without 3 days of DOX 

treatment was performed as described under Materials and Methods. Soluble nuclear 

extracts and cytoplasmic extracts were subjected to immunoblotting. (e) Representative 

pictures of A549-T-ShCNOT3-1 cells with or without 4 days of DOX treatment. (f-h) 

Cell proliferation assay for each A549 stable. For (f) and (h), each A549 stable was 

treated with or without 4 days of DOX treatment. NS: not significant, ***p<0.005 

compared to each (-) or GFP sample by two-sided Student’s paired t-test or Welch’s t-

test. Data are presented as mean ± SD from three technical replicates, or two or three 

biological replicates.  

 

Figure 3. Depletion of CNOT3 induces the expression of p21 in human NSCLC 

cells. 

(a and d) Cell lysate of each A549 stable with or without 3 days of DOX treatment was 

subjected to immunoblotting with antibodies, as indicated under Materials and 

Methods. ppRB, pRB, and full-length form of PARP are shown with arrows. 

Quantification of pRB/ppRB, p21 or p27 /-tubulin or -actin was performed using 

Image J. The values were normalized to that of T-shCNOT3-1 without DOX. Average of 

the values obtained from four (p21 and p27) or three (pRB) independent sets of samples 



 
Shirai et al. 

40 
 

are shown. (b) Cell cycle analysis for A549-T-shCNOT3-1 cells with or without 3 days 

of DOX treatment. (c) qRT-PCR for CDKN1A, CDKN1B, CDKN1C, CDKN2C and 

CDKN2D using the cDNA from the same samples with Figure 2a. (d) A549-T-

shCNOT3-1 cells with or without 3 days of DOX treatment were treated with DMSO or 

ActD for 3 or 6 h. qRT-PCR for CDKN1A, CDKN1B, and CDKN2D using the cDNA 

from the cells with indicated time of treatment. NS: not significant, *p<0.05, **p<0.01, 

***p<0.005 compared to each (-) sample by two-sided Student’s paired t-test or Welch’s 

t-test. Data are presented as mean ± SD from three technical replicates or individual 

samples. 

 

Figure 4. Identification of KLF2 transcription factor as a target of CNOT3. 

(a) Schematic model of regulation of p21 by CNOT3. We hypothesized that p21 

expression is suppressed by a factor X which is a target of CNOT3, in addition with 

direct mRNA decay by CNOT3. We narrowed down the candidate X to up-regulated 

110 probes with microarray based on the criteria as follows : 1. More than 2 fold 

increase by both shCNOT3-1 and -2 induction, 2. Less than 1.5 fold increase by shNTC 

induction (to exclude non-specific increase), 3. More than 1.5 fold higher expression 

both in A549-T-shCNOT3-1 and -2 induced cells than A549-T-shNTC cells without 
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DOX (to confirm the higher expression against A549-T-shNTC stable). We identified 

KLF2 as a factor X. (b) qRT-PCR for KLF2 using the cDNA form the same samples 

with Figure 1a. (c) qRT-PCR for KLF2 using the cDNA form A549-T-shCNOT3-1 cells 

expressing GFP or CNOT3 with or without 3 days of DOX treatment. (d) A549-T-

shCNOT3-1 cells with or without 3 days of DOX treatment were treated with DMSO or 

ActD for 1 or 2 h. qRT-PCR for KLF2 and KLF6 using the cDNA from the cells with 

indicated time of treatment is shown. qRT-PCR for HPRT1 using the cDNA from the 

same samples with Figure 2c is also shown. (e) Poly(A) tail assay for HPRT1 and KLF2 

using the RNA from A549-T-shCNOT3-1 cells with or without 3 days of DOX 

treatment. Synthesized cDNA by reverse transcription was subjected to electrophoresis. 

NS: not significant, ***p<0.005 compared to each (-) or indicated sample by two-sided 

Student’s paired t-test or Welch’s t-test. Data are presented as mean ± SD from three 

technical replicates. 

 

Figure 5. The growth inhibition by CNOT3 depletion is mediated by up-regulation 

of KLF2. 

(a) Schematic model of establishment of A549 cells with stable double knockdown of 

both CNOT3 and KLF2 to examine the involvement of KLF2 in the growth inhibition 
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by CNOT3 depletion. (b) qRT-PCR for KLF2 and CDKN1A using the cDNA form 

A549-T-shCNOT3-1 cells expressing shNTC or shKLF2 with or without 3 days of 

DOX treatment. (c) Cell proliferation assay for each A549 cells with or without 5 days 

of DOX treatment. The cell number of each A549 stable without DOX was standardized 

to 100%. *p<0.05, ** p<0.01, or ***p<0.005 by two-sided Student’s paired t-test or 

Welch’s t-test. Data are presented as mean ± SD from three technical or biological 

replicates. 

 

Figure 6. KLF2 and p21 are common targets of CNOT3 in human NSCLC. 

(a) qRT-PCR for CNOT3 in NCI-H441, NCI-H520, or NCI-H1975 cells with siNTC, 

siCNOT3#1, or siCNOT3#2 transfection. ** p<0.01, ***p<0.005 vs siNTC by Tukey-

Kramer post hoc test. Data are presented as mean ± SD from three technical replicates. 

(b and c) Scatter plot of CNOT3 and CDKN1A (Left), CNOT3 and KLF2 (Middle), or 

KLF2 and CDKN1A (Right) for LADC (b) or LSqCC (c) using RNA-seq datasets from 

TCGA database. These datasets include the data used in Figure 1. (b) Normal lung 

epithelium (Red, N=58) and LADC (Blue, N=518). (c) Normal lung epithelium (Red, 

N=51) and LSqCC (Blue, N=502). The r values indicate Pearson’s correlation. The p 

values were calculated based on Student’s t-distribution. RPKM ; reads per kilobase of 
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exon model per million mapped reads.  

 

Figure 7. Schematic representation of the role of CNOT3 in NSCLC cells.  

CNOT3, one key subunit of the CCR4-NOT complex, is highly expressed in NSCLC 

cells and is required for the proper expression of some other subunits including CNOT1, 

CNOT2, CNOT7, and CNOT9. CNOT3 regulates the expression of p21 through mRNA 

degradation. CNOT3 also specifically degrades the mRNA of KLF2, which regulates 

the expression of p21 through transcription. When CNOT3 is depleted in NSCLC cells, 

the expression levels of KLF2 and p21 are elevated, resulting in the impairment of cell 

proliferation. 

 

 


