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Synthesis	  of	  pyrrolidine-‐3-‐carboxylic	  acid	  derivatives	  via	  
asymmetric	  Michael	  addition	  reactions	  of	  carboxylate-‐substituted	  
enones	  	  
Feng	  Yin,a	  Ainash	  Garifullina,a	  and	  Fujie	  Tanaka*a	  

To	   concisely	   synthesize	   highly	   enantiomerically	   enriched	   5-‐
alkylsubstituted	   pyrrolidine-‐3-‐carboxylic	   acids,	   organocatalytic	  
enantioselective	  Michael	  addition	  reactions	  of	  4-‐alkyl-‐substituted	  
4-‐oxo-‐2-‐enoates	   with	   nitroalkanes	   have	   been	   developed.	   	   Using	  
the	  developed	   reaction	  method,	   5-‐methylpyrrolidine-‐3-‐carboxylic	  
acid	  with	  97%	  ee	  was	  obtained	  in	  two	  steps.	  

Pyrrolidine-3-carboxylic acid (β-proline) derivatives and β2-
amino acids are important molecules as bioactives, catalysts for 
chemical transformations, and their building blocks.1,2,3 For 
example, (R)-pyrrolidine-3-carboxylic acid derivatives have 
been reported as enzyme inhibitors and receptor agonists.1a,b 
(3R,5R)-5-Methylpyrrolidine-3-carboxylic acid has been used 
as a catalyst for diastereo- and enantioselective organocatalytic 
reactions.2a,b Homochiral pyrrolidine-3-carboxylic acid 
derivatives have often been synthesized from homochiral 
starting materials.2a,b,4 Enantioselective methods that provide β-
proline and 2-, 3- and/or 4-substituted pyrrolidine-3-carboxylic 
acid derivatives with or without substitutions at the 5-position 
have also been reported;2c,5 however, the methods used for the 
synthesis of these compounds cannot be used for the synthesis 
of relatively simple 5-substituted pyrrolidine-3-carboxylic acid 
derivatives. The 3-carboxylic acid group on the pyrrolidine ring 
has also been introduced by late-stage transformations from 
olefin, furan, and isooxazole precursor groups at the 3-position 
on the pyrrolidine ring;6 but these methods are not atom-
economical. Similarly, β2-amino acid derivatives are difficult to 
obtain.3 Here we report the development of concise, atom-
economical methods for the synthesis of highly 
enantiomerically enriched 5-alkyl-substituted pyrrolidine-3-
carboxylic acid derivatives and β2-amino acid derivatives via 
Michael addition of nitroalkanes to 4-alkyl-substituted 4-oxo-2-
enoates (Scheme 1). To synthesize simple 5-substituted 
pyrrolidine-3-carboxylic acid derivatives, such as 5-methyl-
substituted derivatives, we developed enantioselective Michael 

addition reactions of 4-oxo-2-enoates bearing simple 4-alkyl 
substitutions. 
Scheme	   1.	   Synthesis	   of	   5-‐substituted	   pyrrolidine-‐3-‐carboxylic	   acid	  
derivatives	  and	  β2-‐amino	  acid	  derivatives.	  

	  

	   In previously reported enantioselective Michael addition 
reactions of nitroalkanes to acyclic enones, the enones were 
mostly non-enolizable with one or two aryl-substitutions.7 
Although all alkyl-substituted enones have been used as 
reactants,7f,g,k the use of 4-oxopent-2-enoates and their 
derivatives as Michael acceptors is rare.7d,m In addition, for the 
reported reactions of 4-alkyl-substituted 4-oxo-2-enoates with 
nitroalkanes, only substituted nitroalkanes (such as 2-
nitropropane) have been used;7d,m this is probably to avoid 
potential polymerization and formation of byproducts via 
Henry reactions8 of the products. In our design (Scheme 1), 
carboxylic acid ester-substituted enones 1, such as 4-oxopent-2-
enoates (R1 = methyl) and 4-oxohex-2-enoates (R1 = ethyl), 
were used. We reasoned that it would be possible to identify 
catalyst systems and conditions that would accelerate 
enantioselective Michael addition reactions of simple 
nitromethane to the enones. These reactions would be used for 
concise formation of 5-alkyl-substituted pyrrolidine-3-
carboxylic acids and functionalized β2-amino acids. With the 
use of substituted nitromethanes, β2,3-amino acids and 
pyrrolidine-3-carboxylic acids bearing substitutions at 2- and 5-
positions would also be accessed. 
 First, catalysts and conditions for the Michael reaction step 
were screened in the reaction of enone 1a with nitromethane to 
afford 2a. We tested amine derivatives as the catalyst to 
accelerate the reaction through an iminium activation 

R1

O

COOR2 R1

O

COOR2

NO2
catalyst

*

CH3NO2
+

R1

O

COOR2

NH2

*

reduction

N
H

R1

COOH*
*

R1 COOH

NH2

*

X Y

5-substituted-pyrrolidine-
3-carboxylic acidsβ2-amino acids

1



COMMUNICATION	   Journal	  Name	  

2 	  |	  J.	  Name.,	  2012,	  00,	  1-‐3	   This	  journal	  is	  ©	  The	  Royal	  Society	  of	  Chemistry	  20xx	  

Please	  do	  not	  adjust	  margins	  

Please	  do	  not	  adjust	  margins	  

mechanism. Selected results are shown in Table 1. Of catalysts 
and conditions tested, the best results were obtained with the 
use of catalyst F or G in CH2Cl2 either with or without acetic 
acid additive. 
Table	   1.	   Catalyst	   and	   condition	   screening	   in	   the	   Michael	  
reactiona	  

	  

entry	   catalyst	   additive	   solvent	   yield	  (%)	   ee	  (%)	  
1	   A	   -‐	   toluene	   0	   -‐	  
2	   B	   -‐	   toluene	   0	   -‐	  
3	   C	   -‐	   toluene	   7	   nd	  
4	   D	   -‐	   toluene	   14	   21	  
5	   E	   -‐	   toluene	   10	   -‐20	  
6	   F	   -‐	   toluene	   51	   82	  
7	   F	   -‐	   CH2Cl2	   70	   85	  
8b	   F	   -‐	   CH2Cl2	   63	   91	  
9b	   F	   CH3COOH

c	   CH2Cl2	   50	   89	  
10b,d	   F	   CH3COOH

c	   CH2Cl2	   76	   94	  
11b,e	   F	   CH3COOH

c	   CH2Cl2	   40	   96	  
12b	   G	   -‐	   CH2Cl2	   61	   93	  
13b,d	   G	   CH3COOH

c	   CH2Cl2	   70	   94	  
a	  Conditions:	  Enone	  (0.2	  mmol),	  nitromethane	  (1.0	  mmol),	  and	  catalyst	  (0.04	  mmol)	  in	  
solvent	   (0.5	  mL)	   at	   rt	   (24	   °C)	   for	   48	  h.	   b	   Solvent	   (0.2	  mL).	   c	   CH3COOH	   (0.04	  mmol).	   d	  
10	  °C	  for	  5	  days.	  e	  0	  °C	  for	  5	  days.	  

 Next, the scope of the reaction catalyzed by catalyst F was 
analyzed (Table 2 and Scheme 2). Various products 2a-2m 
were obtained. Although we designed the reactions to work 
with simple nitromethame, reactions with various nitroalkanes 
also afforded the Michael products. In addition to the 4-
oxopent-2-enoates, 4-oxohex-2-enoates were effective 
substrates resulting in formation of 2i and 2j. The ester groups 
of the substrates worked in the reaction system included ethyl, 
isopropyl, benzyl, and tert-butyl esters (Table 2).9 
 When the (Z)-isomer of enone 1a was used, product 2 was 
obtained with the same degrees of reactivity and 
enantioselectivity as in the reaction of the corresponding (E)-
isomer substrate 1a (Scheme 2). During the reaction, the (Z)- 
enone was isomerixed to (E)-enone 1a. The resulting (E)-enone 
may have reacted to give the product. Products 2l and 2m were 
also obtained, but as racemic forms (<5% ee).	  
	   Michael products 2 were transformed to pyrrolidine 
derivatives (Schemes 3 and 4). When 2g was treated with Pd/C 
under hydrogen, (3R,5R)-5-methylpyrrolidine-3-carboxylic acid 
(3)2a was directly obtained in 90% yield with 97% ee (Scheme 
3). The absolute configuration of 2g obtained by the Michael 

reaction was deduced from 3. A plausible transition state of the 
Michael addition reaction to afford 2g is also shown in Scheme 
3. This route required only two steps to provide 3 from 
commonly accessible starting materials. Note that 3 was 
previously synthesized form 4-hydroxy-proline via more than 
10 steps.2a From 2h and 2a, pyrrolidine-3-carboxylic acid 
derivatives were also obtained (Scheme 4).  
Table	  2.	  Scope	  of	  the	  Michael	  reaction	  to	  afford	  2.	  

	  
a	  Conditions:	  Enone	  (0.2	  mmol),	  nitroalkane	  (1.0	  mmol),	  and	  catalyst	  F	   (0.04	  mmol)	   in	  
CH2Cl2	   (0.2	  mL)	  at	  24	  °C	   for	  48	  h.	   b	  CH3COOH	  (0.04	  mmol).	   c	   Imidazole	   (0.04	  mmol).	   d	  
Enone	  6.4	  mmol-‐scale	  reaction;	  ee	  was	  determined	  after	  transformation	  to	  3.	  

Scheme	  2.	  Expanded	  scope	  of	  the	  Michael	  reaction	  to	  afford	  2.	  

	  

 Acyclic β2-amino acid derivatives were also obtained from 
the Michael products (Scheme 5). Acetal protection of the 
ketone carbonyl group of 2a afforded 6. Using the reported 
reduction7h of the nitro group of 6, β2-amino acid derivative 7 
can be obtained. Tosylhydrazone derivative 8 was also 
synthesized. This compound is a precursor of amino-
functionalized β2-amino acid derivatives.  
	   Further, the Michal products were transformed to lactam 
derivatives 9 (Scheme 6a). From the Michal product of the 
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reaction of a cyclic nitroalkane, spiropyrrolidine-3-carboxylic 
acid derivative 10 was obtained (Scheme 6b). 
 
Scheme	   3.	   Synthesis	   of	   (3R,5R)-‐5-‐methylpyrrolidine-‐3-‐carboxylic	  
acid	  via	  the	  Michael	  reaction	  to	  afford	  2g.	  

	  

Scheme	   4.	   Transformation	  of	  Michael	   products	  2	   to	  pyrrolidine-‐3-‐
carboxylic	  acid	  derivatives.	  

	  

Scheme	  5.	  Transformation	  of	  2	  to	  acyclic	  β2-‐amino	  acid	  derivatives.	  

	  

Scheme	   6.	   Transformation	   of	   2	   to	   lactam	   and	   spirooyrrolidine	  
derivatives.	  

	  

	   In conclusion, we have developed organocatalytic 
enatioselective Michael reactions of 4-alkyl-substituted 4-oxo-
2-enoates with nitroalkanes that are useful for the synthesis of 
pyrrolidine-3-carboxylic acid derivatives and β2-amino acid 
derivatives. Using the Michael reaction method, highly 
enantiomerically enriched 5-methylpyrrolidine-3-carboxylic 
acid was synthesized in two steps from easily accessible 
starting materials.  
 We thank Dr. Michael Chandro Roy, Research Support 
Division, Okinawa Institute of Science and Technology 
Graduate University for mass analyses. This study was 
supported by the Okinawa Institute of Science and Technology 
Graduate University and by the MEXT/JSPS (Japan) Grant-in-
Aid for Scientific Research on Innovative Areas “Advanced 
Molecular Transformations by Organocatalysts” (No. 
26105757). 
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