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ARTICLE

Influence of energy gap between charge-transfer
and locally excited states on organic long
persistence luminescence
Zesen Lin1,2,3, Ryota Kabe 1,2,3*, Kai Wang 1,4 & Chihaya Adachi 1,3,5*

Organic long-persistent luminescence (LPL) is an organic luminescence system that slowly

releases stored exciton energy as light. Organic LPL materials have several advantages over

inorganic LPL materials in terms of functionality, flexibility, transparency, and solution-

processability. However, the molecular selection strategies for the organic LPL system still

remain unclear. Here we report that the energy gap between the lowest localized triplet

excited state and the lowest singlet charge-transfer excited state in the exciplex system

significantly controls the LPL performance. Changes in the LPL duration and spectra properties

are systematically investigated for three donor materials having a different energy gap. When

the energy level of the lowest localized triplet excited state is much lower than that of the

charge-transfer excited state, the system exhibits a short LPL duration and clear two distinct

emission features originating from exciplex fluorescence and donor phosphorescence.
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Long-persistent luminescence (LPL), also known as the glow-
in-the-dark effect or afterglow, is a phenomenon by which a
material emits light for a very long time after the cutoff of

photoexcitation1,2. The first LPL emitters were based on inorganic
crystals and performance was greatly improved through doping1–3.
Several charge accumulation mechanisms, such as electron or hole
trapping mechanisms, have been proposed to explain inorganic
LPL1,3. Unlike phosphorescence, which can also be long-lived but is
a transition between different spin states (usually from a triplet
excited state to the singlet ground state), LPL systems do not follow
an exponential decay and usually follow a power-law decay because
of the presence of the intermediate states (Fig. 1).

Since the mid-1990s, the blending of inorganic LPL materials
with a polymer matrix has been the main route for achieving it in
commercial applications such as watch dials, fire safety signs, and
glow-in-the-dark toys1–3. However, inorganic LPL materials
exhibit poor compatibility and transparency in common poly-
mers. Moreover, the most efficient inorganic LPL materials nearly
all contain rare earth elements such as Sr, Eu, and Dy1,2,4.

Recently, we realized the LPL emission from purely organic-
based materials, including organic small molecules and poly-
mers5,6. These organic LPL (OLPL) materials can be easily fab-
ricated by mixing an electron donor and an electron acceptor
using various methods such as melt-casting, spin coating, or
thermal evaporation7. Moreover, the emission color of OLPL
systems can be controlled by the addition of dopants8. However, a
large performance gap still exists between the present OLPL
system and the commercial high-performance inorganic LPL
products (Supplementary Fig. 1).

The OLPL emission originates from the charge-transfer (CT)
transition of a photo-generated exciplex formed between a donor
and an acceptor. Some exciplexes can dissociate to form partially
charge-separated (CS) states with very long times. The slow
recombination of these separated charge carriers leads to con-
tinuous emission for over 1 h at room temperature. The LPL
process is governed by the recombination of dissociated radical
cations and anions with a power-law emission decay5,9,10, so that
the emission duration of OLPL materials is significantly longer
than that of conventional room-temperature phosphorescence,
which is ideally a first-order reaction with an exponential emis-
sion decay1,2,11,12. The power-law kinetic results (power-law
kinetic, I(t) ~ t−m, m= 0.1–2) from charge recombination can be
explained by several physical models discussed in previous

literatures about LPL from organic molecules (N,N,N′,N′-tetra-
methylbenzidine (TMB)/poly(alkyl methacrylate)s)13 and ther-
moluminescence of the inorganic LiF14, and the organic molecule
polyethylene terephthalate15. These models can be separated into
the diffusion model9,10,16,17 and the electron tunneling model18

of geminate ion recombination. In the diffusion model, we con-
sider the distribution of electrons (radical anions) after the charge
separation process. The electron tunneling model is mainly used
to explain the isothermal recombination luminescence at low
temperatures for irradiated organic compounds.

Although a molecule’s chemical structure greatly influences its
optical and mechanical properties such as absorption and emis-
sion spectra, flexibility, and biocompatibility, the strategy for the
design and selection of molecules for the OLPL system still
remains unclear. We have noted in a previous report that the LPL
process, which proceeds through charge dissociation and sub-
sequent recombination, might be affected by the excited-state
energy levels of the donor and acceptor, and the exciplex formed
between them6. However, more detailed relationships are still
needed to unlock ways to improve the performance of OLPL
materials.

Herein, we demonstrate that the energy gap between the lowest
singlet excited state of the exciplex (1CT) and the lowest triplet
excited state of the donor (3LED) strongly affects OLPL perfor-
mance. Changes in the OLPL properties and the emission
mechanism are systematically investigated for three donor
materials having similar molecular structures but different energy
levels. Optimization of excited-state energy levels based on the
uncovered relationships between energy levels and performance
will aid the development of efficient OLPL systems aiming for
future applications.

Results
OLPL materials. The OLPL systems were fabricated by the melt-
casting of a mixture containing 1% of an electron donor and 99%
of an electron acceptor7. The electron donors, TMB, N,N’-
dimethyl-N,N’-ditolylbenzidine (DMDTB), and N,N,N′,N′-tetra-
tolylbenzidine (TTB), and the electron acceptor, 2,8-bis(diphe-
nylphosphoryl)dibenzo[b,d]thiophene (PPT), are shown in Fig. 2.
The highest occupied molecular orbital (HOMO) levels of the
donors were determined from the first redox peaks of cyclic
voltammograms (Supplementary Fig. 2) and the HOMO levels of
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Fig. 1 Differences between LPL and phosphorescence. a Schematic diagram of fluorescence, phosphorescence, and LPL. Phosphorescence is a transition
from the triplet excited state (T1) to the singlet ground state (S0). LPL is an emission mechanism in which the energy passes through an intermediate state
such as a trapped state. There is no restriction regarding the spin state. Although LPL is long-lived because of charge separation and subsequent slow
recombination (second-order kinetics) of initially generated excitons, phosphorescence is long-lived because of the low probability of the transition (first-
order kinetics) occurring in the initially generated excitons. b The ideal emission decay profiles of phosphorescence and LPL on logarithmic plots.
Phosphorescence follows an exponential decay and LPL a power-law decay.
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DMDTB (−4.9 eV) and TTB (−5.0 eV) were found to be slightly
deeper than that of TMB (−4.8 eV) because of the π-extension
provided by the substituent benzene rings.

Photoluminescence and LPL performances. The LPL perfor-
mance of these donor/acceptor systems greatly depends on the
donor. Figure 2 shows the steady-state photoluminescence and
time-resolved (1–2 s, 4–5 s, 10–30 s, and 100–300 s after stopping
excitation) emission spectra of these LPL systems. TMB/PPT and

DMDTB/PPT systems showed a slight change of spectral width
with the passage of time. On the other hand, the TTB/PPT system
exhibits apparent spectral transformation, i.e., two emission
peaks, within 10 s after excitation cutoff, indicating the presence
of a second emission process. The emission decay profiles of all of
the systems are inverse-power functions of time t−m (m=
0.9–1.3) after 10 s (Fig. 2c and Supplementary Table 1). This non-
exponential decay behavior indicates that the LPL emission ori-
ginates from intermediate CS states19. The presence of CS states
was proved by using transient absorption measurements in our
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Fig. 2 Photoluminescence and LPL characteristics of the OLPL systems. a Chemical structures and HOMO or LUMO energy levels of the three electron
donors (TMB, DMDTB, and TTB) and the electron acceptor (PPT). b, c Semi-logarithmic plots (b) and logarithmic plots (c) of the emission decay profiles
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previous publication5 and time-resolved electron spin resonance
(ESR) measurements. The ESR signal attributed to the organic
radicals clearly increases after photoexcitation and gradually
decreases by time (Supplementary Fig. 3).

To understand the detailed emission mechanisms, we obtained
time-resolved emission spectra from the OLPL systems on
nanosecond through millisecond timescales by using a streak
camera (Fig. 3 and Supplementary Fig. 4–9). Also, the
fluorescence and phosphorescence spectra of the donors were
obtained from 1wt% donor-doped films of the cyclic olefin
copolymer ZEONOR, which acts as a nonpolar solid matrix that
does not form a CT complex with the donor dopants20. The
optical properties of the donors doped in ZEONOR films are
almost identical to those in toluene solutions, indicating that
there are no aggregation or polarization effects (Supplementary
Fig. 10). Moreover, as the solid-state matrix can prevent the
nonradiative deactivation of the dopants, the room-temperature
phosphorescence of the donors can be obtained. The phosphor-
escence decays of the donors (Supplementary Fig. 10) are
exponential with lifetimes of 1.43 s (TMB), 0.79 s (DMDTB),
and 0.72 s (TTB). The fluorescence spectra were obtained in air,
which quenches the photo-generated triplet excitons because of
the presence of oxygen. Optical properties and the energy levels
calculated from the onsets of the emission spectra are
summarized in Table 1.

The time-resolved emission spectra of TMB/PPT system
indicate the presence of weak fluorescence from TMB for at least
3 ns after excitation cutoff (Fig. 3a and Supplementary Fig. 5). This
fluorescence originates from the TMB molecules, which do not
form CT with PPT. After the initial fluorescence of TMB, an
exciplex emission that slightly shifts with time was obtained. The
temperature dependencies of the time-resolved emission spectra
and the emission decay profiles on a microsecond timescale clearly
indicate the presence of thermally activated delayed fluorescence
(TADF), which is often obtained from exciplex systems
(Supplementary Fig. 7)21,22. The spectral shift of the exciplex
emission can be explained by the large dipole moment of PPT. As
the CT excited states have large dipole moments (Supplementary
Table 2), reorganization of the PPT matrix in the excited-state—
so-called solid-state solvation—induces the spectral shift during
the TADF process23–25.

Emission mechanism. The proposed emission mechanism and
energy diagrams obtained from the onsets of the emission spectra
are shown in Fig. 4. As the lowest triplet excited-state emission of
the exciplex (3CT) could not be obtained directly, we assume that
3CT is almost identical to the lowest singlet excited-state of the
exciplex (1CT), because excellent separation of the HOMO and
the LUMO orbitals on the donor and acceptor, respectively, of the
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Fig. 3 Study-state and time-resolved emission spectra of the OLPL systems. a Fluorescence and phosphorescence spectra (top), steady-state
photoluminescence (PL), and LPL spectra (middle), and time-resolved emission spectra (bottom) of TMB/PPT. b DMDTB/PPT. c TTB/PPT. Optical
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Table 1 Photophysical properties of the donors, acceptors, and OLPL systems.

Sample HOMO
[eV]a

LUMO
[eV]a

ΦPL τflu. [NS] τphos [s] 1LED or 1LEA
[eV]b

3LED or
3LEA [eV]b

Sample ΦPL
1CT
[eV]c

ΔE(1CT−
3LED) [eV]

TMB −4.8 52%d 9.92d 1.43d 3.56d 2.63d TMB/PPT 24% 2.79 0.16
DMDTB −4.9 50%d 1.76d 0.79d 3.43d 2.62d DMDTB/PPT 27% 2.87 0.25
TTB −5.0 47%d 1.30d 0.72d 3.25d 2.50d TTB/PPT 28% 3.04 0.54
PPT −2.2 1%e 1.15e 1.01f 3.76e 2.91f

aCalculated from CV or DPV peaks
bCalculated from the onset of the emission spectra
cCalculated from the onset of the LPL spectra
dIn ZEONOR film at 300 K
eIn the neat film at 300 K
fIn the neat film at 77 K
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exciplex induces a small energy gap between 1CT and
3CT21,22,26,27. Recent studies of TADF molecules indicate that the
locally excited triplet state of donor or acceptor units, which are
analogous to the triplet states located on the donor or acceptor
molecule in an exciplex, contribute the reverse intersystem
crossing (RISC) process; thus, this is one important factor we
considered when investigating the emission mechanism28–31.

OLPL from TMB/PPT system. In the case of TMB, the lowest
triplet excited-state of the donor (3LED) is slightly lower than
the lowest singlet CT excited-state of the exciplex (1CT). This
relatively small energy gap between 3LED and 1CT (ΔE(1CT−
3LED)= 0.16 eV) enhances the TADF activity through the pro-
cesses of ISC and RISC. Although the emission decay of an ideal
TADF material follows a bi-exponential decay consisting of a fast
fluorescence component and a slow TADF component, the
emission decay of TMB/PPT is mostly dominated by the power-
law decay originating from the charge recombination process
and, therefore, does not exhibit bi-exponential decay. The emis-
sion decay profiles and the corresponding time-resolved spectra
indicate that the TMB/PPT system exhibits fluorescence from
TMB, prompt fluorescence from exciplexes, TADF from exci-
plexes, and finally LPL emission from exciplexes via charge
separation and recombination processes, successively.

OLPL from TTB/PPT system. The steady-state photoluminescence
spectrum of the TTB/PPT system exhibits clear two distinct
emission features with the peaks at 440 nm and 530 nm originating
from exciplex fluorescence and donor phosphorescence, respec-
tively (Fig. 2f). Although the emission peak at 440 nm is close to the
peaks of PPT phosphorescence and TTB fluorescence, this peak can
be attributed to exciplex fluorescence for two reasons. First, PPT
phosphorescence is quenched by oxygen, but the TTB/PPT film in
air still exhibits a similar peak at 435 nm. Second, the emission

decay at 440 nm of TTB/PPT is much longer than that of TTB
fluorescence. The sharpness of the exciplex emission can be ascri-
bed to the self-absorption by the radical cation species of TTB
(Supplementary Fig. 11). The contribution of delayed fluorescence
by triplet–triplet annihilation is almost negligible, as the donor
concentration is only 1% and the phosphorescence timescale is
much shorter than that of LPL. The TTB concentration dependence
of the emission spectra and emission decay profiles (Supplementary
Fig. 12) are also consistent with exciplex emission. The LPL dura-
tion becomes shorter at higher concentrations of the donor, because
the accumulated changes can more easily recombine with donor
molecules. For higher donor concentrations, the exciplex emission
was slightly redshifted and the room-temperature phosphorescence
from donors became weaker because of aggregation of donor
molecules.

In the case of the TTB/PPT system, the TADF process is almost
completely quenched, because the 3LED of TTB is much lower
than the 1CT. This large energy gap (ΔE(1CT− 3LED)= 0.54 eV)
suppresses the RISC process, so that photo-generated excitons are
becomes trapped on 3LED, leading to room-temperature phos-
phorescence from TTB. As the energy gap between the 1CT and
the lowest triplet excited-state of the acceptor (3LEA) is small
enough, these energy levels should contribute to the TADF
process. However, the generated 3LEA excitons can easily decay to
the lower 3LED32,33. As the TADF process is suppressed at low
temperatures, the emission spectra at 10 K contain stronger
phosphorescence components from TTB than the spectrum at
room temperature (Supplementary Fig. 13). Further, after the
decay of phosphorescence from the TTB triplet excited states, the
emission occurs from the excitons generated by the CS state. As
charge recombination generates both singlet (1CT) and triplet
(3CT) exciplexes, the LPL emission consists of both exciplex
fluorescence from 1CT and donor phosphorescence from 3LED,
which is populated by the transfer of excitons from 3CT to 3LED.
Because of the dual emission from 1CT and 3LED, TTB/PPT
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system exhibits white emission. The CIE coordinates (CIEx, CIEy)
of the steady-state photoluminescence and LPL spectra are (0.27,
0.33) and (0.31, 0.37), respectively (Supplementary Fig. 14 and
Supplementary Movie 1).

OLPL from DMDTB/PPT system. The energy gap ΔE(1CT−
3LED)= 0.25 eV of the DMDTB/PPT system is between those of
TMB/PPT and TTB/PPT systems. Therefore, DMDTB/PPT sys-
tem also exhibits dual emission from both exciplex fluorescence
(1CT) and DMDTB phosphorescence (3LED). The exciplex
emission of DMDTB/PPT shows a large spectral shift during the
TADF process. This large emission shift would be derived from
the excited-state conformational change between the structural
conformers of DMDTB (Supplementary Fig. 15)24. Because of
this large spectral shift, the exciplex fluorescence and DMDTB
phosphorescence have a large spectral overlap. The lack of
spectral shift and TADF emission in the LPL emission spectrum
at 10 K confirms the contribution of TADF to the emission of the
DMDTB/PPT system at room temperature.

Discussion
These results clearly indicate the importance of the energy level of
3LED for obtaining efficient LPL emission. As 3LE excitons are
less likely to undergo the charge-transfer step needed for creating
separated charges that contribute to LPL, the higher exciton
population on 3LED induced by a large energy gap of ΔE(1CT−
3LED) will reduce the number of excitons that can convert into CS
states. Thus, efficient LPL emission requires a small energy gap to
ensure a higher number of 1CT excitons that can contribute to
the accumulation of separated charges.

Notably, the presented photoluminescence quantum yields
(ΦPL) do not completely reflect the LPL components (Table 1). The
quantum efficiency of LPL emission is difficult to define, because
the charge accumulation and release processes are slow and
complicated in contrast to those of long-lived phosphorescence.
Furthermore, the LPL emission depends on the excitation time as
well as the excitation power, whereas the phosphorescence com-
ponent is constant (Supplementary Fig. 16 and Supplementary
Fig. 17). As the LPL system continuously provides the new excited
states after turning off the photoexcitation, we cannot calculate the
ΦPL from the steady-state photoluminescence spectra (Supple-
mentary Fig. 18). This is why ΦPL is not discussed even in inor-
ganic LPL materials1–3.

In conclusion, we demonstrated that the 3LED influences LPL
emission by changing the energy gap of ΔE(1CT− 3LED). When
the energy level of 3LED is significantly lower than that of the
1CT, the OLPL efficiency was reduced. As a large energy gap
induces a higher 3LED population through ISC and energy
transfer from 3CT to 3LED, the emission from both 1CT and 3LED
contributed to LPL. This dual emission from both 1CT and 3LED
produced white light without the use of additional dopants.
Moreover, we found that absorption by radical cation species
generated by the charge separation process also affects the LPL
emission spectra. Future efficient OLPL systems using both small
molecules and polymers will be developed based on these
considerations.

Methods
Materials. TMB and TTB were purchased from TCI Chemicals (Tokyo, Japan).
DMDTB was synthesized according to Supplementary Methods. PPT was pre-
pared as described in the literature. All materials were purified by recrystalli-
zation and sublimation, and were stored in amber bottles in a glovebox.
ZEONOR 1060R was obtained from ZEON Japan (Tokyo, Japan). Other
materials were used as received. Inorganic LPL product was obtained from LTI
Corporation (Kyoto, Japan).

Film fabrication. Thick films (0.4 mm) for the optical measurement were fabri-
cated by a melt-casting method7. Mixed materials were heated up the melting point
of the acceptor (250 °C) in a nitrogen-filled glovebox. After melting, the substrate
was cooled rapidly to room temperature. Thin films for the UV-visible absorption
measurements were fabricated by sandwiching the heat-melted materials between
two quartz substrates. Film thickness were 18 ± 4 μm (PPT), 25 ± 3 μm (TMB/
PPT), 7 ± 4 μm (DMDTB/PPT), and 16 ± 8 μm (TTB/PPT). The ZEONOR doped
films were fabricated by solution processing6. Materials were dissolved in xylene by
ultrasonication and drop-cast on the substrate at 80 °C and then annealed for 1 h at
170 °C in a nitrogen-filled glovebox.

Characterization. 1H nuclear magneticresonance (NMR) (Supplementary Fig. 19)
and 13C NMR spectra (Supplementary Fig. 20) were recorded with a Bruker
AVANCE III 500MHz spectrometer. Molecular weight was measured in positive-ion
atmospheric-pressure chemical ionization mode on a Waters 3100 mass detector
(APCI-MS). Elemental analysis (C, H, and N) was carried out with a Yanaco MT-5
elemental analyzer. Film thicknesses were measured in five different positions on each
film using a micrometer screw gauge and averaged. The cyclic voltammetry (CV) and
differential pulse voltammetry (DPV) measurements were carried out using an
electrochemical analyzer (Model 608D+DPV, BAS). The measurements were per-
formed in dried and oxygen-free CH2Cl2 using 0.1M tetrabutylammonium hexa-
fluorophosphate (TBAPF6) as a supporting electrolyte. A platinum fiber was used as a
working electrode, glassy carbon as a counter electrode, and Ag/Ag+ as a reference
electrode. Redox potentials were referenced against ferrocene/ferrocenium (Fc/Fc+).
The CV curves were recorded at a scan rate of 100mV s−1 and the DPV curves were
obtained with a pulse width (ΔEpulse) of 0.2 s. The HOMO energy levels of the three
donors were calculated according to the equations of EHOMO or LUMO= –Eredox(vs. Fc/
Fc+) – 4.8 eV34 and Eredox= Epeak+ΔEpulse/2, where Eredox and Epeak are the formal
electrode potentials and the DPV peak potentials of the redox, respectively. The
LUMO energy level of PPT was calculated from the CV data in DMF8.

Optical measurements. The absorption spectra were recorded on a UV-vis-NIR
spectrophotometer (LAMBDA 950, Perkin Elmer). The absorption spectra of the
radical species were obtained under electrical oxidation in a solution containing 0.1M
TBAPF6. The photoluminescence spectra in air were recorded on a spectro-
fluorometer (FP-8600, JASCO). The phosphorescence spectra at 77 K were recorded
on a multi-channel spectrometer (PMA-12, Hamamatsu Photonics) excited using a
340 nm LED (M340L4, Thorlabs) with a bandpass filter (340 ± 5 nm). The absolute
photoluminescence quantum yields (ΦPL) were measured using a quantum yield
spectrometer (C9920-02, Hamamatsu Photonics). The streak images, transient pho-
toluminescence spectra, and decay profiles on various timescales were measured in
vacuum using a streak camera system (C4334, Hamamatsu Photonics) equipped with
a cryostat (GASESCRT-006-2000, Iwatani) and excitation was provided by a nitrogen
gas laser (KEN-X, USHO). LPL performance was obtained using a homemade
measurement setup with an excitation power of 230 μW and an excitation duration of
60 s8. Supplementary Movie 1 was recorded on a Sony α7sII digital camera with 1mol
% TTB/PPT film excited by 365 nm UV lamp for 5min at 300 K.

ESR measurements. The ESR spectra were recorded on a JEOL JES-FA200
spectrometer. The samples were photo-excited by using a 340 nm LED (M340L4,
Thorlabs).

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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