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How the information microscopically processed by individual neurons is integrated and used in organizing the
behavior of an animal is a central question in neuroscience. The coherence of neuronal dynamics over different
scales has been suggested as a clue to the mechanisms underlying this integration. Balanced strong excitation
and inhibition may amplify microscopic fluctuations to a macroscopic level, thus providing a mechanism for
generating coherent multiscale neuronal dynamics. Previous theories of brain dynamics, however, were restricted
to cases in which inhibition dominated excitation and suppressed fluctuations in the macroscopic population
activity. In the present study, we investigate the dynamics of neuronal networks at a critical point between
excitation-dominant and inhibition-dominant states. In these networks, the microscopic fluctuations in neuronal
activities are amplified by the strong excitation and inhibition to drive the macroscopic dynamics, while the
macroscopic dynamics determine the statistics of the microscopic fluctuations. Developing a novel type of mean-
field theory applicable to this class of interscale interactions, for which an analytical approach has previously
been unknown, we show that the amplification mechanism generates spontaneous, irregular macroscopic rhythms
similar to those observed in the brain. Through the same mechanism, microscopic inputs to a small number of
neurons effectively entrain the dynamics of the whole network. These network dynamics undergo a probabilistic
transition to a coherent state, as the magnitude of either the balanced excitation and inhibition or the external
inputs is increased. Our mean-field theory successfully predicts the behavior of this model. Furthermore, we
numerically demonstrate that the coherent dynamics can be used for state-dependent read-out of information
from the network. These results show a novel form of neuronal information processing that connects neuronal
dynamics on different scales, advancing our understanding of the circuit mechanisms of brain computing.

DOI: 10.1103/PhysRevResearch.2.013253

I. INTRODUCTION

The cerebral cortex and hippocampus, the areas believed
to be the origin of the versatile intelligent functionality of
the mammalian brain, exhibit characteristic activities on two
different scales. On the microscopic scale, neurons in these
areas display various temporal patterns of firing activities
in response to external stimuli or to being driven internally.
These activities are correlated with fine features of the infor-
mation the animal is processing [1–5]. On the macroscopic
scale, electroencephalograms (EEGs) and measurements of
local-field potentials (LFPs) have revealed a diverse range
of rhythmic activities. These vary in both frequency and
amplitude, but they are clearly correlated with the behavioral
states of the animal, such as its attention and arousal levels
[6–9]. Furthermore, in recent years, increasing numbers of ex-
perimental results have suggested that coherence of activities
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on these two scales—namely, the degree of temporal cross-
correlation among the activities—is finely controlled, reflect-
ing the mechanisms underlying the binding of sensory stimuli,
sensori-motor coordination, and learning in behavioral tasks
[10–18].

How patterns emerge in multiscale dynamics in highly
nonlinear and nonequilibrium regimes has been a subject of
active research in statistical physics. From this perspective,
understanding the multiscale dynamics in the brain and their
coherence can be considered as a challenge in statistical
physics. Physicists have thus far constructed various models
of the activities in the brain and have investigated those mod-
els both numerically and theoretically. In particular, a mean-
field theory (MFT) of randomly connected neuronal networks
(RNNs) has provided a solid theoretical foundation that allows
us to investigate neuronal dynamics using analytical methods
similar to those employed for spin-glass systems [19]. To
enhance its applicability, different versions of the theory have
been developed for different models, ranging from simple
networks of neurons described by one-dimensional firing-
rate variables to structured networks of neurons described
by binary spike variables or more realistic kinetic variables
of biological membranes [20–34]. These studies have the-
oretically shown that their RNNs have dynamical phases
with different characteristics, such as chaotic fluctuations in
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firing-rates, asynchronous irregular firing, and regular and
irregular synchronized firing [19,25,27,35]. Efficient compu-
tation that takes advantage of the dynamical properties of
RNNs has also been investigated recently, in both biological
and engineering contexts [36–44].

A primary constraint in modeling neuronal dynamics of
cortical areas is the fact that neurons in a local circuit
densely form synapses on one another, and that these synapses
obey “Dale’s law,” a principle that prohibits neurons from
forming both excitatory and inhibitory synapses. Despite the
knowledge about RNNs and MFTs accumulated over decades,
only recently have researchers successfully begun to develop
MFTs for networks under these two constraints. In RNNs
comprising N (�1) neurons with these two constraints, O(N )
excitatory and inhibitory neurons are connected with a fixed
O(1) probability. As is usually the case for physical systems
with random couplings, nontrivial dynamics are observed for
synaptic strengths with O(1/

√
N ) standard deviation. Then,

Dale’s law requires us to determine the means of the excitatory
and inhibitory synaptic strengths to be ±O(1/

√
N ), respec-

tively. As a result, neurons receive very strong excitatory and
inhibitory recurrent inputs from other neurons. By extending
a previous theory [24], recent work showed that as observed
experimentally [45–50], feedback inhibition balances strong
excitatory recurrent inputs to neurons and stably produces
an asynchronous and irregular firing state in such a model
[27]. Although this model did not have nontrivial popula-
tion dynamics, two very recent studies [51,52] investigated
spatially extended versions of such balanced RNNs in the
presence of external inputs, reporting multiscale dynamics in
which macroscopic spatiotemporal patterns and microscopic
irregular firing of individual neurons coexisted.

Although these studies have successfully demonstrated
the relationship between spatial structures and multiscale
dynamics of balanced neuronal networks, there remains a
fundamental issue that stems from a limitation inherent in
these models. In the previous models, a change in the pop-
ulation activity caused by a small number of constituent neu-
rons is quickly counter-balanced by the feedback-inhibition
mechanism, resulting in only vanishingly small responses in
the population dynamics [see further discussion in Sec.V C].
Presumably, this is the reason why the previous studies re-
quired a network-wide application of external inputs—that
is, an extrinsic origin—to induce population dynamics. The
vanishingly small responses of their models, however, contrast
with recent experimental results that a moderate stimulation
of a single excitatory neuron effectively evokes a population
response of nearby neurons in the local circuit, suggesting
an intrinsic origin of population dynamics [53,54]. This dis-
crepancy may imply a fundamental difference between the
nature of the dynamics of the previous models and those
of the neuronal circuits investigated experimentally. Theo-
retically, the weak effects of the stimulation of neurons in
the previous models originate from the fact that a set of
population statistics of neuronal activities follows equations
that are closed among themselves [52]. This implies that the
time evolution of those population statistics are independent
of the microscopic fluctuations in the activities of individual
neurons; namely, that there exists a separation of scales. From
a general point of view in statistical mechanics, finding such

a separation of scales is a common step in constructing an
MFT. The description of intrinsically generated population
dynamics, however, requires a theory without such a separa-
tion of scales. Although microscopic fluctuations are known
to evoke very large responses in systems in critical states, the
previous theories of critical phenomena are not of immediate
use for this purpose, because the average of critical fluctua-
tions over time and population are still vanishingly small in
those theories [55,56]. Thus, regardless of the observation of
critical responses in the brain both on the microscopic and
macroscopic scales [57], it remains theoretically unclear how
the critical responses of neurons are reflected in the population
dynamics.

In this study, we present a solution to this fundamen-
tal issue by constructing a novel type of MFT for densely
connected RNNs with Dale’s law, for which mean synaptic
weights are set to critical values between those for excitation-
dominant and inhibition-dominant states. In this theory, unlike
the previous theories of critical dynamics, we show that
fluctuations in individual neuronal activities are amplified
by the strong excitation and inhibition to provide stochastic
driving forces for the population dynamics. We also show that
external inputs to a O(

√
N ) number of neurons effectively

entrain the whole network, comprising N excitatory and N
inhibitory neurons, through the same amplification mecha-
nism. Then, we observe that the network dynamics undergo
a transition from irregular dynamics to coherent dynamics as
the magnitude of either the excitation and inhibition or the
external inputs is increased. The transition to a coherent state
is found to be strongly dependent on the configuration of the
random connectivity. These phenomena are predicted by our
MFT, which yields good quantitative agreement with direct
numerical results. Numerical results further suggest that such
coherent dynamics can be used for reading out information
from the network in a state-dependent manner. Although,
for the sake of mathematical clarity, our theory is derived
for a network of simplified neurons described by firing-rate
variables, we confirm numerically that similar multiscale dy-
namics arise in a network of leaky integrate-and-fire (LIF)
neurons.

II. MODEL

Our theory is formulated for a single pair of excitatory
and inhibitory neuronal populations (denoted by index k =
E and I , respectively), each of which consists of N neurons
[Fig. 1(a)]. The ith neuron of population k is described by
a single, real-valued dynamical variable h(k)

i that obeys the
following dynamical equation:

d

dt
h(k)

i (t ) = −h(k)
i (t ) +

∑
�=E ,I,1� j�N

Ji j
k�

φ
(
h(�)

j (t )
) + I (k)

i (t ),

(1)

Ji j
k�

= σ0J i j
k�√

N
+ gk�√

N
. (2)

In these equations, the function φ is the hyperbolic tangent
function, which describes the sigmoidal response of the neu-
rons. The quantities h(k)

i and φ(h(k)
i ) represent the internal
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FIG. 1. A schematic illustration of the model. (a) The model
network consists of a pair of excitatory and inhibitory populations
(denoted by E and I , respectively), each of which contains N
neurons. The neurons interact with one another through synaptic
connections with (almost) i.i.d. quenched random weights. The mean
strengths of the synaptic weights depend on the populations to
which the presynaptic and postsynaptic neurons belong. They are
parameterized as gk�/

√
N (k, � = E , I) as indicated in the panel.

The variance of the synaptic weights is σ 2
0 /N , with parameter σ0.

(b) External inputs are applied uniformly to only
√

N neurons in the
E population [Eq. (4)].

state and firing rate of the neuron. The variables Ji j
k�

and
I (k)
i (t ) denote the strengths of the recurrent synapses on,

and the external input to, the neuron. The synaptic strengths
are independently and identically distributed (i.i.d.) quenched
random variables, and their means and standard deviations
are parameterized as gk�/

√
N and σ0/

√
N , respectively. Note

that the means, but not the standard deviations, depend on
the populations to which the presynaptic and postsynaptic
neurons belong [Fig. 1(a)]. To describe this randomness, we
have used the i.i.d. quenched random variables J i j

k�
with zero

mean and unit variance in Eq. (2). Unless otherwise stated, we
consider the following case throughout this study:

gEE = gIE = −gEI = −gII = g0, g0 � 0. (3)

Equation (3) tunes the model to the critical point at which neu-
ronal fluctuations evoke large responses in the population dy-
namics. With suitable distributions for J i j

k�
(see Appendix A),

the model constrained by Eq. (3) describes a densely con-
nected network of excitatory and inhibitory neurons obeying
the Dale’s law. In the case with g0 = 0 and I (k)

i (t ) ≡ 0, this
model is equivalent to the classical model investigated by a
previous study [19]. For the case with I (k)

i (t ) �= 0, we apply
external inputs of the same strength, Ĩ (t ), to only

√
N neurons

in the excitatory population [Fig. 1(b)] as

I (k)
i (t ) =

{
Ĩ (t ), (k, i) ∈ S,

0, (k, i) /∈ S,
(4)

where we define S def= {(k, i)|k = E , 1 � i �
√

N}. Neurons
in cortical areas have been thought to receive such sparse
inputs [58,59]. Previous experiments showed that inputs to a
small number of cortical neurons can drive the whole local
circuit [53,54]. We model these neuronal responses.

In addition to the above model, we also study a model
obeying the same dynamical equation as Eq. (1) with the

following additional tuning of the synaptic weights:

Ji j
k�

= σ0J̃ i j
k�√

N
+ gk�√

N
, J̃ i j

k�
= J i j

k�
− 1

N

∑
1� j′�N

J i j′
k�

. (5)

Note that the sum of the random variations in the weights
of the excitatory and inhibitory synapses on each neuron is
finely tuned to zero; namely,

∑
1� j�N J̃ i j

k�
= 0. The weight

matrix Ji j
k�

is known to have a finite number of random outlier
eigenvalues for the untuned synaptic weights obeying Eq. (2),
even in the limit of infinitely large N , but not for the finely
tuned synaptic weights obeying Eq. (5) [60,61]. We observe
how this qualitative difference is reflected in the dynamics of
the model.

III. MEAN-FIELD THEORY

A. Model with finely tuned synaptic weights

In this section, we formulate an MFT for the models de-
scribed above. The detailed derivation is given in Appendix E.
The MFT is slightly simpler for the finely tuned model obey-
ing Eqs. (1), (3), and (5) with Ik,i(t ) ≡ 0 than for the untuned
model. Therefore we first consider the dynamics of the finely
tuned model.

Following a similar analysis to the previous one [32],
we divide the dynamics of the model into macroscopic and
microscopic parts. Let mk (t ) be certain averages of neuronal
variables h(k)

i (t ) for k = E , I . The microscopic deviations
from these averages are defined as

δh(k)
i (t )

def= h(k)
i (t ) − mk (t ). (6)

Similarly, we decompose the outputs of the neurons into
macroscopic and microscopic parts as

δφ
(k)
i (t )

def= φ
(
h(k)

i (t )
) − φk (t ). (7)

The precise definitions of mk and φk will be stated below.
Here, we note that mk and φk coincide with the averages of
h(k)

i and φ(h(k)
i ), respectively, over the population k up to the

leading order in N .
With these decompositions, we can rearrange the model

equations into the following form in the large N limit:

d

dt
mk (t ) = −mk (t ) +

∑
�, j

gk�√
N

φ
(
h(�)

j (t )
)
, (8)

d

dt
δh(k)

i (t ) = −δh(k)
i (t ) + σ0

∑
�, j

J̃ i j
k�√
N

δφ
(�)
j (t ). (9)

The first of the above equations with a suitable initial condi-
tion defines mk .

The configuration of the random synaptic weights does not
change during time evolution. In the framework of MFT, how-
ever, we consider the distributions of the microscopic vari-
ables, δh(k)

i and δφ
(�)
j , over a large ensemble of networks with

different weight configurations. Therefore the time evolution
of these variables is stochastic. In the stochastic dynamics, the
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driving-force term in the right-hand side of Eq. (9),

η
(k)
i (t )

def= σ0

∑
�, j

J̃ i j
k�√
N

δφ
(�)
j (t ), (10)

has the following property: given the entire time evolution of
the mean activity mE and mI , the conditional probability dis-
tribution for (η(k)

i (t1), η(k)
i (t2), · · · ), for any finite set of time

points, t1, t2, . . ., is a zero-mean Gaussian that is i.i.d. with
respect to the index i. This is intuitively justified by the central
limit theorem applied to Eq. (10), under the assumption that
the random synaptic weights and fluctuations in the neuronal
outputs are almost independent (see Appendix E for further
justification). Furthermore, since the driving-force term in the
linear equation (9) has a conditionally i.i.d. Gaussian distri-
bution with zero mean, so also do fluctuations in {δh(k)

i }i,k .
Then, the following first- and second-order moments fully
characterize these Gaussian fluctuations:

Ck (t, s)
def= 〈

δφ
(k)
i (t )δφ(k)

i (s)
〉
, φk (t )

def= 〈
φ
(
h(k)

i (t )
)〉
,

Dk (t, s)
def= 〈

δh(k)
i (t )δh(k)

i (s)
〉
, mk (t ) = 〈

h(k)
i (t )

〉
, (11)

where the brackets denote averages over the Gaussian fluctu-
ations. Note that φk is defined in the above. The correlation
function for η

(k)
i is obtained from C�(t, s):〈
η

(k)
i (t )η(k)

i (s)
〉 = σ 2

0

∑
�=E ,I

C�(t, s). (12)

Below, we omit the population index k because the excitatory
and inhibitory populations have the same statistical properties
in our model setting. Thus we have

φ
def= φE = φI , m

def= mE = mI ,

C
def= CE = CI , D

def= DE = DI . (13)

The statistics of the fluctuations defined above must satisfy
certain consistency conditions. First, m and φ have been
defined from dynamical variables that evolve under the influ-
ences of m and φ themselves [Eqs. (8), (9), and (11)]. There-
fore their values need to be determined in a self-consistent
manner. Second, the two Gaussian fluctuations characterized
by (m, D) and (φ, C) are related to each other because they
originate from the same dynamical variables. Consistency
among these statistics gives rise to self-consistent equations
that determine the time evolution of φ, C, and D for given
values of m and boundary conditions. Firstly, φ and C are
represented as nonlinear functions of m and D [see Eqs. (F5)
and (F6) in Appendix F for the details]:

φ(t ) = G1(m(t ), D(t, t )),

C(t, s) = G2(m(t ), m(s), D(t, t ), D(s, s), D(t, s)). (14)

Secondly, the relation between η
(k)
i and δh(k)

i results in the
following dynamical equation:

(1 + ∂t )(1 + ∂s)D(t, s) = 2σ 2
0 C(t, s). (15)

An important difference between our MFT and conven-
tional MFTs lies in the macroscopic driving force in Eq. (8).
The right-hand side of this equation involves the summation of
fluctuations in the outputs of individual neurons which can be

considered as independent random quantities with correlation
C(t, s). Then, the sum of these quantities in Eq. (8),

η(t )
def= 1√

2g0

∑
�, j

gk�√
N

φ
(
h(�)

j (t )
)

= 1√
2N

{∑
i

δφ
(E )
i (t ) − δφ

(I )
i (t )

}
, (16)

is also a random quantity (which is equal for k = E , I). From
the first line to the second line, we have used φE (t ) = φI (t ).
This stochasticity contrasts starkly with the deterministic
macroscopic dynamics in conventional MFTs. The central
limit theorem implies that η obeys the following probability
distribution:

p(η) ∝ exp
(− 1

2ηT C−1η − F
)
, (17)

where the normalization term F is given by

F = ln det

[(
1 − ∂C1/2

∂η
C−1/2η

)−1

C1/2

]
. (18)

Here, we have regarded η and C as a vector and a matrix,
respectively, that consist of their values for infinitesimally
discretized time steps. With these stochastic dynamics for η,
the macroscopic dynamics in Eq. (8) reads

d

dt
m(t ) = −m(t ) +

√
2g0η(t ). (19)

We note that, for a given history of η and m up to time t , the
conditional distribution of η(t + �t ) determined by Eq. (17)
with small �t is approximately Gaussian. In this case, in the
conditional distribution up to time t + �t ,

p(η(t + �t )|{η(s)}s�t ) ∝ exp
(− 1

2ηT C−1η − F
)
, (20)

the correlation matrix C and normalization term F are inde-
pendent of η(t + �t ) up to the leading order in �t . Therefore
the deviation of the conditional probability distribution from
a Gaussian distribution is negligibly small. This fact enables
us to solve the stochastic dynamics numerically for η, m, φ,
C, and D by iteratively updating their values with the Euler
method (see Appendix F for the details).

In sum, the microscopic fluctuations in the neuronal ac-
tivities obey a Gaussian distribution that depends on the mean
activity m [Eqs. (14) and (15)], and the probability of realizing
the mean activity m depends on the correlation matrix C of
the microscopic fluctuations [Eqs. (17) and (19)]. Due to this
strong link between the microscopic and macroscopic dynam-
ics, the entire dynamics are, in general, non-Gaussian, even
though the distribution of η resembles a Gaussian distribution
[Eq. (17)]. This means that—unlike in conventional MFTs—a
solution for the model cannot be completely determined by
the first- and second-order moments.

B. Balance equations

In Eq. (16), we removed the population-averaged part
by using φE (t ) = φI (t ). Before using this relation, the
macroscopic part of the mean-field equations reads, to leading
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order,

d

dt
mE (t ) ≈ −mE (t ) +

√
N (gEEφE (t ) + gEIφI (t )),

d

dt
mI (t ) ≈ −mI (t ) +

√
N (gIEφE (t ) + gIIφI (t )). (21)

In these equations, the driving-force terms on the right-hand
side are O(

√
N ) and hence may diverge. Thus the following

condition must hold for stable dynamics: except for O(1/
√

N )
residuals,

gEEφE (t ) + gEIφI (t ) ≈ 0,

gIEφE (t ) + gIIφI (t ) ≈ 0. (22)

Equations (22) are called “balance equations.” In previous
theories, the balance equations were often nondegenerate and
determined unique values for φE (t ) and φI (t ). This implies
that population-averaged activities exhibit only vanishingly
small fluctuations if the entire dynamics are stable. In contrast,
in our theory—for the values of gk� satisfying Eq. (3)—
Eqs. (22) are degenerate, and they are satisfied as long as
equality φE (t ) = φI (t ) holds. Furthermore, this equality is
always ensured to hold as a consequence of the fact that the
macroscopic equation, Eq. (8), has exactly the same driving-
force term for the excitatory and inhibitory populations, and
hence mE (t ) = mI (t ). As a result, the average of the neuronal
outputs φk (t ) is allowed to fluctuate strongly.

C. Model with untuned synaptic weights

Next, we describe how the above theory is modified for the
untuned model [Eqs. (1) and (2)]. In this case, the dynamical
equation is divided into microscopic and macroscopic parts in
a slightly different manner:

d

dt
mk (t ) = −mk (t ) +

∑
�, j

gk�√
N

φ
(
h(�)

j (t )
)
, (23)

d

dt
δh(k)

i (t ) = −δh(k)
i (t ) + σ0

∑
�, j

J i j
k�√
N

φ
(
h(�)

j (t )
)
. (24)

Note that, in Eq. (24), δφ
(�)
j (t ) in Eq. (9) is replaced by the

uncentered quantity φ(h(�)
j (t )). As a result, the microscopic

driving-force terms,

η̃
(k)
i (t )

def= σ0

∑
�, j

J i j
k�√
N

φ
(
h(�)

j (t )
)
, (25)

have the following correlation function:〈̃
η

(k)
i (t )̃η(k)

i (s)
〉 = 2σ 2

0 C̃(t, s),

C̃(t, s)
def= 〈

φ
(
h(k)

i (t )
)
φ
(
h(k)

i (s)
)〉

= C(t, s) + φ(t )φ(s). (26)

These equations imply that individual neurons receive addi-
tional synchronous inputs with random amplitudes, which can
be represented as

η̃
(k)
i = η

(k)
i (t ) +

√
2σ0ξ

(k)
i φ(t ), (27)

where {ξ (k)
i }i,k are i.i.d. quenched Gaussian variables with zero

mean and unit variance. Then, the modified self-consistent
equation,

(1 + ∂t )(1 + ∂s)D(t, s) = 2σ 2
0 C̃(t, s), (28)

together with Eqs. (14) and (26) determines the time evolution
of φ, C̃, and D for a given orbit m. On the other hand, the
macroscopic dynamics of m are described by Eqs. (17) and
(19).

D. Application of external inputs

In Sec. IV C, we apply external inputs of strength Ĩ (t ) to√
N neurons in the E population of the finely tuned model.

The stimulus-driven dynamics are analyzed by an MFT that
is slightly modified from the one introduced above. It is
described by

d

dt
m(t ) = −m(t ) +

√
2g0η(t ) + g0φ̃(t ),

d

dt
δh(k)

i (t ) = −δh(k)
i (t ) + η

(k)
i (t ) + I (k)

i (t ),

φ̃(t )
def= 〈

φ
(
h(k)

i (t )
)〉

(k,i)∈S − 〈
φ
(
h(k)

i (t )
)〉

(k,i)/∈S , (29)

where the microscopic and macroscopic stochastic driving-
force terms, η

(k)
i and η, are distributed according to the same

equations as those for the autonomous case, namely, Eqs. (12)
and (17), with the same self-consistent equations, Eqs. (14)
and (15). The difference, φ̃(t ), between the averages of the
stimulus-driven and -undriven neuronal variables over the
Gaussian fluctuations gives an additional driving force term
for the mean activity in Eq. (29).

IV. RESULTS

A. Dynamics of the finely tuned model

1. Fluctuations in the mean activity

We first examine the finely tuned model described by
Eqs. (1) and (5) without external inputs, for which the MFT
takes the simplest form (Sec. III A). For g0 = 0, the MFT of
this model is essentially equivalent to that studied previously
[19]. The previous theory showed that the present model with
g0 = 0 undergoes a transition from a trivial fixed point to a
chaotic state at σ0 = 1/

√
2, in which the mean activity, m, is

constantly zero and individual neuronal activities, h(k)
i , exhibit

Gaussian fluctuations around it.
We are particularly interested in cases with nonzero values

of g0. We study these cases both by numerically solving the
mean-field equations and by directly simulating the model
for a large value of N . In these numerical simulations, we
find only a trivial fixed-point solution for σ0 � 1/

√
2. In

contrast, for σ0 > 1/
√

2, we obtain nontrivial solutions. Since
the repertoire of solutions is qualitatively the same for differ-
ent values of σ0, we show typical activity patterns only for
σ0 = 1.2 in Figs. 2(a)–2(d). In our MFT, the excitatory and
inhibitory populations obey the same dynamical equations.
Therefore we plot only a single representative solution from
MFT for each value of g0. In fact, in the plots from the
direct simulations, the mean activities of the excitatory and
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simulations). Solutions for the E and I populations from direct simulations (indicated by “direct”) and solutions of the mean-field equations
(indicated by “MFT”) are depicted in red, blue, and gray, respectively. The numerically determined value of the largest Lyapunov exponent,
λLE, is shown above each panel.

inhibitory populations are almost equal, and the individual
neuronal activities in the two populations exhibit similar
temporal patterns. Comparing the plots from the MFT and
direct simulations, we observe similar amplitudes and tempo-
ral patterns for the mean activities and the microscopic fluc-
tuations around them. These results suggest that our theory
successfully predicts the behavior of the model. Below, we
further evaluate this point quantitatively.

As the value of g0 is increased from zero, the mean activity
of the model starts to fluctuate with nonzero amplitudes. For
relatively small values of g0, the temporal profiles of the
fluctuations, both in the mean and in the individual neuronal
activities, are similar to the Gaussian fluctuations in individual
neuronal activities at g0 = 0 [Figs. 2(a) and 2(b)]. This is
expected from the MFT, which shows that the driving force
for the mean activity is the summation of individual neuronal
fluctuations scaled by g0/

√
N [Eq. (8)]. With a further in-

crease in the value of g0, the model starts to show irregular,
intermittent dynamics, varying between positive and negative
values close to ±1, with patterns that are reminiscent of the
UP-DOWN states observed in the brain [6,15] [Figs. 2(c)
and 2(d)]. This bimodality in the mean activity indicates
the non-Gaussianity of the dynamics and contrasts with the
dynamics for small values of g0. Numerically determined
largest Lyapunov exponent [Fig. 2] indicates that the both
types of solutions described above are chaotic.

Increasing the value of g0 still further, we occasionally ob-
serve stable fixed-points and regularly oscillating solutions, as
well as irregular, chaotic solutions. Although these nonchaotic
solutions are observed for networks with a fairly large number
of neurons (Appendix C), further theoretical analyses suggest
that these solutions are due to finite-size effects and not stable
in the thermodynamic limit (see the discussion in Sec. IV B 3
and Appendix H).

To examine the extent to which the description provided by
our MFT is accurate, we calculate statistics of the dynamics
from numerical solutions of the mean-field equations and of

the original model equations. We calculate the autocorrelation
functions for the mean activity and for the individual neurons
as

μ(τ )
def= 〈m(t )m(t − τ )〉, (30)

D(τ )
def= 〈

δh(k)
i (t )δh(k)

i (t − τ )
〉
. (31)

Since we expect the dynamics to be non-Gaussian, we also
calculate the fourth-order statistics defined by

κ (τ )
def= 〈m(t )2m(t − τ )2〉 − 〈m(t )2〉2 − 2〈m(t )m(t − τ )〉2,

(32)

q(τ )
def= 〈

δh(k)
i (t )2δh(k)

i (t − τ )2
〉 − 〈

δh(k)
i (t )2

〉2
− 2

〈
δh(k)

i (t )δh(k)
i (t − τ )

〉2
. (33)

In these equations, bracketing indicates averaging over both
time and configurations of the random connectivity. In
Eqs. (31) and (33), we also take averages over population k
in direct simulations and averages over microscopic Gaus-
sian fluctuations in the corresponding MFT. The fourth-order
statistics defined above vanish if the dynamics are Gaussian.
For the direct simulations, we show only the statistics of the
E population, because those of the I population are essentially
the same.

The panels in Fig. 3 compare these calculated statistics,
and they show good agreement between the theory and di-
rect simulations. This indicates that our theory predicts the
behavior of the model quantitatively, at least statistically. In
this figure, we also observe large fourth-order statistics for
networks with large values of g0, which implies the highly
non-Gaussian nature of the dynamics.

For the autocorrelation functions defined above, one would
expect a perturbative expansion to provide a good analytical
approximation, as it does for many physical systems. We can
actually formulate such a method by expanding the dynamics
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FIG. 3. Statistics of the network dynamics with the following
values of the parameters: [(a) and (b)] (σ0, g0) = (1.2, 0.25) and
[(c) and (d)] (σ0, g0 ) = (1.2, 4). (a) and (c) show the values of the
autocorrelation functions and the fourth-order statistics of the mean
activities, μ(τ ) and κ (τ ). (b) and (d) show the values of those
statistics of the neuronal activities, D(τ ) and q(τ ). These values
are determined either from the direct simulations (labeled “direct”),
the simulations of the mean-field equations (labeled “MFT”), or the
zeroth-order perturbative approximation (labeled “0-th app.”), and
they are indicated by different types of lines. In the simulations, these
quantities are averaged over the time period 1000 � t � 2200 and
over 15 random configurations of directly simulated networks with
population size, N = 40 960 [(a) and (b)] and 20 480 [(c) and (d)];
or averaged over the same time period and 15 sequences of random
numbers used for the simulations of the mean-field equations.

around g0 = 0. However, it is numerically intractable to carry
out the calculation of even the first-order expansion (see
Appendix G). Thus we restrict ourselves to showing only
the zeroth-order term, μ(τ ) ≈ g2

0D0(τ )/σ 2
0 , of this pertur-

bative expansion [Figs. 3(a) and 3(c)]. Here, D0(τ ) is the
autocorrelation function of the microscopic variables δh(k)

i
for g0 = 0. This zeroth-order approximation gives vanishing
fourth-order statistics: κ (τ ) = q(τ ) = 0. For small values of
g0, this solution shows relatively good agreement with the
estimate obtained from direct simulations, while it does not
do so for large values of g0.

2. Waveforms of the mean activity and the signature
of time-reversal symmetry breaking

For larger values of g0, the analytical approach encounters
another difficulty in addition to the computational problems
mentioned above. Figures 2(c) and 2(d) show that the tra-
jectories of the mean activity are observed with frequencies
that are obviously asymmetric with respect to the time re-
versal of the trajectories. Note that the mean activity over-
shoots immediately after it makes an intermittent transition
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FIG. 4. Variances of neuronal activities in fixed-point and
chaotic solutions and their stability, depicted for different absolute
values of the constant mean activity |m|. Connected pairs of branches
of nontrivial fixed-point and chaotic solutions, as well as trivial
fixed-point solutions, are shown.

between positive and negative values, and that the temporal
order of the transition and the overshooting is never re-
versed. Analytical approaches—such as a perturbative expan-
sion around g0 = 0—however, yield only symmetric solutions
(see Appendix G). This inconsistency suggests the possibility
of symmetry breaking with respect to time reversal. If a
symmetry is broken, one cannot expect a symmetry-breaking
solution to be obtained from a series expansion around the
symmetric solution. In the following, we use a heuristic ap-
proach to seek clues to the occurrence and mechanism of such
symmetry breaking and to an understanding of the waveform
of the mean activities for large g0.

In our MFT, the correlation function of the microscopic
fluctuations is determined by Eqs. (14) and (15) for a given
trajectory of the mean activity, which in turn determines
the realization probability of the mean activity. Since this
dependence is complicated, we first focus on the case with
constant mean activities of different values, expecting the
results to provide some clue to the dynamics with time-
varying mean activities. Applying the previous theory [19,32]
to this analysis, we find multiple fixed-point solutions and
chaotic solutions. Figure 4 shows the variance of the neuronal
activities of these solutions for different constant values of
the mean activity. A branch of chaotic solutions (the black
solid line in Fig. 4) coincides with the solution examined in
a previous study [19] for m(t ) ≡ 0. As the absolute value of
the mean activity increases, the neuronal fluctuations in these
solutions decrease. Another branch of chaotic solutions with
smaller neuronal fluctuations (the black dotted line in Fig. 4)
emerges at the value satisfying 2σ 2

0 φ′(m) = 1, |m| ≈ 0.76.
The neuronal fluctuations in these solutions increase as the
mean activity increases, and this branch eventually connects
to that with larger neuronal fluctuations. From the numerical
simulations, we find that the branch of chaotic solutions with
larger fluctuations is stable, while that with smaller fluctua-
tions is unstable. Fixed-point solutions and their stability can
also be examined by applying the previous theory [32] (or the
method presented in Appendix H), and we find two connected
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branches of unstable fixed-point solutions as well as trivial
fixed-point solutions [Fig. 4]. The trivial fixed-point solution
is stable for |m| larger than the bifurcation point given by
2σ 2

0 φ′(|m|) = 1, while it is unstable below this point.
Figure 4 suggests the following explanation for the wave-

form of the mean activity and its time-reversal asymmetry
observed in Figs. 2(c) and 2(d). Let us assume that, for a
time-varying mean activity, the instantaneous behavior of the
neuronal fluctuations is the same as the above solution for
the corresponding value of the constant mean activity. When
the mean activity remains small for some time, the neuronal
fluctuations increase. Since the neuronal fluctuations serve
as a driving force for the mean activity, the mean activity is
stochastically pushed to larger values. For larger values of the
mean activity, the neuronal fluctuations decrease (along the
black solid line in Fig. 4), while still remaining chaotic. When
the mean activity reaches a value for which there are no stable
chaotic solutions, the neuronal fluctuations start to decay to
the trivial fixed point. Then, the mean activity loses its driving
force and decays to smaller values. In this descending part of
the mean activity, the network state passes through the region
with the unstable chaotic and fixed-point solutions (the lower
branches of the nontrivial solutions in Fig. 4). The profile of
the neuronal fluctuations in this descending part is therefore
different from that of the ascending part. Because of this
passage through the region with unstable fixed points, both
the neuronal fluctuations and the mean activity slow down,
as we observe in Figs. 2(c) and 2(d). We suggest that this
hysteresis in the multiscale dynamics is the mechanism for the
observed waveform of the mean activity and its time-reversal
asymmetry.

3. Ferromagnetic effects and critical fluctuations

Thus far, we have examined balanced networks with pa-
rameter values satisfying the condition in Eq. (3). In this
section, we briefly mention what happens if this condition
is not satisfied. As in a previous study [32], if the balance
equation is not degenerate, the mean activities of the neuronal
populations take a set of constant values uniquely determined
by the balance equations, or else diverge. The remaining cases
are described with two parameters α and β as(

gEE gEI

gIE gII

)
= g0

(
1 + α −1 + α

β(1 + α) β(−1 + α)

)
. (34)

By definition, the parameter α is interpreted as the magnitude
of ferromagnetic interaction, while β is interpreted as the
relative gain of the synaptic input to inhibitory neurons. The
case we have examined in the previous sections corresponds
to (α, β ) = (0, 1). We examine the fluctuations in the mean
activity by calculating their mean and variance averaged over
a long period of simulations and by observing how they
change as the value of α or β deviates from (α, β ) = (0, 1)
[Figs. 5(a) and 5(b)]. We find that the mean activity diverges
as α increases or β decreases, while the variance of the
fluctuations decays to zero as α decreases or β increases.
As shown in Figs. 5(a) and 5(b), the rate of this divergence
and decay is proportional to

√
N , which indicates that in the

N → ∞ limit, the macroscopic dynamics of the network are
divergent or trivial for α �= 0, β = 1 and α = 0, β �= 1.
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FIG. 5. Absolute values of the mean and variance of fluctuations
in the mean activity of the excitatory population, calculated by taking
long-time averages in numerical simulations with (σ0, g0 ) = (1.2, 4)
and different values of (a) α and (b) β, respectively. We performed
simulations with the two different system sizes indicated in the
panels. (c) The absolute value of the long-time average of the mean
activity of the excitatory population, calculated by taking long-time
averages in numerical simulations with σ0 = 1.2, different values
of g0, and the following values of α and β: (α, β ) = (±1/3, 0),
(0, 1/4), (0,0). Results for gEE = gIE = gEI = gII = 3g0/2 (indi-
cated as “ferromagnetic”) are also shown.

This behavior can be understood by first examining
O(1/

√
N ) values of g0 and then taking the g0 → ∞ limit.

As shown in a previous study [32], for gk� ∝ 1/
√

N , the
dynamics of the mean activity are no longer subject to the
balance between strong excitation and inhibition but instead
are described by a simpler MFT:

d

dt
mk (t ) = −mk (t ) +

∑
�=E ,I

√
Ngk�φ̌�(t ), (35)

for k = E and I , where φ̌�(t ) is the population average of
φ(h(�)

j (t )). Figure 5(c) shows how the mean activity changes
as g0 increases for fixed values of α and β. As g0 increases
for α > 0, β = 1 or α = 0, β < 1, the second-term on the
right-hand side of Eq. (35) starts to dominate, causing the
trivial solution to bifurcate in a similar manner to a ferromag-
netic transition [the result with (α, β ) = (1/3, 1), (0, 1/4)
and the result for a purely ferromagnetic interaction shown
in Fig. 5(c)]. For α � 0, β = 1 or α = 0, β � 1, we find
that the mean activity remains at zero. For this case of strict
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FIG. 6. Activity patterns of the untuned model. [(a)–(h)] Typical activity patterns for networks with the indicated parameter values are
shown. In each plot, the thick and thin lines represent the mean activity mk and the activities h(k)

i of five representative neurons, respectively.
For the direct simulations, the mean activity mk is approximated by the average of h(k)

i over the population k comprising N = 10 240 neurons
(see Appendix A for the details of the simulations). Solutions for the E populations from direct simulations (indicated by “direct”) and solutions
of the mean-field equations (indicated by “MFT”) are depicted in red and gray, respectively. The plots for the I population are omitted. For
(σ0, g0 ) = (1.2, 4), we find three qualitatively different solutions: irregular solutions [(c) and (d)], fixed-point solutions [(e) and (f)], and
regularly oscillating solutions [(g) and (h)]. (i) shows magnified images of the regular oscillations, where the coherence between the mean
activity and the activities of individual neurons can be seen. [(j)–(m)] For the fixed-point and regularly oscillating solutions, additional plots of
the activity patterns illustrate the diversity of their values, waveforms, and frequencies. Which of the diverse solutions is observed for a given
set of parameter values depends on the configuration of the random connectivity of the directly simulated networks or on the sequence of the
random numbers used for the simulations of the mean-field equations. The numerically determined value of the largest Lyapunov exponent,
λLE, is shown above each panel.

inequality, the second term on the right-hand side of Eq. (35)
supplies feedback suppression to changes in the mean activity
in a similar manner to antiferromagnetic effects. For α = 0,
β = 1, however, such a feedback mechanism does not work.
These behaviors of the model with O(1/

√
N ) values of g0

account for the divergent or suppressed dynamics observed for
O(1) values of g0 as the limit of the former. These results also
suggest that the present model under the condition given by
Eq. (3) is at the critical point between the two states governed
by extremely strong ferromagnetic and antiferromagnetic
interactions.

B. Dynamics of the untuned model

1. Qualitatively different solutions

The behavior of the untuned model, described by Eqs. (1)
and (2), is different from the results discussed above. We show
plots of its activity patterns in Figs. 6(a)–6(m). Simulations
based on our MFT yield solutions with profiles similar to
those from the direct simulations in this case, too. For smaller
values of g0, the network exhibits nearly Gaussian dynamics
[Figs. 6(a) and 6(b)]. For larger values of g0, it exhibits not
only irregular dynamics [Figs. 6(c) and 6(d)] but also constant

activities (fixed-point solutions) [Figs. 6(e) and 6(f)] and reg-
ularly oscillating dynamics (limit-cycle solutions) [Figs. 6(g)
and 6(h)]. The values of the mean activities of the observed
fixed-point solutions are widely distributed over positive and
negative values [Figs. 6(j) and 6(k)]. Note that because of the
symmetry of the model equations, fixed points are necessarily
located symmetrically at two points with positive and negative
mean activities of the same absolute value. The waveforms
and frequencies of the observed regular oscillations are also
diverse [Figs. 6(l) and 6(m)]. Which of these diverse solutions
is observed for a given set of parameter values depends on
the configuration of the random connectivity of the directly
simulated networks or on the sequence of the random numbers
used for the simulations of the mean-field equations. In the
regularly oscillating solutions, we also observe that both the
mean activity and the activities of individual neurons are
coherent, which means that the activities of individual neurons
have various waveforms but are all phase-locked to the same
rhythm [Fig. 6(i)].

2. Strong dependence on the synaptic-weight configuration

Next, we examine in further detail the three qualita-
tively different solutions for larger values of g0. Here, we
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(σ0, g0 ) = (1.2, 4), for two different initial conditions. The mean
activities of the excitatory populations of the three networks are
plotted. The three networks consistently showed irregular, static,
and regularly oscillating dynamics, respectively, in simulations from
different initial conditions.

emphasize that the type of the observed dynamics depends
on the configuration of the random connectivity but not on the
initial condition of the simulations. Figure 7 plots the activity
patterns of three networks with the same parameter values
but different configurations. We find that a network with the
same configuration shows dynamics convergent to the same
attractor when it is simulated from different initial conditions,
while those with the same parameter values but different
configurations show various dynamics. Such individuality
among networks with different configurations was expected
from the configuration-dependent outlier eigenvalues of the
synaptic weight matrices [60–62], which we also confirm
numerically (Appendix B). The outlier eigenvalues in the
synaptic weight matrices indicate that the untuned model has
a strong configuration dependence at the level of its dynamical
equation.

Despite this obvious configuration dependence, our mean-
field equations reproduce activities similar to those of the
directly simulated networks. We therefore expect the MFT
to give us further insights into the configuration-dependent
dynamics, and we examine this point below.

3. Fixed-point solutions and their stability

We first examine the observed fixed-point solutions. Sup-
pose that the activity of the entire network is constant,
with mean activity m(t ) ≡ mf . Recall that the dynamics
of the mean activity are described by Eq. (19), rewritten
here as

d

dt
m(t ) = −m(t ) +

√
2g0η(t ), (36)

where the fluctuation term η(t ) is generated according to
Eq. (17). If the network state remains at a fixed point, the

correlation function of the microscopic fluctuations, C̃(t, s),
is constant, and therefore, neuronal activities take normally
distributed values that do not change temporally. Then, the
fluctuation term η(t ) does not change temporally either, be-
cause it is the sum of the microscopic neuronal fluctuations
[Eq. (17)]. From Eq. (36), we find that

m(t ) ≡
√

2g0η(t ) ≡ mf , (37)

must hold in order for the network state to remain at the
fixed point without requiring an external input. Applying the
MFT, we find that there is a continuous band of values for
mf for which the stable solution for C̃(t, s) is constant. From
that analysis, we expect that a solution satisfying Eq. (37)
exists with a nonzero probability (also see the discussion at
the end of Appendix H). The existence of this band suggests
the mechanism for the appearance of fixed-point solutions as
follows. When the mean activity stays in this band, C̃(t, s)
tends to be constant, and hence, the microscopic fluctuations
slow down. As a result, the mean activity receiving driving
forces from the microscopic fluctuations also slows down.
This leads to the convergence of the entire dynamics to an
equilibrium point.

This scenario is justified by a perturbative stability anal-
ysis. In this analysis, we examine the response of the sys-
tem around a fixed-point solution to a temporary external
perturbative input. Suppose that Eq. (37) holds and that the
network state is set to a fixed-point solution with mean activity
m(t ) = mf for a long time prior to t = 0. Then, suppose
that temporary external inputs, collectively denoted by p,
are applied in t > 0. For t � 0, the self-consistent equation,
Eq. (15), reads

D0 = 2σ 2
0 C̃0, C̃0 =

∫
dN (z)φ(

√
D0z + mf )2, (38)

with the variance of δh(k)
i , denoted by D0, and with the mean

square of φ(h(k)
i ), denoted by C̃0. Here, N (z) denotes a unit

Gaussian distribution. The condition for the stability of a static
solution to Eq. (38) is given by

1 − a1 − 2a2 > 0, a1 < 1, with

a1 = 2σ 2
0

〈
φ′(h(k)

i

)2〉
0,

a2 = σ 2
0

〈
φ′′(h(k)

i

)
φ
(
h(k)

i

)〉
0, (39)

(see Appendix H for the derivation). Here, the angle brackets
with subscript 0 denote averaging over the unperturbed dy-
namics with m(t ) ≡ mf .

For t � 0, we perturbatively expand the dynamics around
the fixed-point solution. We calculate how a change in the
mean activity, δm(t ) = m(t ) − mf , evokes a response in the
correlation D(t, s) and how the evoked response in the correla-
tion generates additional fluctuations in η(t ). We refer readers
interested in the details of this analysis to Appendix H. From
this analysis, we find that up to the first order, a self-consistent
equation of the following form—with i.i.d. unit-Gaussian
coefficients ξ j� and ξ ′

j� determined by the configuration of the
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random connectivity—must be satisfied:

δm(t ) = (1 + ∂t )
−1 p0(t ) + mf d1[δm](t )

+ g0

σ0

⎧⎨⎩ ∑
1� j�3,1��<∞

ξ j�d2, j�[δm](t )

+
∑

j,1��<∞
ξ ′

j�d3, j�[p](t )

⎫⎬⎭ + O(|p|2). (40)

Here, the term p0 is the component of the perturbative input
that is uniformly applied to all neurons, and the terms d1[δm],
d2, j�[δm], and d3, j�[p] are certain linear transformations of
δm or p, respectively. The operation denoted by (1 + ∂t )−1

is defined as

(1 + ∂t )
−1x(t )

def=
∫ t

−∞
e−(t−τ )x(τ )dτ. (41)

The solution of this self-consistent equation can be ob-
tained explicitly. From this solution, we find that if we have

mfθ1 < 1, a1 < 1, (42)

for constant θ1 calculated from the unperturbed dynamics (see
Eq. (H26) for the details), δm(t ) → 0 holds with a nonzero
probability as t → ∞, depending on the values of ξ j�, and
hence, on the random weight configuration. This convergence
of the mean activity, together with the microscopic stability
given by Eq. (39), implies the stability of the entire dynamics
around the fixed point, and hence, justifies the scenario with
the slowing down of both the mean activity and the micro-
scopic fluctuations. From the same analysis, we also see that,
depending on the values of ξ j�, the obtained solution diverges
at some t > 0.

In summary, we find that the model has fixed-point so-
lutions for which the mean and variance of the neuronal
activities are determined in a configuration-dependent manner
[Eqs. (17), (37), and (38)]. Then, even for fixed-point solu-
tions with the same statistics of neuronal activities, we find
that their stability depends on the individual configurations.
For the fixed-point solution for which Eqs. (39) and (42) are
satisfied, configurations that yield stable fixed points exist
with a nonzero probability. To check the stability of the
numerically observed fixed points, we compute the values
of mfθ1, D0, a1, and 1 − a1 − 2a2 for different values of mf

[Fig. 8(a)]. We find that the conditions for the stability are
actually satisfied for a certain range of mf [orange arrows in
Fig. 8(a)]. We find that all fixed points observed in numerical
simulations, including those shown in Fig. 6, fall in this range
of mf [Fig. 8(b)]. This contrasts with fixed points that are
occasionally observed for the finely tuned model with large
g0. Fixed points of that model never satisfy the corresponding
stability condition. This implies that fixed points do not exist
in the thermodynamic limit. In the above analysis, we find
that the condition given by Eqs. (39) and (42) itself does not
depend on the values of g0, while the probability of realizing
stable fixed points does depend on it. For small g0, the values
of η(t ) that satisfy Eq. (37) with a value of mf within the range
of stability is very large. The realization probability of such a
large value of η(t ) is expected to be small from Eq. (17). This
explains the reason that we do not observe fixed points for a
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FIG. 8. (a) Values of the constants that appear in the stability
condition for a fixed-point solution with m(t ) = mf and σ0 = 1.2.
The values of the constants do not depend on the value of g0.
The stability condition is satisfied for the range of mf indicated by
the double-ended orange arrow. (b) The histogram of (the absolute
values of) the mean activity of the fixed-point solutions obtained
by directly simulating one hundred networks in the same setting as
Fig. 6(e) except for different weight configurations.

very small g0 and also suggests that stable fixed points still
exist, albeit with a very small probability, for such small g0.

4. Regularly oscillating solutions and their stability

Next, we examine the regularly oscillating solutions. If the
entire network dynamics have stable oscillations, so do the
microscopic parts of the dynamics. To find such microscopic
oscillations for a given oscillatory orbit of the mean activity,
m(t ) = mo(t ), we solve the self-consistent equation, Eq. (28),
which we rewrite as

(1 + ∂t )(1 + ∂s)D(t, s) = 2σ 2
0 C̃(t, s). (43)

This equation can be solved iteratively in the frequency do-
main (see Appendix I). Using the mean activity observed in
Fig. 6(g) for mo(t ), we compute the autocorrelation in the
frequency domain,

D̂(ω1, ω2)
def= 1

2π

∫
R2

e−iω1t+iω2sD(t, s)dt ds, (44)

[Fig. 9(a)]. We find that the solution has a nonzero value only
for multiples of the basic frequency ω0 of the mean activity,
which indicates that the microscopic dynamics are completely
entrained by the oscillatory mean activity. We also con-
firm this by checking the following averaged autocorrelation
function calculated from D(t, s): with T0 = 2π/�ω for the
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FIG. 9. [(a)–(c)] Fourier-transformed autocorrelation function D̂(ω1, ω2) for the mean activity indicated above each panel. The times series
mo(t ) is the mean activity shown in Fig. 6(g), which oscillates regularly with the basic frequency ω0. The values of D̂(ω1, ω2) are calculated
over the frequency domain −256ω0 � ω1, ω2 � 256ω0 discretized into bins for which the frequency values are represented by multiples of
ω0/16. We plot the absolute values of the calculated D̂(ω1, ω2) for −3.5ω0 � ω1, ω2 � 3.5ω0 in a logarithmic color scale. The two argument
frequencies, ω1 and ω2, are shown in units of the basic frequency ω0. [(d)–(f)] The averaged autocorrelation function D(τ ) for the three cases
in the upper panels.

bin width, �ω = ω0/16, of the frequency discretization,

D(τ )
def= 1

T0

∫ T0

0
D(t, t + τ )dt . (45)

The autocorrelation function in Fig. 9(d) shows that the neu-
ronal variables are periodic. In contrast, as is well known from
a previous study [19], the autocorrelation function D(t, s)
for zero mean activity, m(t ) ≡ 0, has the frequency repre-
sentation, D̂(ω1, ω2) = D̂0(ω1)δ(ω1 − ω2), with a continuous
function D̂0(ω1) [Fig. 9(c)]. The averaged autocorrelation
function for this case is unimodal and tends to zero as τ →
∞ [Fig. 9(f)]. The qualitative difference between these two
autocorrelation functions suggests the occurrence of a phase
transition from one to the other. To check this, we decrease
the amplitude of the mean activity, mo(t ), without changing its
waveform, and we find that the solution starts to have a contin-
uous spectrum extending over frequencies other than the mul-
tiples of ω0. After the transition, the autocorrelation function
has the form of D̂(ω1, ω2) = ∑

k D̂k (ω1)δ(ω1 − ω2 − kω0)
[Fig. 9(b)] and the averaged autocorrelation function has
both a periodic component and a component that vanishes
at infinity [Fig. 9(e)]. As the amplitude of the mean activity
decreases, the periodic component in the autocorrelation func-
tion gradually decays, disappearing at m(t ) = 0. The analysis
we perform in Appendix I actually shows that these observed
entrained dynamics are stably realized. The transition behav-
ior observed above is qualitatively the same as that observed in
a previous study [29], although that study used periodic inputs
with random phases to induce the transition.

This microscopic transition gives an intuitive explanation
for the mechanism of the observed oscillations. Recall that
the dynamics of the mean activity is described by Eq. (19),

rewritten here as

d

dt
m(t ) = −m(t ) +

√
2g0η(t ). (46)

Because the driving-force term, η(t ), is the sum of the mi-
croscopic fluctuations, it is entrained to the oscillation of the
mean activity itself, if the mean activity oscillates with a
sufficiently large amplitude, to entrain the microscopic fluctu-
ations. We suggest this reverberation of entrainment between
the mean activity and the microscopic fluctuations as the
mechanism underlying the coherent oscillations we observe
in Figs. 6(g) and 6(h).

The stability of this reverberation mechanism can be exam-
ined by using a perturbative method similar to that employed
for fixed points: we derive a self-consistent equation with ran-
dom coefficients that determines linear responses to external
inputs, and construct its solution from which the condition for
the stability of the reverberation can be examined numerically.
From this analysis, we draw the same conclusion about the
stability as that for the fixed points: regularly oscillating
solutions for the untuned model, such as that observed in
Fig. 6(g), are linearly stable with a nonzero probability;
occasionally observed regular oscillations of the finely tuned
model [Fig. 15(c) in Appendix C], however, turn our to be
unstable. These conclusions are consistent with the tendency
observed in the results of direct simulations of networks with
different system sizes [Figs. 17(a) and 17(b) in Appendix C].
Since this analysis is complicated and essentially the same
as that for fixed points, we omit its presentation here and
refer interested readers to Appendix I. We only note that we
cannot examine exhaustively oscillatory orbits, and therefore
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FIG. 10. [(a)–(h)] Typical activity patterns for the finely tuned model with (σ0, g0) = (1.15, 4) under sinusoidal external inputs with the
indicated values of A and Tper. In each plot, the thick and thin lines represent the mean activity mk and the activities h(k)

i of five representative
neurons, respectively. For the direct simulations, the mean activity mk is approximated by the average of h(k)

i over the population k comprising
N = 10240 neurons (see Appendix A for the details of the simulations). Solutions for the E population in direct simulations and solutions of
the mean-field equations are depicted in red and gray, respectively. The plots for the I population are omitted. The numerically determined
value of the largest Lyapunov exponent, λLE, is shown above each panel. Qualitatively different dynamics are observed for the same parameter
values [(c)–(f)], depending on the configuration of the random connectivity of the directly simulated networks or on the sequence of random
numbers used for the simulations of the mean-field equations. (i) For each value of A, the percentage of twenty directly simulated networks
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we cannot completely exclude the existence of stable limit-
cycle solutions for the finely tuned model.

C. External inputs to
√

N excitatory neurons

1. Coherent states induced by sinusoidal inputs

In this section, we apply sinusoidal inputs of amplitude A
and period Tper to

√
N neurons in the E population of the finely

tuned model, namely,

Ĩ (t ) = A sin(2πt/Tper ) (47)

in Eq. (4). In this model setting, we observe two qualitatively
different types of behavior [Figs. 10(a)–10(h)]. We find that
the activity patterns obtained from the direct simulations and
from the MFT are quite similar, suggesting that our theory
successfully predicts the behavior of the model for the case
with external inputs as well. As we increase the amplitude A
for a fixed value of g0, the solutions undergo a transition from
irregular chaotic dynamics partially entrained by the input to
regular nonchaotic dynamics synchronous with the input. This
indicates that inputs to an O(

√
N ) number of neurons can

effectively entrain the whole network in this model.
We further observe that this transition occurs at different

values of A, depending on the configuration, but not on the

initial condition, similarly to Fig. 7 (not shown). Figure 10(i)
shows a histogram depicting the percentage of twenty net-
works with random configurations that synchronize with the
inputs for each value of A. We see that the transition point is
highly variable among networks with different configurations.
Nevertheless, in the autocorrelation function μ(τ ) of the mean
activity averaged over configurations and time according to
the definition in Eq. (30), we observe good agreement between
direct simulations and MFT [Fig. 10(j)].

2. Stability of the entrained dynamics

The stability of the regular, entrained dynamics can be
examined using the same perturbative method as that for the
regularly oscillating solutions of the model without external
inputs. In this case, the results of the analysis indicate that
the numerically observed oscillations of the model are lin-
early stable (Appendix I). Consistent with this finding, in
the direct numerical simulations, the induced coherent states
are robustly observed for networks with large system sizes
(Appendix C). In contrast with the untuned model, in the
present case, the synaptic weight matrix of the model does
not have configuration-dependent outlier eigenvalues. We ob-
serve, however, that the linear variational equation determin-
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ing the stability of the attractors does have coefficient matrices
with outlier eigenvalues (see Appendix B for details). These
results suggest that the finely tuned model still shows strong
configuration dependence in its stimulus-driven dynamics.

3. Reading out information from coherent dynamics

Figures 10(a)–10(d) show that the mean activities and
individual neuronal activities are coherent in dynamics syn-
chronous with the inputs. This has a computational im-
plication. Suppose that we read out microscopic fluctua-
tions of these networks by taking a weighted average with
O(1/N ) weighting coefficients, as described by the following
equation:

γ (t ) =
∑
k,i

ri
k

N

(
φ
(
h(k)

i (t )
) − φ̌k (t )

)
. (48)

Here, φ̌k denotes the population average of φ(h(k)
i (t )) over

the population k. In the above equation, the contribution of
this population average is subtracted. This is because the
population-averaged activity simply replicates the external
inputs, and reading out this component does not have much
computational value.

If the dynamics are coherent, we expect the read-out val-
ues, γ (t ), to be O(1). In contrast, if the dynamics are chaotic,
the ensemble of neuronal activities can be regarded as an
incoherent Gaussian fluctuations, and therefore, values read
out from them are expected to be O(1/

√
N ). We numerically

test this hypothesis by examining the values read out with the
following weighting coefficients:

ri
k =

{
1 if φ

(
h(k)

i (tinit )
) − φ̌k (tinit ) � 0

−1 otherwise
. (49)

In this equation, we set the coefficients to such values that the
initial value of γ (t ) at time tinit is O(1). We show the network
activities and typical read-out values obtained from them in
Figs. 11(a) and 11(b). The values read out from the coherent
regular oscillation show a regular pattern of magnitudes com-
parable to the initial value, γ (tinit ), [Fig. 11(a)], while those
read out from the irregular activity decay rapidly from the ini-
tial value [Fig. 11(b)]. This observation is consistent with the
above argument. To evaluate the magnitudes of the read-out
values further, we calculate the following normalized standard
deviation, Ŝγ , of γ (t ) for networks of different system sizes:

Sγ
def=

{
1

Tavg

∫ t0+Tavg

t0

(γ (t ) − γ )2dt

}1/2

,

γ
def= 1

Tavg

∫ t0+Tavg

t0

γ (t )dt, Ŝγ
def= Sγ

Sφ

,

Sφ
def=

{
1

Tavg

∫ t0+Tavg

t0

〈(
φ
(
h(k)

i (t )
) − φ̌k

)2〉
dt

}1/2

. (50)

The bracket in this equation indicates the average over the
entire network. We also take the average over a long time, of
length Tavg, starting from a suitably chosen initial time t0, for a
simulation that starts from a random initial condition different
from that of the simulation for which we have determined the
weighting coefficient ri

k . We also show the activity patterns
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FIG. 11. [(a) and (b)] Mean activities of the excitatory popula-
tion mE and normalized read-out values γ (t )/Sφ , as calculated for
networks with (σ0, g0) = (1.15, 4) that receive sinusoidal inputs with
the indicated values of A and Tper = 60. The weighting coefficients
{ri

k}k,i are determined at tinit = 1000 in the simulations from initial
condition 1. The mean activities and read-out values of networks
from another random initial condition (initial condition 2) are also
shown. [(c) and (d)] Scaling of the normalized standard deviation
Ŝγ of values read out from networks with the same parameter
values as in (a) and (b). The averages of Ŝγ over fifteen different
configurations, together with their standard errors, are plotted on
logarithmic scales. Only networks with configurations giving rise to
synchronous dynamics (c) or irregular dynamics (d) are analyzed. In
(d), a straight line with slope −1/2, representing Ŝγ ∝ N−1/2, is also
shown.

obtained from this initial condition in Figs. 11(a) and 11(b).
In Figs. 11(c) and 11(d), we show the calculated values of the
normalized standard deviations on logarithmic scales, and we
find that the values read out from regular oscillations do not
depend much on the system size, while those read out from
irregular dynamics are roughly proportional to 1/

√
N , as we

expect. These results suggest that the above mechanism for
reading out O(1) values only when the network dynamics are
coherent enables neuronal networks to transmit information in
a state-dependent manner. Note that we have repeatedly read
out the same pattern from the coherent dynamics, regardless
of the independent initial conditions [Fig. 11(a)]. Regard-
less of the symmetry among the neurons that receive inputs
through statistically the same set of synaptic weights, identical
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coherent dynamics—not coherent dynamics randomly reshuf-
fled with respect to the neuronal indices—are always realized.
Although the above coherent states are induced by artificial
sinusoidal input, similar results are obtained for the case with
irregular input (see Appendix D for details).

4. Remarks on the untuned model under external inputs

The untuned model behaves in a qualitatively similar
manner to the finely tuned model when both are driven by
external inputs. The untuned model also shows transitions
from irregular, partially entrained dynamics to regular dy-
namics that are completely synchronous with external inputs
in a configuration-dependent manner. Thus, to avoid redun-
dancy, we do not present the results for this model setting
in this paper. From a quantitative viewpoint, we note that
the entrainment in this model setting is more complicated
than that for the finely tuned model, presumably because the
untuned model has inherent configuration-dependent rhythms,
as observed in Fig. 6.

D. Multiscale dynamics of critically balanced
networks of LIF neurons

Thus far, we have focused on a highly simplified model
with firing-rate variables. However, from way we have con-
structed our MFT, we expect that in principle a similar the-
oretical framework will hold for networks of spiking neurons
(and hence we expect similar multiscale dynamics to those ob-
served in the rate model). To demonstrate this, we numerically
examine a commonly investigated network of leaky-integrate-
and-fire (LIF) neurons (see, e.g., Ref. [63]) described by the
following equation: for k = E and I ,

τm
d

dt
V (k)

i (t ) = −V (k)
i (t ) +

∑
�=E ,I,1� j�N,n

Ji j
k�

δ
(
t − t (�)

j,n − t�
)
,

(51)

In this equation, the variables V (k)
i and t (k)

i,n denote the mem-
brane potential and the n-th spike time of the ith neuron in
the k population, respectively. If V (k)

i exceeds a threshold
potential Vths, a spike is emitted from the neuron, and V (k)

i is
reset to Vreset and held for a time of length tref . The constants
τm and t� represent the membrane time constant and the delay
of synaptic transmissions, respectively. The synaptic weights
Ji j

k�
are given by Eq. (2) or (5) subject to the condition in

Eq. (3). For this model, following the same argument as that
for the simplified model (Sec. III), fluctuations in the inputs to
the neurons in the network are considered to be conditionally
Gaussian, given the orbit of the population-averaged input to
the neurons. Since the population-averaged input is given by
the sum of the fluctuating inputs to individual neurons divided
by

√
N , the population-averaged input is stochastic and its

realization probability is determined through the correlation
of the microscopic fluctuations. The neuron model used in
the above, however, is highly nonlinear, and thus solving the
mean-field equations demands much more intensive numer-
ics than those we presented in the previous sections. Thus
we restrict ourselves to numerically simulating the model

and examining whether similar multiscale dynamics arise
intrinsically.

As the value of g0 is increased from zero with the above
model settings, we actually observe increasingly large fluc-
tuations in the population activity [Figs. 12(a)–12(c)]. Ex-
amining the autocorrelation and cross-correlation functions
of individual and population-averaged inputs to the neurons,
we observe that the population-averaged input is strongly
correlated with the excitatory, inhibitory, and overall inputs
to individual neurons [Figs. 12(d)–12(f)], which can account
for the experimentally observed large cross-correlations be-
tween EEG/LFPs and neuronal activities [15] (see Sec. V C
for further discussion). As we increase the value of g0,
these dynamics undergo a transition to coherent dynamics
in a configuration-dependent manner [Figs. 12(c) and 12(f)].
These transitions are observed robustly for different values of
N (� 1) (Fig. 17 in Appendix C). Similar transitions are in-
duced by external inputs to

√
N neurons (Fig. 16 in Appendix

C). The successful prediction of the occurrence of intrinsically
generated population dynamics indicates that the multiscale
dynamics revealed by our MFT generally emerge in a variety
of neuronal networks at critical parameter values.

V. DISCUSSION

In the present study, we developed a novel type of MFT
for densely-connected RNNs consisting of a pair of excitatory
and inhibitory populations of simplified neurons with finely
tuned or untuned synaptic weights that obey Dale’s law.
The mean strengths of the synaptic weights were assumed
to take a set of critical values. In this theory, microscopic
fluctuations in the neuronal activities that are amplified by the
strong excitation and inhibition serve as driving forces for the
macroscopic dynamics of the population activity, while the
population activity constrains the statistics of the microscopic
fluctuations. The investigated RNNs exhibited nonvanishing
fluctuations in their population activity. When the magnitudes
of excitation and inhibition were large, we found interesting
dynamical properties in these fluctuations, such as high non-
Gaussianity and asymmetry with respect to time reversal for
the finely tuned model, and strongly configuration-dependent
transition to a static or oscillatory nonchaotic state for the
untuned model. In the oscillatory state, neuronal activities
have various waveforms while they are all phase locked to
the rhythm of the population activity. Our theory successfully
predicts these dynamical properties. We found that these mul-
tiscale dynamics occur at a critical point between extremely
strong ferromagnetic and antiferromagnetic states.

In networks with external inputs, periodic inputs to an
O(

√
N ) number of excitatory neurons effectively entrained

the whole network. As the amplitude of the inputs was in-
creased, the networks underwent a transition from irregular,
partially entrained dynamics to regular dynamics synchronous
with the input; the transition point again depended on the
configuration. Unlike the autonomous case, the application of
external inputs induced a transition to a coherent oscillation in
the finely tuned model, indicating that the fine-tuning of the
synaptic weights reduces but does not remove the configura-
tion dependence from the network dynamics. We also showed
numerically that the induced coherent dynamics can be used
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FIG. 12. [(a)–(c)] Multiscale dynamics obtained by numerically simulating a network of LIF neurons with g0 = 0.2, 1, and 10, respec-
tively. The top panels are raster plots of firing activities of one hundred representative neurons from the excitatory (red) and inhibitory (blue)
populations. The upper middle panels show the total excitatory (red) and inhibitory (blue) inputs to a single representative excitatory neuron.
The lower middle panels show total inputs to five representative excitatory neurons (gray). The bottom panels show the population average of
the inputs to all neurons. [(d)–(f)] The autocorrelation functions (ACs) of the excitatory input to a representative neuron and of the population
average of the inputs to all neurons, and the cross-correlations functions (CCs) of those inputs and another fraction of the input to the
representative neuron. The quantities shown are the AC of the excitatory input to the neuron (red); the CC of the excitatory and inhibitory
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to the neuron and the population-averaged input (black dotted); and the AC of the total input to the neuron (gray). The following parameter
values are used for the simulations: τm = 20, t� = 0.5, tref = 0.55, Vrest = 0, Vreset = 10, and Vths = 20.

as media for transmitting information in a state-dependent
manner.

Furthermore, based on analogy, more biologically realistic
networks of spiking neurons are expected to display similar
multiscale dynamics. Although theoretical prediction of their
dynamics is much more computationally demanding and be-
yond the scope of the current study, we numerically confirmed
this hypothesis for networks of LIF neurons.

A. Closely related results

The present study was largely inspired by a previous in-
vestigation of RNNs [32] and by a couple of published and
unpublished studies on the same model as ours [62,64]. In the
former study [32], the authors investigated a network with a
balance between strong excitation and inhibition, providing
a theoretical framework for dealing with a network with
multiple neuronal populations and for analyzing its nontrivial
fixed points and transitions to chaos. Our study used their
theoretical framework as a starting point to analyze further
the nontrivial population dynamics that they had not analyzed.

In the latter published study [64], the authors numerically
analyzed the same network as ours and found similar oscil-
latory dynamics. They further analyzed the dynamics with
approximate reduced equations and related them to the eigen-
values of the connectivity matrices. Although these results
were quite inspiring, their approach—focusing on the eigen-
values with the largest real parts—was not always sufficient
to characterize behavior of the model. It is known that the
eigenvalues of the connectivity matrices of their networks
with finely tuned weights in the N → ∞ limit are uniformly
distributed over a disk [61] [Fig. 13(b)]. This implies that it
is difficult to select a single eigenspace that effectively deter-
mines the dynamics in this limit, on which their theory relied.
The unpublished study [62] also took a similar approach
for the same model and came to a pessimistic conclusion
about the usefulness of an MFT in this setting. Sometime after
we initially publicized the present results, a very recent work
[65] examined the case with g0 ≈ 0,∞ for our networks.
Those authors developed a perturbative mean-field theory
combined with the approach of Ref. [64]. Although they
gained insights into the behavior of the model analytically,
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their theory still largely relies on heuristic, approximate cal-
culations, and its application is limited to nearly determinis-
tic dynamics with small fluctuations. In contrast with these
previous studies, we have here derived an MFT in a much
more rigorous manner and have laid a foundation for further
analysis. Our theory applies to the entire range of model
parameters and gives accurate probabilistic descriptions of
large macroscopic fluctuations.

B. Stimulus-induced suppression of chaos
and reservoir computing

Prior to the present study, several authors have theoreti-
cally studied the externally driven, nonchaotic dynamics of
neuronal networks without balanced excitation and inhibition
[29,66,67]. These studies have shown that the chaoticity of
the dynamics of RNNs is suppressed by external random
inputs and that a nontrivial nonchaotic regime appears after
a transition at some amplitude of the input. In particular, a
seminal study [29] showed that sinusoidal inputs with random
phases induce a coherent state similar to ours. The transition to
a coherent state in the present model is closely related to this
suppression of chaos by stimulus, because the microscopic
part of our model dynamics are statistically the same as
the dynamics of a model without balanced excitation and
inhibition that is suitably driven by a uniform external input,
as shown by our MFT. In fact, the autocorrelation functions
of neuronal activities of our networks (Fig. 9) behave in a
similar manner to those observed in the previous study [29].
However, we note that the transition to this microscopic co-
herent state due to a uniform external input, not with random
phases, has not been well studied to date. Besides the fact
that the transition induced by uniform input is more difficult
to analyze theoretically, the uniform application of an input
often results in chaotic or trivial dynamics, and the transition
to a coherent state is not found unless the waveform of the
input is finely tuned. In the present model, the waveforms of
the mean activity that induce a coherent state are determined
by the network itself through the interactions between the
microscopic and macroscopic dynamics, even in a case with
external inputs. The main difference between the coherent
states in the present study and those in previous studies lies
in this spontaneity.

The spontaneously discovered coherent states discussed
above may have implications for learning with RNNs. In
previous studies, learning was first considered in the context
of the “edge of chaos,” where the variety and stability of
network dynamics at the transition point to chaos were ex-
ploited in learning [68–70]. More recent studies have focused
on different nonchaotic dynamical phases induced by external
or feedback inputs [40,67,71]. In particular, the authors in a
seminal work [40] stably reconstructed desired patterns from
the coherent dynamics induced by randomly weighted strong
feedback from read-out values to all of the neurons in the
network. This strong random global feedback is expected to
induce coherent dynamics by a mechanism similar to that
studied in Ref. [29] (see also Refs. [67,72] for a similar
result with strong random global feed-forward input). This
requirement for a strong global input, however, restricted the
applicability of their framework to the supervised learning

of a small number of temporal patterns. Our results suggest
a new regime of dynamics, in which nonchaotic coherent
dynamics emerge spontaneously and stably reproduce output
patterns [Fig. 11(b)], without being passively entrained by
strong global inputs. Thus, investigating learning based on the
dynamical phase we have found is a worthy challenge for a
future study.

C. Population dynamics and critical fluctuations

The relationship between population dynamics and indi-
vidual neuronal activities has also been studied in previous
models. In these studies, however, population dynamics and
microscopic fluctuations in individual neurons were treated as
statistically independent. Therefore, unlike our theory, none
of the previously proposed theories for balanced networks
could account for the experimentally observed strong impact
of single neurons on the population activity [53,54].

In sparsely connected balanced networks of spiking neu-
rons, population dynamics are unaffected by fluctuations in
the irregular firing of individual neurons. In fact, a previous
study [25] showed that even when individual neurons fire
irregularly, the population-averaged activity exhibits regular
slow oscillations except for tiny fluctuations due to finite-
size effects. This indicates the fact that the irregular firing
of neurons exerts only negligible effects on the population
dynamics of the sparsely connected networks.

In densely connected balanced networks investigated pre-
viously, stimuli to a small number of excitatory neurons also
induce a vanishingly small response in the entire popula-
tion. Two recent studies investigated the responses of such
networks with spatial structures to correlated external inputs
applied to a large number [O(N )] of neurons [51,52]. It was
shown analytically that a non-negligible population response
can be induced only when the spatial extent of the input
correlation is narrower than that of recurrent connections
from a single neuron [52]. This theoretical result should also
hold when stimuli are given to a small number [O(

√
N )]

of excitatory neurons because such stimuli generate corre-
lated internal inputs to the surrounding neurons that are con-
nected with the stimulated neurons. In this case, the previous
theory indicates that the population response is negligibly
small.

The difference in the impact of single neurons on the
population dynamics between the previous models and our
model can be understood from the strong ferromagnetic ef-
fects examined in Sec. IV A 3. Previous models focused on the
dynamical regime in which the network activity is stabilized
by strong inhibitory feedback that suppresses excessive exci-
tations. This regime corresponds to the antiferromagnetic state
we observed in Sec. IV A 3. The antiferromagnetic effects
strongly suppress the responses of the neuronal population
when a small number of neurons are stimulated. In contrast,
we have focused on the dynamical regime emerging at the
critical point between the ferromagnetic and antiferromag-
netic states. Activated spontaneously or driven by stimuli to
a small number of neurons, our model displays strong macro-
scopic fluctuations at the critical point. Remarkably, our MFT
precisely describes the probabilistic behavior of these critical
fluctuations, which was, to our knowledge, difficult for any of
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the previous MFTs developed in the statistical mechanics of
disordered systems. Although the parameter values yielding
the critical point are not generic, experiments have shown
evidence for self-organized critical dynamics in the brain [57],
and thus we can reasonably expect some adaptive mechanisms
to finely tune the system to the critical point.

The intrinsic origin of the population dynamics may also
be supported by the experimentally observed large cross-
correlations of EEG/LFPs and individual neuronal activities
[15]—namely, strong coherence over the macroscopic and
microscopic scales. EEG and LFPs are considered to reflect
mainly a collective excitatory component of synaptic inputs
to (apical dendrites of) neurons in the local circuit [73],
and their waveforms are similar to those of the very large
excitatory inputs to neurons [48]. When the strong excitatory
and inhibitory inputs to neurons cancel out, the remaining
fluctuations do not need to be strongly correlated with the
original excitatory and inhibitory inputs, especially if the main
driving-force for the population dynamics are extrinsic. In
fact, from the multiscale dynamics of the previous model,
small cross-correlations of population dynamics and recurrent
excitatory input are expected (e.g., by comparing the activity
of a population of neurons and the total excitatory inputs to
those neurons from the inside and outside of the population
in Fig. 1 of Ref. [52]). In contrast, our model shows large
cross-correlations between the excitatory input to a neuron
and population-averaged input to neurons [Figs. 12(d)–12(f)].
Since the large excitatory inputs are equal among neurons of
our model in the leading order in N , our results imply that
cross-correlations of excitatory inputs to the population and
individual neuronal activities are large on average, explain-
ing the experimentally observed large cross-correlations of
EEG/LFPs and individual neuronal activities. Thus, modeling
of coherent multiscale cortical dynamics with our theory is a
promising challenge. From the fact that cortical activity dis-
plays switching behavior between states with small and large
cross-correlations of EEG/LFPs and neuronal activities [15],
our theory and previous theories are suggested to separately
model two different operating regimes of the same cortical
circuits.

In our theory, the dynamical nature of the critical fluc-
tuations depends strongly on the detailed configuration of
the synaptic connections. On the other hand, accumulating
evidence suggests that the connectivity of local cortical cir-
cuits is rapidly remodeled [74]. Whether the fine connectivity
structure has a strong impact on critical fluctuations in cortical
network dynamics—and what functional implications such an
impact has—need to be further clarified.

D. Limitations and future extensions of the theory

Despite the advantages of our theory mentioned above, it
is fair to say that the validity of the theory is still restricted
by the simplicity of the model settings. One of the most
important steps for widening the applicability of our theory
is to extend the theory to networks of spiking neurons. In the
present study, we gave priority to the analytical tractability
and simplicity in numerical simulations, and we restricted
ourselves mainly to networks of firing-rate model neurons.
However, the extension of our theory to networks of more

realistic model neurons should be straightforward. This can
be done by regarding balanced inputs to individual neurons as
Gaussian fluctuations and by determining the related statis-
tics to ensure consistency with the nonlinear dynamics of
single neurons. In this calculation, we can use our method
in combination with a previous method [31] to describe
the network dynamics. In the previous study, the mean-field
equations for a simple RNN of nonlinear firing-rate units
without balanced excitation and inhibition was solved by
using the statistics calculated from extensive numerical simu-
lations of single units driven by random forces. Applying the
combined method to a critically balanced network of spiking
neurons would be computationally demanding but in principle
doable.

Although we leave this challenge for future study, we note
that the computational costs associated with the approach of
Ref. [31] cannot be reduced by commonly employed approx-
imate treatments such as white Gaussian approximation of
inputs to neurons [25,63]. This is because we must take into
account the time-dependent nonlinear interactions between
the microscopic neuronal fluctuations and macroscopic pop-
ulation activity underlying the critical multiscale dynamics.
These interactions cannot be handled by the approximate
treatments. This distinction between a full treatment and an
approximate treatment may be related to the recent contro-
versial argument about the transition in networks of spiking
neurons from a state with irregular spiking at a constant
rate to a state with irregular firing-rate fluctuations, as the
mean strength of the synaptic connections is increased [63].
Although the interpretation of this observation based on an
approximate description was controversial [75], a full treat-
ment is expected to give an accurate description.

The other simplified aspects of the model include the
neglect of different cellular properties of excitatory and in-
hibitory neurons [76] and of characteristic spatial patterns
of cortical neuronal responses. Although our theory can be
extended to include these elements, substantial works will
be needed for that. For example, for models with different
membrane constants for excitatory and inhibitory neurons,
automatic cancellation of excitatory and inhibitory inputs with
φE = φI is not ensured from the condition in Eq. (3). How-
ever, it is plausible that some feedback mechanism dynami-
cally clamp the population activity to satisfy φE = φI . Then,
similar critical multiscale dynamics to those we have observed
are expected to emerge. In experimental studies, characteristic
center-surround response patterns have been observed when
a small number of neurons were stimulated [54,77]. Thus
it is an important open challenge to understand how critical
multiscale dynamics emerge in a spatially extended model and
to examine whether those dynamics are consistent with the
experimentally observed spatial patterns.

From the theoretical point of view, another question that
remains unanswered concerns the way qualitatively differ-
ent solutions bifurcate in our model when we increase the
magnitudes of excitation and inhibition. Theoretical analysis
of this bifurcation is hard due to the fact that the MFT is
constructed based on an averaging over network configura-
tions while the bifurcation point depends strongly on the
individual configurations. Regarding this point, a recent study
[33] developed a theory of linear dynamics for disordered
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systems with individual configurations. The stochastic linear
response theory shown in Appendices H and I also allows
us to analyze the response dynamics around fixed points
and regular coherent oscillations for individual configurations.
However, to identify the type of a bifurcation, information
is needed about the lowest-order nonlinear term relevant to
the bifurcation. We expect lowest-order nonlinear corrections
to our linear-response theory to provide nonlinear response
dynamics valid for individual configurations and information
about the bifurcations.
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APPENDIX A: SIMULATIONS OF NEURONAL
NETWORKS THAT DO NOT VIOLATE DALE’S LAW

In the main text, we simulate the model equations, Eq. (1)
or (51) together with synaptic weights described by Eq. (2)
or (5), directly. In this section, we describe the details of the
simulations. We first describe the random variables J i j

k�
. As

indicated in Ref. [62], we can choose random variables for
the connectivity, so that the model does not violate Dale’s
law, a rule that prohibits neurons from feeding both excitatory
and inhibitory connections. We use the following random
variables with zero mean and unit variance:

±J i j
k�

=
⎧⎨⎩

√
1−p

p prob. p

−
√

p
1−p otherwise

.

The sign before J i j
k�

is positive if the population � is excitatory,
and negative otherwise. With the same usage of sign ± for Ji j

k�
,

these random variables give, for both Eqs. (2) and (5),

±
√

NJi j
k�

=
⎧⎨⎩ σ0

√
1−p

p + g0 + Op(1/
√

N ) prob. p

−σ0

√
p

1−p + g0 + Op(1/
√

N ) otherwise
.

Note that the effect of the adjustment in the second of Eq. (5)
is Op(1/

√
N ). For any finite value of g0, we can thus choose

p such that the value on the right-hand side of the above equa-
tion converges to positive values in distribution. In practice,
for finite values of N , values of p that are too small reduce the
reproducibility of the numerical results. Thus we use p = 0.2
or 0.4 in all simulations, although fixing p violates Dale’s law
for small values of g0.

With these random synaptic weights, we integrate the
model equations using the fourth-order Runge-Kutta algo-
rithm [78] with discrete timesteps of size �t = 0.05 for
Eq. (1), and �t = 0.02 for Eq. (51), from i.i.d. random values
of dynamical variables at t = 0. We use N = 10 240 for most
of the results, except that we use N = 40 960 in Figs. 3(a)
and 3(b), N = 20 480 in Figs. 3(c) and 3(d), N = 10 000 in
Figs. 12 and 16, and different values of N in Figs. 11(c), 11(d),
17, and 18(c), and 18(d). For smaller values of N (< 8000), we
use p = 0.4 to enhance the stability of the results. Each direct
simulation is performed using 16 cores of recent versions of
Intel Xeon processors in parallel and takes a few hours–a few
days.

APPENDIX B: EIGENVALUE SPECTRA OF SYNAPTIC
WEIGHT MATRICES AND LOCAL STABILITY MATRICES

We show the entire eigenvalue spectra of the synaptic
weight matrices of the untuned and finely tuned models
in Figs. 13(a) and 13(b). As pointed out in previous stud-
ies [60–62], the synaptic weight matrices of the untuned
model have configuration-dependent outliers while those of
the finely tuned model do not.

Figure 14(b) shows the entire eigenvalue spectrum of the
coefficient matrix Bi j

k�
(t ) of the following linear variational

equation:

d

dt
u(k)

i (t ) =
∑
�, j

Bi j
k�

(t )u(�)
j (t ),

Bi j
k�

(t )
def= −δi jδk� + σ0Ji j

k�
φ′(h(�)

j (t )
)
. (B1)

The variational equation (B1) describes how an infinitesimal
variation in h(k)

i , denoted by u(k)
i , evolves over time around the

(a) (b)

configuration 1
configuration 2
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FIG. 13. The entire eigenvalue spectra of synaptic weight matri-
ces for (a) the untuned model and (b) the finely tuned model. The
spectra for two different configurations are calculated from networks
with 10 240 neurons for each population and plotted in different
colors. For both panels, we use (σ0, g0 ) = (1.2, 4). In the spectra for
the untuned model, outlier eigenvalues are observed [arrowheads in
(a)], while most of the eigenvalues are distributed over a common
disk. Such outlier eigenvalues are not observed for the finely tuned
model. In both panels, most of the eigenvalues for configuration 2
in the common disk are hidden behind those for configuration 1,
although the distribution in the common disk is quite similar between
the two configurations.
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FIG. 14. (a) A simulation in the same setting as Fig. 10(c) is
performed and the mean activity of the excitatory population is
shown. The values of the model parameters are indicated in the panel.
(b) The entire eigenvalue spectrum of the coefficient matrix B of the
linear variational equation (B1), calculated for the indicated time
point of the numerical simulation [(a) arrow]. (c) The eigenvalue
spectra of B are also calculated by using two sets of independent
random weight configurations and independent random neuronal
activities of the same first- and second-order moments as those of
the simulated activities used in (b) (indicated as “random 1” and
“random 2,” respectively). In these spectra, outlier eigenvalues are
observed [arrowheads in (b) and (c)], while most of the eigenvalues
are distributed over a common disk. In (c), most of the eigenvalues
for “random 2” in the common disk are hidden behind those for
“random 1,” although the distributions in the common disk are quite
similar in the two settings.

observed dynamics. The spectrum of Bi j
k�

(t ) is calculated with
h(k)

i (t ) at an arbitrarily chosen time point t in the regular orbit
of the finely tuned model with external inputs [the indicated
point of Fig. 14(a)]. Since the sum of a row of B is not
finely tuned to a fixed value even if J is the synaptic weight
matrix of the finely tuned model, a previous result suggests
that B has configuration-dependent outlier eigenvalues [60].
We observe this in Fig. 14(b). In Fig. 14(c), we also show the
eigenvalue spectrum of the same random coefficient matrix,
Bi j

k�
= Ji j

k�
φ′(h(�)

j ), but for which Ji j
k�

and φ′(h(�)
j ) are generated

independently in such a manner that they have the same first-
and second-order moments as those used for Fig. 14(b). These
spectra have a common disk-form distribution of eigenvalues
and outlier eigenvalues at different positions, as expected
from the previous study [60]. A previous study [67] also
calculated the spectra of the coefficient matrices of the linear
variational equations around dynamics of RNNs and showed
that they agreed with those estimated from random matrix
theory. The results also agreed with the largest Lyapunov
exponent calculated from the linear response theory based on
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FIG. 15. Static states [(a) and (b)] and coherent oscillations
[(c) and (d)] observed in direct simulations and simulations of
the mean-field equations for the model with finely tuned synaptic
weights. The simulations are conducted for the same condition as
Fig. 2, except for the random numbers used for the simulations
and the parameter values (σ0, g0 ) = (1.2, 50) used here. Activity
patterns of the network are plotted in the same manner as in Fig. 2.
These nonchaotic solutions are occasionally observed, depending on
the configuration of the random connectivity or on the sequence of
random numbers used for solving the mean-field equations.

an MFT. By analogy with this, our stochastic linear response
theory derived in Sec. IV B 3, Sec. IV B 4, Appendix H, and
Appendix I is expected to allow further quantitative evaluation
of the agreement between random matrix theory with outliers
and our stochastic MFT. We leave this as a challenge for the
future.
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FIG. 16. The raster plots of firing activities of one hundred
representative excitatory and inhibitory neurons of the LIF model
with sinusoidal external inputs applied to

√
N excitatory neurons.

The parameter values used for the simulations are indicated above the
panels. As we increase the amplitude A of the sinusoidal inputs, the
network undergoes a transition from (a) partially entrained dynamics
with irregular firing to (b) coherent dynamics completely entrained
to the input. The values of the other model parameters are the same
as for Fig. 12, but the synaptic weights are finely tuned.
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FIG. 17. [(a)–(e)] The numbers of the configurations for which
each of the qualitatively different dynamics is observed are counted
and summarized in a graph for one hundred direct simulations of
(a) the finely tuned rate-neuron network without external inputs,
(b) the untuned rate-neuron network without external inputs, (c) the
finely tuned rate-neuron network with sinusoidal external inputs,
(d) the untuned LIF-neuron network without external inputs, and
(e) the finely tuned LIF-neuron network with sinusoidal external
inputs, with the indicated number of neurons for each population. For
(a)–(e), we use the same settings as for Figs. 15, 6(g), 10(c), 12(c),
and 16(b), respectively, except for the random weight configurations.

APPENDIX C: VARIETY OF NETWORK DYNAMICS
FOR DIFFERENT SYSTEM SIZES

Here, we investigate how often we observe each of the
qualitatively different solutions in simulations of the network
models with different system sizes. We do this by conducting
simulations of the models with random weight configurations.
We use the same model equation and parameter values as for
Figs. 6(g), 10(c), and 12(c), and for occasionally observed
fixed-point and limit-cycle solutions for autonomous networks
with finely tuned synaptic weights [Fig. 15]. We also examine
stimulus-driven dynamics of networks of LIF neurons, by
applying sinusoidal inputs to

√
N excitatory neurons as de-

scribed by Eqs. (4) and (47). The input term in these equations
are added to the right-hand side of Eq. (51). As mentioned
in the main text, the entire network gets entrained to the
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FIG. 18. [(a) and (b)] Typical mean activity of the excitatory
population (thick red line) and typical activities of five representative
excitatory neurons (thin lines in different colors) in networks with
finely tuned synaptic weights for (σ0, g0 ) = (1.15, 4) with the irreg-
ular external input described by Eq. (D1) for the indicated parameter
values are shown in the upper panels. For (b), two magnified images
of the indicated parts are also shown. The largest Lyapunov expo-
nents of the dynamics are also shown above these panels. The values
read out from the networks in the same manner as in Figs. 11(a) and
11(b) (tinit = 2500) are shown in the lower panels. [(c) and (d)]
Normalized standard deviations of the read-out values from networks
with the same model settings as for (a) and (b), respectively, except
for different population sizes and random weight configurations.
The averages of Ŝγ over fifteen different configurations, together
with their standard errors, are plotted on logarithmic scales. In (d),
a straight line with slope −1/2, representing Ŝγ ∝ N−1/2, is also
shown.

sinusoidal input in a configuration-dependent manner, as we
increase the amplitude of the input [Fig. 16].

In the model setting for Figs. 6(g), 10(c), 12(c), and
16(b), we find that the frequency with which each type of
solution is observed does not depend much on the system size
[Figs. 17(b)–17(e)], but it does in the model setting for Fig. 15
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[Fig. 17(a)]. These findings are consistent with the results of
the stability analysis we perform in Sec. IV B 3, Sec. IV B 4,
Appendix H, and Appendix I.

APPENDIX D: APPLICATION OF IRREGULAR
EXTERNAL INPUTS

A different type of external input of particular interest is an
irregular input with no periodicity. As an example of such an
input, we use the following filtered noise:

Ĩ (t ) = √
c0AF−1[̂Icutoff ](t ),

Îcutoff (ω)
def= �(ωcutoff − |ω|)F[IWG](ω),

c0
def=

∫ ωmax

ωmin

|F[IWG](ω)|2dω

/∫ ωmax

ωmin

|̂Icutoff (ω)|2dω,

(D1)

where F and F−1 indicate Fourier and inverse-Fourier trans-
forms, respectively. We define white Gaussian noise with unit
variance, IWG, with 〈IWG(t )IWG(t − τ )〉 = δ(τ ). The domain
of integration is between ωmin and ωmax, which are given
suitably in the discrete Fourier transforms we use for the
numerical calculations below [78]. To filter out the high-
frequency components, we use the step function �(ω) = 1 for
ω � 0 and �(ω) = 0 for ω < 0.

Examining the properties of the network dynamics re-
sulting from these irregular inputs, we find that the largest
Lyapunov exponent decreases and becomes negative as we
increase the amplitude A of the input. By analogy with the
results shown in Sec. IV C 3, we hypothesize that neuronal
activities are coherent in the dynamics with the negative

largest Lyapunov exponents. In Figs. 18(a) and 18(b), we
show typical activity patterns for the networks with the neg-
ative and positive largest Lyapunov exponents, given these
irregular inputs. Coherence among the neurons is not seen
in the activity patterns. To further test the hypothesis, we
read out values linearly from these networks according to
Eqs. (48) and (49) and examine the scaling of the read-out
values in the same manner as for Figs. 11(c) and 11(d).
Figures 18(c) and 18(d) show that the normalized standard
deviations of the values read out from networks with negative
exponents do not depend much on the system size, while those
calculated from networks with positive exponents are roughly
proportional to 1/

√
N . This suggests that the networks un-

dergo a transition to coherent dynamics as we increase the
amplitude of the irregular external input, even though coher-
ence among the neurons is not obvious from their activity
patterns.

APPENDIX E: PATH-INTEGRAL REPRESENTATION
OF THE DYNAMICS

In this section, we derive the MFT described in Sec. III
based on a path-integral representation of dynamics. The
approach based on path-integral representations has recently
become increasingly popular in the analysis of RNNs and
other disordered systems [34,67,79–83]. Our argument and
notation follow Ref. [83]. We refer readers to the first two
sections of Ref. [83] for precise definitions and notations for
the path integral we use below.

We first analyze the autonomous dynamics of the model
with finely tuned synaptic weights described in Sec. III A. The
moment-generating functional for the dynamics of the present
model from an initial condition a is given by

Z[j] = lim
�t→+0

T/�t∏
α=1

{∫ ∞

−∞
dhα exp

(
jTα hα�t

)}
p(h1, h2, . . . , hT/�t |h0 = a). (E1)

In the above, following Ref. [83], we collectively denote {h(k)
i }k,i by h as a single column vector, and add the subscript α as the

time index. The superscript T denotes transposition. The probability density over the sample paths is denoted by p. Hereafter,
we sometimes use the same sort of collective notation without mentioning it. The main step in deriving the MFT for the present
model is to transform the above functional into an integral with respect to the sample paths for the mean activity. Putting the
right-hand side of the model equation equal to f (h), and using the following Fourier representation of the Dirac delta functional:

δ(h) = 1

(2π i)2N

∫ i∞

−i∞
dh̃ exp(̃hT h), (E2)

the above generating functional is transformed as follows:

Z[j,̃ j] = lim
D→+0

lim
�t→+0

T/�t∏
α=1

{∫ ∞

−∞
dhα

} T/�t−1∏
α′=0

{∫ i∞

−i∞

dh̃α′

(2π i)2N

}

× exp

(
T/�t−1∑
α′′=0

h̃T
α′′

(
hα′′+1 − hα′′ − f (hα′′ )�t − aδα′′,0 + D

2
h̃α′′

)
+ jTα′′+1hα′′+1�t + j̃Tα′′ h̃α′′�t

)
def=

∫
DhDh̃ exp

(∫ ∞

−∞
h̃(t )T (∂t h(t ) − f (h(t )) − aδ(t )) + j(t )T h(t ) + j̃(t )T h̃(t )dt

)
. (E3)

In the above, we have introduced an auxiliary field j̃ for calculating the response function (see Ref. [83]). In the above definition,
we adopt the Ito convention and take the noiseless limit in defining the path integrals for the dynamics. In this section, we assume
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that the noiseless limit, thermodynamic limit, and stepsize limit all commute with one another. Note that we have

Z[j,̃ j]|j≡0 = 1 (∀̃j), (E4)

because this quantity is the limit of integrals of proper probability densities. In the following, we represent inner products with
respect to time in the L2 sense, using a vectorial notation such as

h̃T h
def=

∫ ∞

−∞
h̃(t )T h(t )dt . (E5)

Rewriting the above with a concrete form for f and making the dependence on configurations explicit, we obtain

Z[j,̃ j|J] =
∫

DhDh̃ exp

[∑
k

S
[
h(k), h̃(k)

]− ∑
k

h̃(k)T

{∑
�

σ0√
N
J̃k�φ

(
h(�)

)+ ∑
�

gk�√
N

M1φ
(
h(�)

)}+
∑

k

j(k)T h(k)+
∑

k

j̃(k)T h̃(k)

]

=
∫

DθDm̃DhDh̃ exp

[∑
k

S
[
h(k), h̃(k)] −

∑
k

h̃(k)T
∑

�

σ0√
N
J̃k�φ

(
h(�)) −

∑
k

m̃T
k

∑
�

gk�√
N

1T
(
φ
(
h(�)) − φ�1

)
+

∑
k

(
m̃k − 1T h̃(k)

)T
θk +

∑
k

j(k)T h(k) +
∑

k

j̃(k)T h̃(k)

]
. (E6)

Here, we define the action:

S
[
h(k), h̃(k)

] def= h̃(k)T (∂t + 1)h(k). (E7)

We define the vector and matrix for which all entries are unity at each timestep as 1 and M1, respectively. The left action of M1

is thus given by

M1 :
{
φ
(
h(�)

j (t )
)}

�, j,t
→

⎧⎨⎩∑
j′

φ
(
h(�)

j′ (t )
)⎫⎬⎭

�, j,t

. (E8)

The column vector which consists of φ(h(k)
i ) has been denoted by φ(h(k) ). From the first line to the second line of Eq. (E6), we

have inserted the Dirac delta functional equating m̃k and 1T h̃(k) for each t , where 1T denotes the following operation:

1T :
{̃
h(k)

i (t )
}

i,t →
{∑

i

h̃(k)
i (t )

}
t

. (E9)

Note that, under the condition in Eq. (3), the insertion of any value of φ� does not affect the value of the integrand in the last line
of Eq. (E6) as long as φE = φI and hence

∑
�=E ,I gk�φ� = 0 hold. We will determine the precise value of φk below.

Next, we take the configurational average of the integrand of the above equation. We consider unit Gaussian measures for
J i j

k�
denoted by N (J i j

k�
). Other distributions for these random variables can be analyzed in essentially the same manner, where

distributions with zero mean and unit variance give the same result (to see this, expand the exponential in the integrand in terms
of small values). Focusing on the term involving J̃ i j

k�
, we have

∫
dN

(
J i j

k�

)
exp

⎛⎝−h̃(k)T
i

σ0√
N
J i j

k�
φ
(
h(�)

j

) +
∑

j′
h̃(k)T

i

σ0√
N

J i j
k�

N
φ
(
h(�)

j′
)⎞⎠ = exp

⎡⎣ σ 2
0

2N

⎧⎨⎩
∫

h̃(k)
i φ

(
h(�)

j

)− ∑
j′

1

N
h̃(k)

i φ
(
h(�)

j′
)
dt

⎫⎬⎭
2⎤⎦.

(E10)

Taking the product of the right-hand side of the above equation over k, �, i, and j, we obtain the part of the integrand involving
{J i j

k�
}k,�,i, j as

exp

⎡⎣∑
k,�

σ 2
0

2N

⎧⎨⎩∑
i, j

∫
ds dt h̃(k)

i (s)̃h(k)
i (t )

(
φ
(
h(�)

j (s)
) − φ̌�(s)

)(
φ
(
h(�)

j (t )
) − φ̌�(t )

)⎫⎬⎭
⎤⎦. (E11)
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Here, φ̌� denotes the average of φ(h(�)
j ) over the � population. We now introduce an auxiliary field by inserting the following

Dirac delta functionals:

δ

⎛⎝−NQ�,1(s, t ) +
∑

j

(
φ
(
h(�)

j (s)
) − φ̌�(s)

)(
φ
(
h(�)

j (t )
) − φ̌�(t )

)⎞⎠
=

∫
DQ�,2 exp

⎡⎣∫
ds dt Q�,2(s, t )

⎧⎨⎩−NQ�,1(s, t ) +
∑

j

(
φ
(
h(�)

j (s)
) − φ̌�(s)

)(
φ
(
h(�)

j (t )
) − φ̌�(t )

)⎫⎬⎭
⎤⎦, (E12)

δ

⎛⎝−N φ̌�(t ) +
∑

j

φ
(
h(�)

j (t )
)⎞⎠ =

∫
Dψ̃� exp

⎡⎣ψ̃T
�

⎧⎨⎩−N φ̌� +
∑

j

φ
(
h(�)

j

)⎫⎬⎭
⎤⎦. (E13)

Following the convention in Ref. [83], we regard Q�,i (i = 1, 2) as matrices and use the following notation:

QT
�,1Q�,2 =

∫
ds dt Q�,1(s, t )Q�,2(s, t ), h̃(k)T

i Q�,1h̃(k)
i =

∫
ds dt h̃(k)

i (s)Q�,1(s, t )̃h(k)
i (t ). (E14)

Using Eqs. (E11)–(E13), we take the average of the moment-generating functional over the probability distribution PJ (J ) of Ji j
k�

as follows:

Z[j,̃ j] =
∫

dPJ (J )Z[j,̃ j|J]

=
∫

DθDm̃DQ1DQ2Dψ̃Dφ̌DhDh̃ exp

⎛⎝−N
∑

�

QT
�,1Q�,2 +

∑
k,i

S
[
h(k)

i , h̃(k)
i

]

+
∑
k,�,i

σ 2
0

2
h̃(k)T

i Q�,1h̃(k)
i −

∑
k,i

h̃(k)T
i θk +

∑
�, j

�φ
(�)T
j Q�,2�φ

(�)
j +

∑
k

j(k)T h(k) +
∑

k

j̃(k)T h̃(k)

+
∑
�, j

ψ̃T
� φ

(
h(�)

j

) − N
∑

�

ψ̃T
� φ̌�

⎞⎠ exp

(
−

∑
k

m̃T
k

∑
�

gk�√
N

1T
(
φ
(
h(�)

) − φ�1
) +

∑
k

m̃T
k θk

)
. (E15)

Here, φ(h(�)
j ) − φ̌� is denoted by �φ

(�)
j . Using this representation, we note that the argument of the first exponential takes the

form of an independent interaction between each neuron and the auxiliary fields if the values of θk , φ̌�, ψ̃�, Q�,1, and Q�,2 are
fixed.

In the above equation, we notice that, for fixed sample paths for θ and m̃, the integral of the first exponential function with
respect to Q1, Q2, ψ̃, φ̌, h, and h̃ gives the generating functional for the following dynamics of a fictitious RNN with a uniform
external input θk (t ):

d

dt
h(k)

i (t ) = −h(k)
i (t ) + σ0

∑
j,�

J̃ i j
k�√
N

φ
(
h(�)

j (t )
) + θk (t ). (E16)

The dynamics of this fictitious RNN are no longer under the effects of balanced excitation and inhibition, and therefore solved
by a conventional MFT. We first rewrite the averaged generating functional for these dynamics as

Z
∗
[j,̃ j|θ ] =

∫
DQ1DQ2Dψ̃Dφ̌DhDh̃ exp

⎛⎝−N
∑

�

QT
�,1Q�,2 +

∑
k,i

S
[
h(k)

i , h̃(k)
i

] +
∑
k,�,i

σ 2
0

2
h̃(k)T

i Q�,1h̃(k)
i −

∑
k,i

h̃(k)T
i θk

+
∑
�, j

�φ
(�)T
j Q�,2�φ

(�)
j +

∑
k

j(k)T h(k) +
∑

k

j̃(k)T h̃(k) +
∑
�, j

ψ̃T
� φ

(
h(�)

j

) − N
∑

�

ψ̃T
� φ̌�

⎞⎠. (E17)
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The method for obtaining the dynamics described by the above moment-generating functional has been developed in previous
studies [32,83]. First, the above functional is rewritten as

Z
∗
[j,̃ j|θ ] =

∫
DQ1DQ2Dψ̃Dφ̌ exp

(
−N

∑
�

QT
�,1Q�,2 + N

∑
k

lnZk[Q1, Q2, ψ̃, φ̌, j,̃ j|θ ] − N
∑

�

ψ̃T
� φ̌�

)
,

Zk[Q1, Q2, ψ̃, φ̌, j,̃ j|θ ]
def=

∫
DhDh̃DPj,̃j(l,̃ l) exp

(
h̃(k)T (∂t + 1)h(k) +

∑
�

σ 2
0

2
h̃(k)T Q�,1h̃(k) − h̃(k)T θk + l(k)T h(k) + l̃(k)T h̃(k)

+ (
φ
(
h(k)

) − φ̌k
)T

Qk,2
(
φ
(
h(k)

) − φ̌k
) + ψ̃T

k φ
(
h(k)

))
. (E18)

In the second equation, h(k) and h̃(k) are no longer collections of variables corresponding to individual neurons but instead
are one-dimensional variables for a representative neuron feeling the mean fields. Similarly, l(k) and l̃(k) are one-dimensional
variables that take values randomly drawn from the measure Pj,̃j corresponding to j and j̃:

Pj,̃j
def= ⊗k

(
1

N

∑
i

δj(k)
i

δ̃j(k)
i

)
. (E19)

Applying the saddle-point method, we find that the entire probability mass of the path integral of the dynamics at j = j̃ = 0
concentrates at the values of φ̌�, ψ̃�, Q�,1, and Q�,2 that maximize the integrand of the first of Eq. (E18). Taking the functional
derivatives and examining the stationarity conditions, we obtain these optimal values as

Q∗
�,2 =

∑
k

σ 2
0

2

〈̃
h(k )̃h(k)T

〉 = 0, Q∗
�,1 = 〈(

φ
(
h(�)

) − φ̌�

)(
φ(h(�)

) − φ̌�

)T 〉
,

ψ̃∗
� = −2

〈
Q∗

�,2

(
φ
(
h(�) − φ̌�

)〉 = 0, φ̌∗
� = 〈φ(

h(�)
)〉. (E20)

Here, the bracket denotes the expected value of the argument for all possible sample paths weighted according to the path-integral
representation of the fictitious dynamics. The zeros for Q∗

�,2 and ψ̃∗
� are obtained by taking directional functional derivative with

respect to j̃(k)
i (t ) = α(k)(t ) at α = 0 and j = 0 and using the normalization of the probability density (see also the arguments in

Refs. [83,84]). We actually have

δZ
∗[

0,
{̃
j(k)
i (t ) = α(k)(t )

}
k,i,t

∣∣θ]
δα(k)δα(k)T

∣∣∣∣∣
α=0

= N
〈̃
h(k )̃h(k)T

〉 = 0,
δZ

∗[
0,

{̃
j(k)
i (t ) = α(k)(t )

}
k,i,t

∣∣θ]
δα(k)

∣∣∣∣∣
α=0

= N
〈̃
h(k)

〉 = 0, (E21)

because we have Z
∗
[0,̃ j|θ ] = 1 for any j̃, similarly to Eq. (E4). Then, following the argument in Ref. [83], we can regard the

dynamics of individual neurons, as described by the second of Eq. (E18), as linear dynamics driven by a set of i.i.d. Gaussian
noise with correlation Q∗

�,1 and drift term θk . Thus we obtain

(1 + ∂t )(1 + ∂s)
〈
δh(k)(t )δh(k)(s)

〉 =
∑

�

σ 2
0

〈(
φ
(
h(�)(t )

) − 〈
φ
(
h(�)(t )

)〉)(
φ
(
h(�)(s)

) − 〈
φ
(
h(�)(s)

)〉)〉
,

(1 + ∂t )
〈
h(k)(t )

〉 = θk (t ). (E22)

This is the solution for the fictitious RNN described by Eq. (E16).
We now return back to the generating functional for the original dynamics in Eq. (E15). Note that the integrand of Eq. (E17)

gives a proper probability density over the sample paths for the fields. Then, because of the independence among neurons for
fixed values of θk and m̃k , the integrand in Eq. (E15) can be rearranged into the following form with the aid of the central limit
theorem:

Z[0, 0] =
∫

DθDm̃Dη exp

(
−1

2

∑
�

ηT
� Q∗−1

�,1 η� −
∑

�

F� +
∑

k

m̃T
k (θk −

∑
�

gk�η�) − const.

)
. (E23)

Here, we have set the values of φE = φI to 〈φ(h(�)
j )〉, the configuration and population average of φ(h(�)

j ) over the fictitious

dynamics for each sample path for θk . We have defined η�
def= 1√

N
1T (φ(h(�) ) − φ�1). We determine the above normalization

term, F�, below. Noting that the auxiliary field m̃k is imposing equality between θk and
∑

� gk�η�, the above equation determines
the probabilities with which the sample paths for η� and θk are realized, and the density for each value of η� is given by

p{η}({η�}�) ∝ exp

(
−1

2

∑
�

ηT
� Q∗−1

�,1 η� −
∑

�

F�

)
. (E24)
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Note that this density is at most O(1) in terms of the neuron count, and therefore, does not affect the values of Q�,1 and Q�,2,
which have most of the probability mass.

Because of the condition, gEE = gIE = g0 and gEI = gII = −g0, we have θE = θI
def= θ from θk = ∑

� gk�η�. Since the right-
hand sides of Eq. (E22) take the same values for k = E , I , we have〈

δh(E )(t )δh(E )(s)
〉 = 〈

δh(I )(t )δh(I )(s)
〉 def= D(t, s), (E25)〈

h(E )(t )
〉 = 〈

h(I )(t )
〉 def= m(t ), (E26)〈(

φ
(
h(E )(t )

) − 〈
φ
(
h(E )(t )

)〉)(
φ
(
h(E )(s)

) − 〈
φ
(
h(E )(s)

)〉)〉 = 〈(
φ
(
h(I )(t )

) − 〈
φ
(
h(I )(t )

)〉)(
φ
(
h(I )(s)

) − 〈
φ
(
h(I )(s)

)〉)〉 def= C(t, s).

(E27)

We have Q∗
E ,1 = Q∗

I,1 = C from Eq. (E20), and hence FE = FI
def= F . Defining η =

√
2

2 (ηE − ηI ) and η =
√

2
2 (ηE + ηI ) and

combining these with Eqs. (E22) and (E24) and the equality, θE = θI = g0(ηE − ηI ), we obtain the realization probability of
m(t ) given by

(1 + ∂t )m(t ) =
√

2g0η(t ), pη(η) ∝ exp
(− 1

2ηT Cη − 1
2ηT Cη − 2F − const.

)
, (E28)

which is equivalent to Eqs. (17) and (19). We also obtain the dynamical equation for the correlation matrix for the microscopic
fluctuations from Eqs. (E22), (E25), and (E27) as

(1 + ∂t )(1 + ∂s)D(t, s) = 2σ 2
0 C(t, s), (E29)

which is identical to Eq. (15).
Finally, we identify the normalization term F . Let us consider the following representation,

η = Hξ, HHT = C. (E30)

If H is independent of η, this transformation, together with the probability density in Eq. (E28), yields i.i.d. unit Gaussian
variables ξ . In this case, the normalization term is given by exp(−F ) = exp(− 1

2 ln |C|) = |C|−1/2. This is the Jacobian
accompanying the transformation of probability densities over η and ξ . However, in the present setting, H depends on η. For this
case, taking the nonlinear deformation of the coordinates spanned by ξ into account, we expect that the normalization term F is
given by the Jacobian ln |H + ∂H

∂ξ
ξ | and hence that the transformation η = Hξ still gives unit Gaussian variables for ξ . Here, the

Jacobian matrix is rearranged as

Hi j +
∑

α

∂Hiα

∂ξ j
ξα = Hi j +

∑
α,β

∂Hiα

∂ηβ

∂ηβ

∂ξ j
(H−1η)α = ∂ηi

∂ξ j
⇒ ∂η

∂ξ
=

(
1 − ∂H

∂η
H−1η

)−1

H, (E31)

which yields Eq. (18). Although rigorous treatment of this point encounters the mathematical difficulty in rigorously dealing
with path-integrals, the validity of the above normalization term is supported by the fact that it yields the proper normalization
of the path integral, which is consistent with Eq. (E4). This normalization needs to be kept in mind as we perform perturbative
expansion below.

Below, we describe the outline of how the above theory is modified for the case with external input to
√

N excitatory neurons
and for the case with untuned synaptic weights. For the case with Ĩ (t ) �= 0 in Eq. (4), the following O(

√
N ) correction is

introduced to Eq. (E18):

Z
∗
[j,̃ j|θ ] =

∫
DQ1DQ2Dψ̃Dφ̌ exp

(
−N

∑
�

QT
�,1Q�,2 + N

∑
k

lnZk[Q1, Q2, ψ̃, φ̌, j,̃ j|θ ]

+
√

N (ln Z̃E [Q1, Q2, ψ̃, φ̌, j,̃ j|θ ] − lnZE [Q1, Q2, ψ̃, φ̌, j,̃ j|θ ]) − N
∑

�

ψ̃T
� φ̌�

)
,

Z̃E [Q1, Q2, ψ̃, φ̌, j,̃ j|θ ]
def=

∫
DhDh̃DPj,̃j(l,̃ l) exp

(
h̃(E )T (∂t + 1)h(E ) +

∑
�

σ 2
0

2
h̃(E )T Q�,1h̃(E ) − h̃(E )T θE − ĨT h̃(E )

+ l(E )T h(E ) + l̃(E )T h̃(E ) + (
φ
(
h(E )

) − φ̌E
)T

QE ,2
(
φ
(
h(E )

) − φ̌E
) + ψ̃T

E φ
(
h(E )

))
. (E32)
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In the subsequent saddle point method, however, we notice that the O(
√

N ) correction does not affect the values of Q∗
�, j , ψ̃∗

� ,

and φ̌∗
� in the leading order. Then, the neurons feel the same Gaussian fields as those described by Eqs. (E20). Then, the second

exponential in Eq. (E15) is modified as

exp

[
−

∑
k

m̃k
T

{∑
�

gk�√
N

1T
\S

(
φ
(
h(�)

) − φ�1
) + g0√

N
1T
S
(
φ
(
h(�)

) − φ�

) − θk

}]
, (E33)

with φ� = 〈φ(h(�)
j )〉 j /∈S . In the above equation, 1S (1\S ) de-

notes a vector whose elements are one (zero) for indices
belonging to S , and zero (one) otherwise. We easily find that
the second term in the above exponential gives the driving-
force term, φ̃, for the mean dynamics [Eq. (29)]. We also find
that the exclusion of the sum of the

√
N random values in the

first term followed by the division by
√

N does not affect the
values of the driving-force term η in the leading order. Thus,
with η given by Eq. (E28), we obtain the mean-field equations
for the stimulus-driven dynamics as presented in Sec. III D.

For the untuned model, we easily see that the averag-
ing with respect to the untuned random synaptic weights
leads to the replacement of �φ

(�)T
j Q�,2�φ

(�)
j in Eq. (E15) by

φ(h(�)
j )T Q�,2φ(h(�)

j ). By a straightforward application of the
same argument as above, we obtain the results presented in
Sec. III C.

APPENDIX F: EFFICIENT METHOD FOR SOLVING
THE MEAN-FIELD EQUATIONS

In this section, we show how the stochastic mean-field
equations are numerically solved by recursively updating
the statistics characterizing the microscopic and macroscopic
dynamics of the system. In the main text and Appendix E, we
found that self-consistent equations (14) and (15) determine
the time evolution of the statistics of the microscopic fluctua-
tions. These equations are rewritten as(

1 + ∂t1

)(
1 + ∂t2

)
D(t1, t2) = 2σ 2

0 C(t1, t2). (F1)

Dealing with the above equation requires us to retain large
matrices. To reduce the computational cost, we recursively up-
date matrices of smaller size by using the following auxiliary
matrix that retains the effect of the boundary conditions:

R
def= 2σ 2

0

(
1 + ∂t1

)−1
C, (F2)

which means R is the solution of the ordinary differential
equation, (1 + ∂t1 )R = 2σ 2

0 C, from suitable initial conditions,
and the initial conditions do not affect the values of A at time
indices distant from those of the initial conditions because of
the decay with the unit decay constant. For the dynamics of
the untuned model, matrix C should be suitably replaced by
C̃ = C + φφ

T
.

Suppose that we have values of m(t1), η(t1), φ(t1), C(t1, t2),
D(t1, t2), and R(t1, t3) for timesteps t � t1, t2 � t − T1, and
t − �t � t3 � t − T1. For the model with external inputs, also
suppose that we have values of φ̃(t1). The length of the time
interval T1 should not be too large. In what follows, we obtain
the values of these vectors and matrices for a time index one
step beyond the currently available entries.

We first update the value of m, which is obtained from the
values of η(t ), φ(t ), and φ̃(t ) by applying the Euler method to
Eq. (19) or (29).

Next, we update R. The values of R(t + �t, t3) for t −
�t � t3 � t − T1 are obtained by solving Eq. (F2) from the
initial values, R(t, t3), by using the Euler method. For the
values of R(t1, t ), we need to solve Eq. (F2) from the unknown
initial value, R(t − T1, t ). We obtain the initial value by apply-
ing the discrete Fourier transform to Eq. (F2):

(1 + iω)R̂(ω, t ) = 2σ 2
0 Ĉ(ω, t ). (F3)

This implicitly assumes that the regularity of the correlation
function 2σ 2

0 C is captured by the discrete Fourier transform.
Actually, if the microscopic dynamics of the model are chaotic
and have a relatively short correlation time, then, C(t1, t ) ≈ 0
for t1 � t − T1 holds and we can use the initial condition,
R(t − T1, t ) ≈ 0, which is given also by Eq. (F3). If the
entire dynamics have periodic components with a relatively
short period, the Fourier transform detects the corresponding
peak of the correlation function in the frequency domain and
Eq. (F3) is expected to provide an accurate initial condition.
Either one of these two situations is almost always the case if
we use a sufficiently large value of T1. The exception among
the cases we have investigated in this study is one in which
the external input is irregular and the network dynamics retain
finite irregularly varying correlation over a very long time.
In this case, the above two assumptions do not hold and
we do not attempt to obtain a numerical solution from the
MFT.

We use the initial value of the solution obtained by solv-
ing Eq. (F3) and then applying the inverse discrete Fourier
transform. Note that, although the discrete Fourier transform
captures decaying and regular patterns in the autocorrelation
function, it does not necessarily provide a good approximation
to the solution over the entire time domain. Thus we solve
the ordinary differential equation (F2) again from the initial
values thus obtained, not directly using the solution obtained
from the inverse discrete Fourier transform.

Once we obtain the updated values of R, those of D are
obtained straightforwardly with the Euler method by noting
that Eqs. (F1) and (F2) yield(

1 + ∂t2

)
D(s, t2) = R(s, t2). (F4)

We are not concerned about the initial conditions for this
equation; for the values of D(s, t + �t ) with s � t , we can
use the values of D(s, t ) as initial conditions. The value of
D(t + �t, t + �t ) is almost independent of the initial value,
D(t + �t, t − T1), since the variation at time t2 = t − T1 con-
verges exponentially with unit time constant.
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Next, we obtain the updated values of C(t + �t, s), φ(t + �t ), and φ̃(t + �t ) from D and m. They are computed by using
Eqs. (11), (14), and (29), which can be written more precisely as

C(t1, t2) = 〈(φ(z1) − φ(t1))(φ(z2) − φ(t2))〉

=
∫

dN (w)
∫

dN (y1)

{
φ

(
D1/2

11

(√
1 − |D12|

(D11D22)1/2
y1 + sgnD12

√
|D12|

(D11D22)1/2
w

)
+ m1

)
− φ(t1)

}

×
∫

dN (y2)

{
φ

(
D1/2

22

(√
1 − |D12|

(D11D22)1/2
y2 +

√
|D12|

(D11D22)1/2
w

)
+ m2

)
− φ(t2)

}
, (F5)

φ(t1) = 〈φ(z1)〉 =
∫

dN (w)
∫

dN (y1)φ

(
D1/2

11

(√
1 − |D12|

(D11D22)1/2
y1 + sgnD12

√
|D12|

(D11D22)1/2
w

)
+ m1

)
, (F6)

φ̃(t1) + φ(t1) = 〈φ(z1 + δv(t1))〉

=
∫

dN (w)
∫

dN (y1)φ

(
D1/2

11

(√
1 − |D12|

(D11D22)1/2
y1 + sgnD12

√
|D12|

(D11D22)1/2
w

)
+ m1 + δv(t1)

)
. (F7)

In the above, y1, y2 and w are independent unit Gaussian
variables integrated with dN (w) = exp(−w2/2)dw/

√
2π .

We have used the abbreviations Dαβ = D(tα, tβ ) and mα =
m(tα ) for α, β = 1, 2. In the calculation of φ̃, we use δv(t )

def=
(1 + ∂t )−1 Ĩ (t ). To calculate the double integral in the above
efficiently, we use a table that retains the values obtained by
performing one of the two integrations with respect to y1 or
y2 for a fixed value of w. More precisely, we prepare a table
consisting of the values of the integral∫

dN (y)φ(αy + β ), (F8)

for different values of (α, β ). In the calculation of Eq. (F5),
we perform the double integration by interpolating the values
in the table and integrating them with respect to w.

Finally, we obtain a realization of the random variable,
η(t + �t ). Recall that the realization probability of η is give
by Eq. (20), which is rewritten as

P(η(t + �t )|{η(t − s)}s�0) ∝ exp
(− 1

2ηT C−1η
)
. (F9)

The above conditional Gaussian distribution has mean μt+�t

and variance νt+�t , with

μt+�t = cT
t+�tC

−1
t :t−T2

η, (F10)

νt+�t = C(t + �t, t + �t ) − cT
t+�tC

−1
t :t−T2

ct+�t . (F11)

In these equations, we define the column vector ct+�t (s1)
def=

C(s1, t + �t ) and matrix Ct :t−T2 (s1, s2)
def= C(s1, s2) for the

restricted range of time indices t − T2 � s1, s2 � t . Since
approximation errors may be larger at the boundary of the
time domain, we use a smaller value of T2(< T1). From
the above, we obtain a realization of η(t + �t ) using inde-
pendent unit Gaussian random variable ξt+�t as

η(t + �t ) = μt+�t + √
νt+�tξt+�t . (F12)

In this way, we obtain all necessary updated values.
For the computation in Eq. (F12), we need to calculate the

inverse matrix, C−1
t :t−T2

. Since our computation of matrix C is
based on numerical integration, small amounts of errors are

inevitable. When the inverse matrix is computed, the effects
of small errors in the small eigenvalues of the matrix can be
large. Thus we introduce a small ridge, computing (Ct :t−T2 +
εdiag(Ct :t−T2 ))−1 instead of C−1

t :t−T2
, where the diagonal matrix

diag(Ct :t−T2 ) consists of the diagonal elements of Ct :t−T2 . This
amounts to ignoring the small eigenvalues of C. Also, since
taking matrix inverse at every timestep is inefficient, we
update the inverse matrix using the formula,

(A + pqT + qpT )−1

= A−1 − 1 + apq

(1 + apq)2 − appaqq

×
{

bqbT
p + bpbT

q − app

1 + apq
bqbT

q − aqq

1 + apq
bpbT

p

}
,

(F13)

for a square symmetric matrix A and column vectors p and q
of the corresponding size. In the above, we define

app = pT A−1 p, apq = pT A−1q, aqq = qT A−1q,

bp = A−1 p, bq = A−1q. (F14)

Applying this formula with A = Ct :t−T2 , p(t − T2) = −1,
p(t − s1) = 0 for s1 �= T2, q(t − T2) = 0 and q(s2) = C(t −
T2, s2) for t − T2 < s2 � t gives the inverse matrix of
Ct :t−T2+�t in the upper left part of the output ma-
trix. Applying this formula with A(t + �t, t + �t ) = C(t +
�t, t + �t ), A(s1, t + �t ) = A(t + �t, s1) = 0, A(s1, s2) =
C(s1, s2), p(t + �t ) = 1, p(s1) = 0, q(t + �t ) = 0, and
q(s1) = C�(t + �t, s1) for t − T2 < s1, s2 � t then gives
C−1

�,t+�t :t−T2+�t . To avoid the accumulation of numerical er-
rors, we directly compute the inverse matrix every 500 time
steps. In the main text, we use the following values of the
parameters: T1 = 480, T2 = T1/2 for Figs. 6 and 10, and
T1 = 960, T2 = T1/2 for Fig. 2. We use ε = 1.0 × 10−6 for
g0 = 0.25 in Fig. 2, ε = 1.0 × 10−3 for Figs. 6 and 10, and
ε = 1.0 × 10−4 for the rest. We use the discrete time steps
with step size �t = 15/128. Each simulation is performed
using 16 cores of recent versions of Intel Xeon processors in
parallel for a few hours–a few days.

013253-28



SPONTANEOUS AND STIMULUS-INDUCED COHERENT … PHYSICAL REVIEW RESEARCH 2, 013253 (2020)

APPENDIX G: PERTURBATIVE EXPANSION FOR CHAOTIC SOLUTIONS WITH MEAN ACTIVITIES
OF SMALL AMPLITUDES

In Sec. IV A 1, we have mentioned a perturbative expansion around g0 = 0 for the calculation of the moments of the mean
activity. This perturbative calculation scheme, however, turns out to not work well. We briefly explain how it is performed and
why it does not work well. According to our MFT, the probability distribution over sample paths for the mean activity m(t ) is
given by (1 + ∂t )m(t ) = √

2g0η(t ) with

p(η) = exp
(− 1

2ηT C[η]η − F [η] − const.
)
. (G1)

In this equation, we make explicit the dependence of C and F on η. Although the above equation is derived for sample paths
from a fixed initial condition, we assume that it holds on the entire time axis. This is justified by the intuition that the mixing
property of chaotic dynamics keep the calculated moments from being severely affected by the boundary values.

In what follows, for illustration, we focus on the calculation of autocorrelation

〈m(t )m(t + τ )〉 = g2
0

π

∫
R2

eip1t−ip2(t−τ ) 1

(1 + ip1)(1 − ip2)
〈̂η(p1 )̂η(p2)〉d p1d p2, (G2)

in the frequency domain, which is easier to carry out than that in the time domain. Here, ·̂ denotes the Fourier transform. Thus
our objective is to compute the following moment:

〈̂η(p1 )̂η(p2)〉 =
∫

Dη̂Dη̂̂η(p1 )̂η(p2)
1

Z
exp

(
−1

2
η̂

T
Ĉ [̂η]̂η − F̂ [̂η]

)
, (G3)

where we define the normalization constant Z and the Fourier transform of the autocorrelation Ĉ [̂η](ω1, ω2)
def=

1
2π

∫
R2 e−iω1t+iω2sC[η](t, s)dtds. We also define F̂ with F̂ [̂η] = F [η].

For this calculation, we need to compute the perturbed correlation matrix, which can be carried out by differentiating Eq. (E29)
with respect to η. The first-order response in D(t, s) then obeys the following equation:

(1 + ∂t )(1 + ∂s)δD(1)(t, s) = a1(t − s)δD(1)(t, s) + a2(t − s)δD(1)(t, t ) + a2(s − t )δD(1)(s, s)

+ a3(t − s)δm(t ) + a3(s − t )δm(s), (G4)

where we define a1(t − s) = 2σ 2
0 〈φ′(h(t ))φ′(h(s))〉0, a2(t, s) = σ 2

0 {〈φ′′(h(t ))φ(h(s))〉0 − φ′′
0 φ0}, and a3(t − s) =

2σ 2
0 {〈φ′(h(t ))φ(h(s))〉0 − φ′

0φ0}. Here, the average over the unperturbed dynamics with m(t ) ≡ 0 is denoted by the angle

bracket with subscript 0, and we use abbreviations such as φ0
def= 〈φ(h(t ))〉0. These coefficients originate from the differentiation

of C(t, s) with respect to D(t, s) and m(t ), as summarized in Appendix J. Since φ(h(t )) − φ0 and φ′(h(t )) − φ′
0 are odd and

even functions of h(t ), and since the dynamical variable h(t ) is distributed symmetrically around h(t ) = 0 in the unperturbed
dynamics, we find a3(t, s) = 0. Thus there is no driving force in the above equation, and we obtain δD(1)(t, s) ≡ 0.

Next, we examine the second-order response in D(t, s), which obeys the following nonhomogeneous linear equation:

(1 + ∂t )(1 + ∂s)δD(2)(t, s) = a1(t − s)δD(2)(t, s) + a2(t − s)δD(2)(t, t ) + a2(s − t )δD(2)(s, s)

+ b1(t − s)δm(t )2 + b1(s − t )δm(s)2 + b2(t − s)δm(t )δm(s), (G5)

where we define b1(t − s) = 2σ 2
0 {〈φ′′(h(t ))φ(h(s))〉0 − φ′′

0 φ0} and b2(t − s) = 2σ 2
0 {〈φ′(h(t ))φ′(h(s))〉0 − φ′

0

2}.
To obtain a solution to this equation, we first compute an approximate solution that satisfies

(1 + ∂t )(1 + ∂s)δD(2)
0 (t, s) = b2(t − s)δm(t )δm(s) + · · · , (G6)

by ignoring the first three terms of the right-hand side of Eq. (G5). This equation is solved in the frequency domain as

δ̂D
(2)
0 (ω1, ω2) = 2g2

0√
2π (1 + iω1)(1 − iω2)

∫
R

b̂2(ω3 )̂η(ω1 − ω3 )̂η(ω2 − ω3)

(1 + i(ω1 − ω3))(1 + i(ω2 − ω3))
dω3 + · · · (G7)

The above solution leaves a residual error on the right-hand side of Eq. (G5). Then, we recursively make corrections to the
solution by considering the residual error as a new nonhomogeneous term and solving

(1 + ∂t )(1 + ∂s)δD(2)
k+1(t, s) = a1(t − s)δD(2)

k (t, s) + a2(t − s)δD(2)
k (t, t ) + a2(s − t )δD(2)

k (s, s), (G8)

in the frequency domain.
Assuming that the series thus obtained is convergent, we obtain the second-order response in the form δD(2)(t, s) =∑∞
k=0 δD(2)

k (t, s). Using this response, we obtain the response in C(t, s) as δ̂C
(2)

(ω1, ω2) = (1 + iω1)(1 −
iω2)δ̂D

(2)
(ω1, ω2)/(2σ 2

0 ).
Now, we obtain

〈̂η(p1 )̂η(p2)〉 ≈ 〈̂η(p1 )̂η(p2)〉0 + 〈̂
η(p1 )̂η(p2)

(
1
2 η̂

T
Ĉ[0]−1δ̂C

(2)
Ĉ[0]−1η̂ − 1

2Ĉ[0]−1 � δ̂C
(2) + · · · )〉c. (G9)
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Here, the second angle bracket denotes average of just the
connected contribution between the external legs and the
interaction vertex, as is conventional in diagrammatic calcu-
lations [56]. The symbol � denotes the elementwise product
of two matrices followed by integration with respect to the
two argument variables. We omit to write down the terms
originating from the complicated dependence of F on η. In
principle, we can calculate the desired moment from the above
expansion.

However, this calculation scheme turns out to be difficult to
carry out. The difficulty originates from the slow convergence
of the sum of the series. Because of this, we need to compute
δD(2)

k up to a large k. However, we find that the diagrammatic
calculations of δD(2)

k up to a large k requires us to carry out
multiple integrals explicitly, and this is computationally in-
tractable. This happens because of the lack of interchangeabil-
ity between the diagrammatic averaging and the recursion in
Eq. (G8). In the main text, because of this difficulty, we restrict
ourselves just to the autocorrelation function calculated us-
ing the crudest approximation, 〈̂η(p1 )̂η(p2)〉 ≈ 〈̂η(p1 )̂η(p2)〉0

[Figs. 3(a) and 3(c)].

APPENDIX H: PERTURBATIVE STABILITY
ANALYSIS OF FIXED POINTS

In this section, we analyze the stability of fixed-point so-
lutions observed in Sec. IV B 3 of the main text. We consider

the case in which the mean activity initially takes a constant
value, m(t ) = mf for t � 0. According to the MFT, the mean
activity is determined by

(1 + ∂t )δm(t ) =
√

2g0η(t ) − mf , (H1)

where we define, δm(t )
def= m(t ) − mf . To analyze the dynam-

ics of the mean activity, we first need to examine the associ-
ated microscopic Gaussian fluctuations determined by the past
values of m(t ). For a certain range of constant values of m(t ),
these Gaussian fluctuations have a stable fixed-point solution.
For these fixed points, the correlation matrices D(t, s) and
C̃(t, s) take constant values, D0 and C̃0, which are obtained by
solving the self-consistent equation, Eq. (38). As described
in the main text, we assume that η(t ) = mf/

√
2g0 holds for

t � 0. Then, the network state stays at the fixed point without
requiring external inputs, and we have δm(t ) = 0 for t > 0 if
there is no external input in t > 0. This condition is expected
to be satisfied for some value of mf with a nonzero probability
(see the discussion at the end of this section as well). We then
examine the linear response for t > 0 to temporary external
perturbative inputs, collectively denoted by p.

We first examine responses in the correlation matrices up
to the second order in p, which determines O(|p|) response in
η(t ). By simply differentiating the dynamical equation for the
autocorrelation function, Eq. (E29), we find that the first-order
response in D(t, s), which is denoted by δD(1)(t, s), obeys

(1 + ∂t )(1 + ∂s)δD(1)(t, s) = a1δD(1)(t, s) + a2
(
δD(1)(t, t ) + δD(1)(s, s)

) + a3(δm(t ) + δm(s)) + p1(t ) + p1(s), (H2)

where the term, p1(t ), represent the effects of the input component that is correlated with the unperturbed neuronal fluctuations,
and we define a1 = 2σ 2

0 〈φ′(h)2〉0, a2 = σ 2
0 〈φ′′(h)φ(h)〉0 and a3 = 2σ 2

0 〈φ′(h)φ(h)〉0. These coefficients originate from the
differentiation of C̃(t, s) with respect to D(t, s) and m(t ), which is summarized in Appendix J. Note that these coefficients
must be appropriately replaced by the values of centered statistics, such as σ 2

0 〈(φ′′(h) − φ′′
0 )(φ(h) − φ0)〉0, for the case with

finely tuned synaptic weights. Here, we use abbreviations such as φ′′
0 = 〈φ′′(h)〉0 for the statistics averaged over the unperturbed

dynamics. The solution for the above equation, with boundary condition, δD(1)(t, s) = 0 for t, s � 0, satisfies

δD(1)(t, s) =
∫ t

0
e−(1−a1 )(t−τ )

(
a2δD(1)(τ, τ ) + a3δm(τ ) + p1(τ )

)
dτ

+
∫ s

0
e−(1−a1 )(s−τ )

(
a2δD(1)(τ, τ ) + a3δm(τ ) + p1(τ )

)
dτ. (H3)

Putting s = t and differentiating both sides of the above equation with respect to t , we have

((1 − a1 − 2a2) + ∂t )δD(1)(t, t ) = 2(a3δm(t ) + p1(t )), (H4)

which then gives

δD(1)(t, t ) = 2
∫ t

0
e−(1−a1−2a2 )(t−τ )(a3δm(τ ) + p1(τ ))dτ. (H5)

Comparing the above solution with Eq. (H3) gives the solution for δD(1)(t, s). This response is bounded if 1 − a1 − 2a2 > 0 and
if δm and p1 are bounded.

From the above analysis, by putting δD(1)(t, s) = r(t ) + r(s), we obtain

D(t, s) ≈ D0 + r(t ) + r(s) + O(|p|2). (H6)

Noting that the first-order response in φ(t )φ(s) is given by

δ(φ(t )φ(s)) = φ0
(

1
2φ′′

0 δD(t, t ) + φ′
0δm(t ) + 1

2φ′′
0 δD(s, s) + φ′

0δm(s)
)
, (H7)
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we have the correlation matrix for (1 + ∂t )−1η(t ),

V (t, s)
def= (1 + ∂t )

−1(1 + ∂s)−1(C̃(t, s) − φ(t )φ(s))

= (
√

V0 + v(t ))(
√

V0 + v(s)) + O(|p|2), (H8)

where we define V0 = 1
2σ 2

0
D0 − φ

2
0 and

v(t ) = 1

2σ 2
0

√
V0

{(
1 − 2σ 2

0 φ0φ
′′
0

a1 + 2a2

)
r(t ) + 2σ 2

0

(
φ0φ

′′
0 a3

a1 + 2a2
− φ0φ

′
0

)
(1 + ∂t )

−1δm(t ) + 2σ 2
0 φ0φ

′′
0

a1 + 2a2
(1 + ∂t )

−1 p1(t )

}
. (H9)

Noting that V (t, s) = V0 and v(t ) = v(s) = 0 holds for t, s � 0, and that V (t, s) is the correlation matrix that determines the
realization probability of (1 + ∂t )−1η(t ), we have

(1 + ∂t )
−1η(t ) = mf√

2g0

(
1 + v(t )√

V0

)
+ δη(2)(t ) + O(|p|2), (H10)

where δη(2)(t ) represents O(|p|) fluctuations due to the higher-order response in D(t, s). Here, recall the argument about the
representation of η in terms of unit Gaussian variables ξ in Appendix E. In the case with finely tuned synaptic weights, the
correlation matrix for (1 + ∂t )−1η(t ) is given by D(t, s)/2σ 2

0 and we have the same representation with V0 = D0/2σ 2
0 and

v(t ) = r(t )/2σ 2
0

√
V0.

Next, we consider the second-order response in D(t, s), which is denoted by δD(2)(t, s). Differentiating Eq. (H2) once again,
we obtain

(1 + ∂t )(1 + ∂s)δD(2)(t, s) = a1δD(2)(t, s) + a2
(
δD(2)(t, t ) + δD(2)(s, s)

) + b1δD(1)(t, s)2 + b2
(
δD(1)(t, t )2 + δD(1)(s, s)2

)
+ b3δD(1)(t, t )δD(1)(s, s) + b4

(
δD(1)(t, t ) + δD(1)(s, s)

)
δD(1)(t, s)

+ b5(δm(t )2 + δm(s)2) + b6δm(t )δm(s) +
∑

i

p2,i(t )p2,i(s), (H11)

where we define b1 = 2σ 2
0 〈φ′′(h)φ′′(h)〉0, b2 = σ 2

0
2 〈φ′′′′(h)φ(h)〉0, b3 = σ 2

0 〈φ′′(h)2〉0, b4 = 2σ 2
0 〈φ′′′(h)φ′(h)〉0, b5 =

2σ 2
0 〈φ′′(h)φ(h)〉0 and b6 = 4σ 2

0 〈φ′(h)φ′(h)〉0. We also define the random part of the input, p2,i(t ).
The solution for the above nonhomogeneous linear equation is obtained as the superposition of special solutions for the

equations with each of the nonhomogeneous terms on the right-hand side plus a solution for the homogeneous equation. Noting
δD(1)(t, s) = r(t ) + r(s), we rewrite the nonhomogeneous terms as

(b1 + 4b2 + 2b4)(r(t )2 + r(s)2) + b5(δm(t )2 + δm(s)2) + (2b1 + 4b3 + 4b4)r(t )r(s) + b6δm(t )δm(s) +
∑

i

p2,i(t )p2,i(s).

(H12)

We ignore the first two terms above, because they only yield
responses of O(|p|2) magnitude in η(t ). This can be seen
by checking that these two terms only make corrections to
Eq. (H8) of the following form:

V (t, s) ≈ (
√

V0 + v(t ) + O(|p|2))(
√

V0 + v(s)

+ O(|p|2)) + o(|p|2). (H13)

Also note that the response in φ(t )φ(s) due to δD(2)(t, s)
is negligible for the same reason. Thus we are interested in
nonhomogeneous equations of the following form:

(1 + ∂t )(1 + ∂s)δD(2)(t, s)=a1δD(2)(t, s) + a2
(
δD(2)(t, t )

+ δD(2)(s, s)
) + q0(t )q0(s).

(H14)

In solving this equation, we first ignore the unknown quanti-
ties on the right-hand side and obtain the following approxi-
mate solution:

δD(2)
q,1(t, s) = q1(t )q1(s)

def= {(1 + ∂t )
−1q0(t )}{(1 + ∂s)−1q0(s)}. (H15)

With this solution, residual error a1q1(t )q1(s) + a2(q1(t )2 +
q1(s)2) remains on the right-hand side of Eq. (H14). We
then solve Eq. (H14) by regarding the residual-error term
as a new nonhomogeneous term and by ignoring the two
unknown terms on the right-hand side again. Then, we obtain
the following two corrections:

δD(2)
q,2(t, s) = q2(t )q2(s)

def= {√a1(1 + ∂t )
−1q1(t )}{√a1(1 + ∂s)−1q1(s)},

(H16)

δD(2)′
q,2 (t, s) = a2

{
(1 + ∂t )

−1
(
q2

1

)
(t ) + (1 + ∂s)−1

(
q2

1

)
(s)

}
.

(H17)

The second term in the above is again negligible because of
its O(|p|2) contribution to η. We can then recursively obtain
δD(2)

q, j , ( j � 2) in the same manner as above and obtain the rel-

evant part of the solution for Eq. (H11) as
∑

1� j<∞ δD(2)
q, j (t, s).

If we have a1 < 1, this series is convergent because
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we have

‖q̂ j+1‖1 = ‖√a1
̂(1 + ∂t )−1q j‖1 � √

a1‖q̂ j‖1. (H18)

Here, ·̂ denotes the Fourier transform, and ‖ · ‖1 denotes the
L1-norm. From the above analysis, we now have the first- and
second-order responses in D(t, s), which yields

D(t, s) ≈ D0 + r(t ) + r(s) +
∑

j,1��<∞
d2, j�(t )d2, j�(s)

+
∑

j,1��<∞
d3, j�(t )d3, j�(s). (H19)

In the above, we obtain d2, j�(t ) by applying the recursion rela-
tion in Eq. (H16) with q�(t ) = d2, j�(t ) and q0(t ) = d2,1,0(t ) =√

2b1 + 4b3 + 4b4r(t ) or d2,2,0(t ) = √
b6δm(t ). We also de-

fine d3, j�(t ) by applying the recursion relation in Eq. (H16)
with q�(t ) = d3, j�(t ) and q0(t ) = d3, j,0(t ) = p2, j (t ). Note that
v(t )v(s) needs to be suitably subtracted from these terms
to compensate the corresponding term in Eq. (H8), which
modifies the definitions of d2, j1 and d3, j1 described above. We
omit the precise expressions of these terms, because they do
not affect our conclusion.

Noting that the second-order response in D(t, s) does not
evoke a response in φ(t )φ(s) which leads to O(|p|) response
in η, we have the relevant part of the response in V (t, s),

V (t, s) ≈ (
√

V0 + v(t ))(
√

V0 + v(s)) + 1

2σ 2
0

⎧⎨⎩ ∑
j,1��<∞

d2, j�(t )d2, j�(s) +
∑

j,1��<∞
d3, j�(t )d3, j�(s)

⎫⎬⎭. (H20)

Putting d1(t ) = v(t )/
√

V0, we now have δη(2) in Eq. (H10) and obtain

(1 + ∂t )
−1η(t ) = mf√

2g0

(1 + d1(t )) + 1√
2σ0

⎛⎝∑
j,�

ξ j�d2, j�(t ) +
∑

j,�

ξ ′
j�d3, j�(t )

⎞⎠ + O(|p|2), (H21)

where we define i.i.d. unit Gaussian random variables, {ξ j�} j,�

and {ξ ′
j�} j,�. Once again, note that the outer-product represen-

tation in Eq. (H20) gives a transform of the form of (1 +
∂t )−1η = Uξ , UU T = V , which gives a representation of η

with unit Gaussian variables, ξ , as we discussed in Appendix
E. Together with the equation for m(t ) for t > 0,

(1 + ∂t )δm(t ) =
√

2g0δη(t ) + p0(t ),

δη(t ) = η(t ) − mf√
2g0

, (H22)

Eq. (H21) gives a self-consistent equation that the first-order
responses in m(t ) must satisfy. Here, we define the uniform
component of the input, p0(t ).

From the above relation, we obtain the first-order response
in m(t ) for a given set of values of {ξ j�} and {ξ ′

j�} by further
iteration. Initially, calculating d1(t ) and d3, j�(t ) for δm(t ) = 0
[denoted by d (0)

1 (t ) and d (0)
3, j�(t ), respectively], we have

δm(0)(t ) = (1 + ∂t )
−1 p0(t ) + mf d

(0)
1 (t ) + g0

σ0

∑
j,�

ξ ′
j�d (0)

3, j�(t ).

(H23)

The solution for the above equation needs the following
correction to the right-hand side of the first of Eq. (H22):

√
2g0δη

(1)(t ) = (1 + ∂t )

⎧⎨⎩mfd
(1)
1 (t ) + g0

σ0

∑
j,�

ξ j�d (1)
2, j�(t )

⎫⎬⎭
+ O(|p|2), (H24)

where d (1)
1 (t ) and d (1)

2, j�(t ) are the corrections to d1(t ) and
d2, j�(t ) due to the change δm(0)(t ). We then recursively

obtain δm( j) and δη( j) by alternately correcting the errors in
Eqs. (H21) and (H22). The sum of the series thus obtained
gives the desired first-order solution, δm(t ) = ∑

j�0 δm( j)(t ),
and the sum of this series converges with a nonzero probabil-
ity if we have a1 < 1 and∥∥d̂ (k)

1

∥∥
1 � θ1‖̂δm(k)‖1, (H25)

with mfθ1 < 1. From Eqs. (H5) and (H9), we find

θ1 = 1

2σ 2
0 V0

sup
ω

∣∣∣∣∣ a3

1 − a1 − 2a2 + iω

(
1 − 2σ 2

0 φ0φ
′′
0

a1 + 2a2

)

+ 2σ 2
0

1 + iω

(
a3φ0φ

′′
0

a1 + 2a2
− φ0φ

′
0

)∣∣∣∣∣. (H26)

Here, note that the norm of d (k)
2, j� exponentially decreases as

index � increases and the norm of d (k)
2, j0 is bounded by a

certain multiple of the norm of δm(k). This implies that, for
any positive θ2,∥∥∥∥∥∥√

2g0

∑
j,�

ξ j�d̂ (k)
2, j�

∥∥∥∥∥∥
1

< θ2‖̂δm(k)‖1 (H27)

holds with a nonzero probability. The convergence in 1-norm
in the frequency domain implies the uniform convergence
in the time domain, which asserts that p(t ) → 0 implies
δm(t ) → 0 as t → ∞ with the aid of the dominated conver-
gence theorem. Hence we have proved the linear stability with
a nonzero probability. Also note that a single configuration
of the random connectivity of the network corresponds to a
single set of values for {ξ j�}. Otherwise, the above solution is
not consistent with the linearity of the response.
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Besides the above stability result, we can also examine how
the response dynamics diverge depending on the configura-
tion. For example, suppose that the random coefficients ξ j�

take large values for small �, and that all the inputs initially
take constant values for a sufficiently long time. Then, the
constructed solution is likely to diverge at some t , because
the divergence of d (k)

2, j� for small � and for k → ∞ cannot be
compensated by the other terms. However, even for such a
divergent solution, if we restrict the domain of the solution
to a short time interval, t ∈ [0, t0], the supremum of d (k)

2, j� can
be controlled to decay as index k increases. Here, recall that
d (k)

2, j� is obtained by recursively applying (1 + ∂t )−1 to d (k)
2, j0

and suppose to choose a very short time interval compared
with the unit decay constant of (1 + ∂t )−1. This consideration
indicates that, for any values of ξ j� and ξ ′

j�, the constructed
solution converges over a short time interval.

Also, suppose the case in which the equality, mf =√
2g0η(0), is slightly violated and that the mean activity

is initially clamped to mf by an external input until the
clamping input is removed at t = 0. Then, the inequality
introduces a small constant, uniform, input term to the above
self-consistent equation for δm. Up to the first-order, this
results in the convergence of δm and η − mf/

√
2g0 to nonzero

values for t → ∞, with the same nonzero probability as that
for the above stability to an external input. This indicates
that a nonzero interval of values of η(0) around mf/

√
2g0

results in convergence to nearby fixed points. Thus we rea-
sonably expect the existence of fixed points with a nonzero
probability, although a rigorous proof of this needs care-
ful evaluation of all higher-order terms of the perturbative
expansion.

APPENDIX I: PERTURBATIVE STABILITY ANALYSIS
OF REGULAR OSCILLATORY SOLUTIONS

In this section, we extend the perturbation analysis devel-
oped in Appendix H and analyze the stability of the regular
oscillations observed in the main text. Although this analysis
is along the same lines as that in Appendix H, much more
complex calculations are required for the present case. The
complexity of these calculations would make it harder to
grasp the basic idea behind it. Thus we recommend readers
to first check Appendix H and to familiarize themselves with
the basic idea before reading this section. In what follows,
we present a theoretical framework of the analysis first and
then show the values of the derived bounding constants for
concrete cases at the end of the section.

Suppose that the mean activity of a network is initially
set to a periodic orbit mo(t ) for t � 0 and that temporary
external perturbative inputs, collectively denoted by p, are
applied for t > 0. Also suppose that the neuronal fluctuations
are coherent and phase locked to the oscillation for t � 0. As
we have seen in the main text, such coherent neuronal fluc-
tuations are found by iteratively applying the self-consistent
equation:

(1 + ∂t )(1 + ∂s)D(t, s) = 2σ 2
0 C̃(t, s), (I1)

with the fixed mean activity mo(t ). Concretely, we first trans-
form the autocorrelation function on the right-hand side to the

frequency domain: ̂̃C(ω1, ω2) = 1
2π

∫
e−iω1t eiω2sC̃(t, s)dtds.

Then, the left-hand side is obtained by a simple algebraic
computation in the frequency domain. After transforming
this back to the time domain, we update the values of
C̃(t, s) using Eq. (F5). Although this type of iterative ap-
proach is thought to be a heuristic method for finding a
solution, the convergence argument we make below pro-
vides criteria for judging whether the solutions thus ob-
tained are stable. In the unperturbed dynamics, we have
the following eigen-decomposition of the correlation matrix

for (1 + ∂t )−1η(t ): V (t, s)
def= (1 + ∂t )−1(1 + ∂s)−1(C̃(t, s) −

φ(t )φ(s)) = ∑
i λivi(t )vi(s) with real eigenvectors vi(t ). If

the microscopic part of the dynamics is coherent, the eigen-
vectors can be expanded with the Fourier basis, e�(t ) = ei�ω0t ,
for the basic frequency ω0, as vi(t ) = ∑

� vi�e�(t ). In the
initial unperturbed dynamics, the driving-force term η(t ) is
given by

(1 + ∂t )mo(t ) =
√

2g0η(t ) + g0φ̃(t ),

η(t ) = (1 + ∂t )
∑

i

√
λiξo,ivi(t ), (t � 0), (I2)

for a suitable set of values for {ξo,i}i. Otherwise, the sample
path for η(t ) is never realized [cf. Eq. (E28)]. Here, the
term φ̃ is the external driving-force term defined in Eq. (29).
For the model without external inputs, we set φ̃(t ) to zero.
For t > 0, the mean activity obeys the following dynamical
equation:

(1 + ∂t )δm(t ) =
√

2g0η(t ) − (1 + ∂t )mo(t ) + g0δφ̃(t ) + p0(t ),

(I3)

where we define δm(t ) = m(t ) − mo(t ) and define δφ̃(t ) as
the deviation of the function φ̃(t ) from the initial periodic
orbit. The last term, p0(t ), represents the effect of the uniform
component of the input.

To analyze the above response dynamics, we first examine
how a change in m(t ) evokes a response in D(t, s) for t, s � 0.
The first-order response in D(t, s) is denoted by δD(1)(t, s)
and obeys

(1 + ∂t )(1 + ∂s)δD(1)(t, s)

= a1(t, s)δD(1)(t, s) + a2(t, s)δD(1)(t, t )

+ a2(s, t )δD(1)(s, s) + a3(t, s)δm(t ) + a3(s, t )δm(s)

+
∑

i

√
λi((1 + ∂t )vi(t )p1,i(s) + p1,i(t )(1 + ∂s)vi(s)),

(I4)

where we define a1(t, s) = 2σ 2
0 〈φ′(h(t ))φ′(h(s))〉0, a2(t, s) =

σ 2
0 〈φ′′(h(t ))φ(h(s))〉0, and a3(t, s) = 2σ 2

0 〈φ′(h(t ))φ(h(s))〉0.
For the model with finely tuned synaptic weights, the above
coefficient functions must be suitably replaced. The coeffi-
cients originate from the differentiation of C̃(t, s) and C(t, s)
with respect to D(t, s) and m(t ), which is summarized in
Appendix J. The term p1,i represents the effects of the com-
ponent of the input that is correlated with the ith mode of the
unperturbed neuronal fluctuations.
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We also note that the first-order response in V (t, s) is given by

(1 + ∂t )(1 + ∂s)δV (1)(t, s) = 1

2σ 2
0

(
a1(t, s)δD(1)(t, s) + ã2(t, s)δD(1)(t, t ) + ã2(s, t )δD(1)(s, s) + ã3(t, s)δm(t )

+ ã3(s, t )δm(s) +
∑

i

√
λi((1 + ∂t )vi(t )p1,i(s) + p1,i(t )(1 + ∂s)vi(s))

)
, (I5)

where we define ã2(t, s) = 2σ 2
0 (〈φ′′(h(t ))φ(h(s))〉0 − φ′′

0(t )φ0(s)), and ã3(t, s) = 2σ 2
0 (〈φ′(h(t ))φ(h(s))〉0 − φ′

0(t )φ0(s)). For
the model with finely tuned synaptic weights, the response dynamics for D(t, s) and V (t, s) are the same up to a multiplication
constant.

A solution of the form δV (1)(t, s) = ∑
i

√
λi(vi(t )δvi(s) + δvi(t )vi(s)) is obtained from the above equations. By initially

ignoring the first three terms on the right-hand side of Eq. (I4) and using the expansion ak (t, s) = ∑
i j ak,i jei(t )e j (s), for k = 1,

2, and 3, we obtain the following approximate solution:

δD(1)
0 (t, s) =

∑
i

√
λi(vi(t )δd0,i(s) + δd0,i(t )vi(s)),

δd0,i(t ) =
∑

j

M3, ji(1 + ∂t )
−1(e j (t )δm(t )) + (1 + ∂t )

−1 p1,i(t ), (I6)

where we define e�(t ) = ∑
i e�ivi(t ) and M3, ji = ∑

� a3, j�e�i/
√

λi(1 + i�ω0). We also have

δV (1)
0 (t, s) =

∑
i

√
λi(vi(t )δv0,i(s) + δv0,i(t )vi(s)),

δv0,i(t ) = 1

2σ 2
0

∑
j

M̃3, ji(1 + ∂t )
−1(e j (t )δm(t )) + (1 + ∂t )

−1 p1,i(t ), (I7)

where we define M̃3, ji = ∑
� ã3, j�e�i/

√
λi(1 + i�ω0) with ãk (t, s) = ∑

i j ãk,i jei(t )e j (s), for k = 1, 2, and 3.
Since this solution leaves a residual error on the right-hand side of Eq. (I4), we make corrections recursively by solving

(1 + ∂t )(1 + ∂s)δD(1)
k+1(t, s) = a1(t, s)δD(1)

k (t, s) + a2(t, s)δD(1)
k (t, t ) + a2(s, t )δD(1)

k (s, s), (k � 0). (I8)

It is easily seen that each additional response can be represented as δD(1)
k (t, s) = ∑

i

√
λi(vi(t )δdk,i(s) + δdk,i(t )vi(s)), with

δdk+1,i(t ) = 1√
λi

∑
j,�

M12, j�i(1 + ∂t )
−1(e j (t )δdk,�(t )),

M12, j�i =
√

λ�

∑
m,n

{
v�ma1, jnen+m,i

1 − i(n + m)ω0
+ 2

∑
m,n

v�ma2, j−m,neni

1 − inω0

}
. (I9)

In the derivation of this equation, note that v�(t ) and δdk,�(t ) are real, and that expansion v�(t ) = ∑
m v�mem(t ) is used. We also

have the following similar equation for corrections to δV (1)(t, s), δV (1)
k (t, s) = ∑

i

√
λi(vi(t )δvk,i(s) + δvk,i(t )vi(s)):

δvk+1,i(t ) = 1

2σ 2
0

√
λi

∑
j,�

M̃12, j�i(1 + ∂t )
−1(e j (t )δdk,�(t )),

M̃12, j�i =
√

λ�

∑
m,n

{
v�ma1, jnen+m,i

1 − i(n + m)ω0
+ 2

∑
m,n

v�mã2, j−m,neni

1 − inω0

}
. (I10)

The first-order response in V (t, s) is then given by

δV (1)(t, s) =
∞∑

k=0

δV (1)
k (t, s) =

∑
k,i

√
λi(vi(t )δvk,i(s) + δvk,i(t )vi(s)) =

∑
i

√
λi(vi(t )δvi(s) + δvi(t )vi(s)), (I11)

if the series of δV (1)
k converges. Here, we define δvi(t ) = ∑

k δvk,i(t ).
To check the convergence and magnitude of the above first-order response, we iterate the recursion relation from different

initial values and check the 1-norm of the final result. More precisely, we numerically examine {δvi}i for initial input δm(t ) = eiωt

with different values of ω. From this calculation, we estimate the value of the bounding constant θ1, for
√

2g0
∑

i |ξo,i|‖δ̂vi‖1 �
θ1‖δ̂m‖1 + ∑

i θ
′
1,i‖p̂1,i‖1. For use below, we also estimate the value of the bounding constant θ2, for

∑
i ‖δ̂vi‖1 � θ2‖δ̂m‖1 +∑

i θ
′
2,i‖p̂1,i‖1. Here, note that the 1-norm is evaluated as the sum of the discrete components over the multiples of the basic

frequency ω0 and the continuous component over the other frequencies.
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From the convergent solution, we obtain

V (t, s) =
∑

i

(
√

λivi(t ) + δvi(t ))(
√

λivi(s) + δvi(s)) + O(|p|2). (I12)

The first-order response in V (t, s) results in

η(t ) = (1 + ∂t )

{∑
i

ξo,i(
√

λivi(t ) + δvi(t ))

}
+ δη(2)(t ), (t � 0), (I13)

where δη(2)(t ) is the response in η(t ) due to the higher-order responses in D(t, s).
Next, we examine the second-order response in D(t, s), which is denoted by δD(2)(t, s) and obeys the following equation:

(1 + ∂t )(1 + ∂s)δD(2)(t, s) = a1(t, s)δD(2)(t, s) + a2(t, s)δD(2)(t, t ) + a2(s, t )δD(2)(s, s) + b1(t, s)δD(1)(t, s)2

+ b2(t, s)δD(1)(t, s)δD(1)(t, t ) + b2(s, t )δD(1)(t, s)δD(1)(s, s) + b3(t, s)δD(1)(t, t )2

+ b3(s, t )δD(1)(s, s)2 + b4(t, s)δD(1)(t, t )δD(1)(s, s) + b5(t, s)δD(1)(t, s)δm(t )

+ b5(s, t )δD(1)(t, s)δm(s) + b6(t, s)δD(1)(t, t )δm(t ) + b6(s, t )δD(1)(s, s)δm(s)

+ b7(t, s)δD(1)(t, t )δm(s) + b7(s, t )δD(1)(s, s)δm(t ) + b8(t, s)δm(t )2

+ b8(s, t )δm(s)2 + b9(t, s)δm(t )δm(s) +
∑

i

p2,i(t )p2,i(s), (I14)

where coefficient functions b1(t, s)—b9(t, s) are suitably de-
fined and the random component of the input is denoted by
{p2,i}i. Similarly to Appendix H, we see that the second-order
response consist of two components: the first, denoted by
δD(2)′(t, s), involves second-order products of either δm(t ) or
δm(s) and contributes to O(|p|2) response in η; the second, de-
noted by δD(2)′′(t, s), involves cross-terms such as δm(t )δm(s)
and newly generates O(|p|) fluctuations in η. Then, our aim
is to show that the latter part of the second-order response
in D(t, s) can be represented as the sum of a series of outer
products of functions of time with exponentially decreasing
magnitudes, as we did in Appendix H. Note that the relevant
part of the second-order response in V (t, s) is the same as that
in D(t, s)/2σ 2

0 .
The approximate special solution δD(2)

0 (t, s) for Eq. (I14)
is obtained by ignoring the first three terms on the right-hand
side. Let us assume that the component of this solution that
contributes to O(|p|) response in η(t ) can be represented as
the sum of outer products with a certain convergence property.
Concretely, we assume

δD(2)
0 (t, s) =

∑
i

q0,i(t )q0,i(s), (I15)

where q0,i(t ) is a linear transformation of δm(t ) or input com-
ponents. We assume that the magnitude of q0,i is bounded as∑

i ‖q̂0,i‖1 � c‖δ̂m‖1, c
∑

j ‖p̂2, j‖1 for some finite constant c.
This assumption is reasonable because the nonhomogeneous
terms on the right-hand side of Eq. (I14) should represent a
positive semidefinite correlation matrix for newly generated
fluctuations, as we have observed in the case for fixed points.

We recursively make corrections to this solution by solving

(1 + ∂t )(1 + ∂s)δD(2)
�+1(t, s)

= a1(t, s)δD(2)
� (t, s) + a2(t, s)δD(2)

� (t, t )

+ a2(s, t )δD(2)
� (s, s). (I16)

Since the latter two terms on the right-hand side of this
equation yield only O(|p|2) contributions in η(t ), we ignore

these terms. Then, for δD(2)
� (t, s) = ∑

j q�, j (t )q�, j (s), we have

δD(2)
�+1(t, s) =

∑
i, j

q′
�+1,i, j (t )q′

�+1,i, j (s),

q′
�+1,i, j (t ) = (1 + ∂t )

−1
∑

j

√
ρ1, ju1, j (τ )q�,i(t ), (I17)

with eigendecomposition, a1(t, s) = ∑
j ρ1, ju1, j (t )u1, j (s).

Thus the iteration keeps the solution positive semidefinite.
If the solutions for this recursion equation converges,

we obtain the relevant part of the second-order response as
δD(2)(t, s) = ∑

� δD(2)
� (t, s). To evaluate the magnitude of

the solution, we iteratively solve the recursion equation and
see that, after a sufficient number of iterations, the solution
satisfies

δD(2)
�+1(t, s) ≈ θ3δD(2)

� (t, s). (I18)

If we have θ3 < 1, the series converges.
Using the representation in terms of outer products,

δD(2)
� (t, s) = ∑

i q�,i(t )q�,i(s), we obtain the response in η.
Combined with Eq. (I13), the overall linear response in η(t )
reads

η(t ) = (1 + ∂t )

⎧⎨⎩∑
i

ξo,i(
√

λivi(t ) + δvi(t ))

+ 1√
2σ0

∑
�, j

ξ�, jq�, j (t )

⎫⎬⎭, (I19)

where {ξ�, j}�, j are i.i.d. unit Gaussian random variables. Sub-
stituting the above into Eq. (I3), we obtain a self-consistent
equation,

δm(t ) =
√

2g0

∑
i

ξo,iδvi(t ) + g0

σ0

∑
�, j

ξ�, jq�, j (t )

+ g0(1 + ∂t )
−1δφ̃(t ) + (1 + ∂t )

−1 p0(t ). (I20)
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TABLE I. The values of the bounding constants that determine stability of regular oscillatory solutions are numerically estimated and
summarized in a table.

Model and orbit θ1 θ2 θ3 θ4 θ1 + g0θ4

untuned w/o input Fig. 6(g) 0.159 – 0.487 0 0.159
finely tuned w/o input Fig. 15(c) 3.81 × 10−3 – 1.02 0 3.81 × 10−3

finely tuned with input Fig. 10(c) 4.36 × 10−3 5.83 × 10−4 0.896 3.32 × 10−5 4.39 × 10−3

The norms of δvi(t ) and q�, j (t ) were evaluated by comparison
with the norm of δm(t ), as described above. For δφ̃(t ), by
putting 〈φ′′(h(E )

j (t ))〉 j /∈S − 〈φ′′(h(E )
j (t ))〉 j∈S = ∑

� φ
(2)
� e�(t )

and 〈φ′(h(E )
j (t ))〉 j /∈S − 〈φ′(h(E )

j (t ))〉 j∈S = ∑
� φ

(1)
� e�(t ), we

have

δφ̃(t ) =
∑

�

φ
(2)
� e�(t )δD(1)(t, t )

+
∑

�

φ
(1)
� (t )e�(t )δm(t ) + O(|p|2),

‖ ̂(1 + ∂t )−1δφ̃‖1 � θ4‖δ̂m‖1, (I21)

with

θ4 = θ2 sup
i,ω′

∣∣∣∣∣∑
�,n

√
λiφ

(2)
� vin

1 + i((� + n)ω + ω′)

∣∣∣∣∣
+ sup

ω′

∣∣∣∣∣∑
�

φ
(1)
�

1 + i(ω′ + �ω)

∣∣∣∣∣. (I22)

From this equation, we obtain the overall response in m(t )
by recursive computation. We first calculate δm(0)(t ) from
Eq. (I20), on the right-hand side of which δvi and q�, j are
computed just from the input p by setting δm = 0. Then, by
calculating functions δv

(k)
i , q(k)

�, j and δφ̃(k)(t ) from δm(k)(t ),
(k � 0) according to Eqs. (I7), (I9), (I15), (I17), and (I21),

we make corrections recursively:

δm(k+1)(t ) =
√

2g0

∑
i

ξo,iδv
(k)
i (t ) + g0

σ0

∑
�, j

ξ�, jq
(k)
�, j (t )

+ g0(1 + ∂t )
−1δφ̃(k)(t ). (I23)

We finally obtain δm(t ) = ∑∞
k=0 δm(k)(t ), which satisfies

Eq. (I20), if ‖δm(k+1)‖1 � θ‖δm(k)‖1 holds for some constant
θ < 1. This convergence condition is satisfied with a nonzero
probability if

θ1 + g0θ4 < 1, θ3 < 1. (I24)

Similarly to Appendix H, this convergence implies the linear
stability of the regular oscillation under examination for a
nonzero fraction of configurations of the random connectivity.
A single configuration of the random connectivity corre-
sponds to a single set of values for {ξ� j}�, j .

We numerically calculate the bounding constants in the
above condition for convergence, using the orbits of the mean
activity observed in Figs. 15(c), 6(g), and 10(c) for mo(t ). To
reduce the computational cost, we ignore eigenmodes {vi(t )}i

except for those for the 48 largest eigenvalues. The calculated
values are summarized in Table I, which suggest that the
regular oscillations observed in Figs. 6(g) and 10(c) are stable,
while those observed in Fig. 15(c) are not.

APPENDIX J: PRICE THEOREM AND DIFFERENTIATION
OF CORRELATION MATRIX ˜C

We have used the differentiation of correlation matrix C̃
with respect to D and m in Appendix G–I. This is given by the
following formula:

∂C̃(t1, t2)

∂D11
= 1

2
〈φ′′(z1)φ(z2)〉, ∂C̃(t1, t2)

∂D12
= 〈φ′(z1)φ′(z2)〉, ∂C̃(t1, t2)

∂D22
= 1

2
〈φ(z1)φ′′(z2)〉,

∂C̃(t1, t2)

∂m1
= 〈φ′(z1)φ(z2)〉, ∂C̃(t1, t2)

∂m2
= 〈φ(z1)φ′(z2)〉, ∂φ(t1)

∂D11
= 1

2
〈φ′′(z1)〉, ∂φ(t1)

∂D12
= ∂φ(t1)

∂D22
= 0,

∂φ(t1)

∂m1
= 〈φ′(z1)〉, ∂φ(t1)

∂m2
= 0,

∂φ(t2)

∂m2
= 〈φ′(z2)〉, ∂φ(t2)

∂m1
= 0. (J1)

The variables {zα}α=1,2 are Gaussian random variables that have the same first and second-order moments as {h(�)
j (tα )}α=1,2

(� = E , I), similarly to Eq. (F5). Also note that the above partial derivatives with respect to Dαβ are not total differentials
with respect to D(tα, tβ ) but are derivatives with respect to the corresponding variables that appear in Eq. (F5). The twice
differentiation is performed similarly and easily inferred from the above results. The differentiation of C is easily obtained from
the results for the differentiation of C̃ and φ. The above results can be derived by the differentiation of both sides of Eq. (F5)
followed by integration by parts, but are obtained more easily by performing the differentiation in the frequency domain in a
manner similar to the derivation of Price theorem [85] (also see [83] for a simpler example). We show the outline of how it is
performed below.
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Let us rewrite the representation of C̃ in Eq. (F5) as

C̃(t1, t2) =
∫

R3
φ( f1({Dαβ})y1 + f2({Dαβ})w + m1)φ( f3({Dαβ})y2 + f4({Dαβ})w + m2)dN (y1)dN (y2)dN (w)

= 1

2π

∫
R5

φ̂(ω1)φ̂(ω2)eiω1(( f1({Dαβ })y1+ f2({Dαβ })w+m1 )+iω2( f3({Dαβ })y2+ f4({Dαβ })w+m2 )dN (y1)dN (y2)dN (w)dω1dω2

= 1

2π

∫
R2

φ̂(ω1)φ̂(ω2)e− 1
2 ω2

1 f1({Dαβ })2− 1
2 ω2

2 f3({Dαβ })2− 1
2 (ω1 f2({Dαβ })+ω2 f4({Dαβ }))2+iω1m1+iω2m2 dω1dω2, (J2)

where functions f1– f4 of {Dαβ}α,β=1,2 are suitably defined. The Fourier transform is denoted by ·̂. From the second line to the
third line, we have used the characteristic function of a unit Gaussian measure, e− 1

2 ω2 = ∫
eiωX dN (X ). Differentiating the last

line with respect to, e.g. D12, and rearranging terms, we have

∂C̃(t1, t2)

∂D12
= − 1

2π

∫
R2

ω1ω2φ̂(ω1)φ̂(ω2)e− 1
2 ω2

1 f1({Dαβ })2− 1
2 ω2

2 f3({Dαβ })2− 1
2 (ω1 f2({Dαβ })+ω2 f4({Dαβ }))2+iω1m1+iω2m2 dω1dω2

= 1

2π

∫
R2

φ̂′(ω1)φ̂′(ω2)e− 1
2 ω2

1 f1({Dαβ })2− 1
2 ω2

2 f3({Dαβ })2− 1
2 (ω1 f2({Dαβ })+ω2 f4({Dαβ }))2+iω1m1+iω2m2 dω1dω2

=
∫

R3
φ′( f1({Dαβ})y1 + f2({Dαβ})w + m1)φ′( f3({Dαβ})y2 + f4({Dαβ})w + m2)dN (y1)dN (y2)dN (w)

= 〈φ′(z1)φ′(z2)〉. (J3)

From the first line to the second line, we have used the formula for the Fourier transform of derivatives, φ̂′(ω) = iωφ̂(ω). Other
differentiations in Eq. (J1) are calculated similarly.
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