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ABSTRACT: The electronic and steric properties of a new class of electron-rich and sterically hindered tertamethylated PNP pin-

cer ligands (Me4PNP
R
 = 2,6-bis[(dialkylphosphino)propyl]pyridine with R = 

i
Pr, 

t
Bu) are discussed. Introducing the methyl groups 

on the pincer arm prevents de-aromatization of the pincer framework and increases the bulkiness and electron-donating capacity of 

the ligand. Highly reactive Ni
I
 species are thus prevented from dimerizing and can be analyzed by a wide variety of spectroscopic 

methods. X-ray diffraction study shows that steric bulk has an important influence on the resulting geometric and spectroscopic 

properties of the Ni
I
 complexes. Complexes 5 and 6, which contain 

i
Pr groups on the phosphorus atoms, show a very rare see-saw 

geometry around the metal center, while 
t
Bu complexes 7 and 8 show a distorted square-planar geometry. Computational analysis 

reveals the SOMO for all complexes has a 𝑑𝑥2−𝑦2  character with the spin density mostly residing on the nickel. 

INTRODUCTION 

After the discovery and pioneering work by the groups of 

Shaw
1
 and Van Koten

2, 3
 in the 1970’s, pincer ligands and their 

associated complexes have become a mature organometallic 

research field. Many different types of pincer ligands have 

been designed that vary in the donor atoms, steric or electronic 

influence substituents on the donors, and the rigidity of the 

ligand in general (PCP,
4-15

 POCsp2OP,
16-22

 POCsp3OP,
23

 

POCN,
24-28

 PNP,
29-37

 PONOP,
38-45

 PIMCOP,
46

 and NNN
47-49

 

amongst others). The highly versatile and often electron-

donating nature of the pincer ligand framework allows for 

almost endless customization. Most pincer complex research 

has historically focused on second or third-row transition met-

als for their catalytic activities, or on stable oxidation states of 

first-row transition metals. In comparison, the interest in isola-

tion of complexes with first-row transition metals in unusual 

oxidation states
24, 50-60

 or the stabilization of highly reactive 

species
61-65

 have only gained popularity recently. Over the last 

decade, pincer based paramagnetic organometallic complexes 

have played an increasing role in catalysis, with first-row tran-

sition metals adopting an increasingly important role.
66-68

 In 

particular, the Ni
I
 oxidation state is paramagnetic and is less 

common than Ni
II
 and Ni

0
, but has growing importance in 

catalysis,
69-78

 coupling reactions,
70, 79-82

 and is proposed to play 

an important role in enzymatic processes.
83-88

  

While pincer complexes have been well studied over the past 

decades for Ni,
1, 17, 18, 42, 89-95

 the ability of most classic pincer 

ligands to undergo Metal-Ligand Cooperation (MLC) can 

obscure metal-based reactivity and favor two-electron path-

ways.
96

 In this regard, we have designed new, electron-rich 

ligands where any possible MLC is blocked by the addition of 

methyl groups on the pincer arm. The additional methyl 

groups also induces a highly sterically hindered environment, 

which limits substrate access to the metal center and prevents 

dimerization of complexes and intermolecular decomposition 

pathways. Thus, the ligand design principles also foresee that 

first-row, low-valent, mono-metallic complexes relevant to 

catalysis that are supported by these bulky ligands can be ex-

amined for pure, metal-based reactivity and their electronic 

properties can be studied more easily.  

The importance of low-valent nickel to catalysis and the well-

studied pincer examples of nickel complexes, led us to exam-

ine whether we can isolate Ni
I
 species. Gratifyingly, we found 

that our ligand framework readily affords Ni
I
 complexes, 

which are stable indefinitely at room temperature and whose 

structures vary based on the ligand’s sterics. Accordingly, we 

find that the bulkier 
t
Bu containing species 7 and 8 are closer 

to a square planar geometry while the 
i
Pr containing species 5 

and 6 adopt a very rare see-saw geometry. The new complexes 

were examined and characterized by electrochemistry, X-ray 

diffraction, UV-vis, EPR and DFT methods, showing that the 

geometry difference leads to drastically different spectroscopic 

features. 

RESULTS AND DISCUSSION 

Synthesis of ligands and Ni
II
 halide complexes. The bulky 

PNP ligands were synthesized by modification of the synthetic 

procedure for the previously reported unsubstituted PNP
R
BH3 

ligands (R = 
i
Pr, 

t
Bu),

97
 which also differs from a procedure for 

similar previously reported methylated ligands.
98

 They were 

then reacted subsequently with n-butyl lithium and methyl 

iodide multiple times (Scheme 1) to afford the fully methylat-

ed Me4PNP
R
BH3 ligands in 83-85% yields.  

 



 

 

Scheme 1. Preparation of Me4PNP
R
-BH3 and Me4PNP

R
 ligands 

 

Scheme 2. Preparation of Nickel(II) cationic complexes [1] to [4] 

 

The tetramethylated Me4PNP
R
BH3 ligand is deprotected by 

reaction with pyrrolidine at 90 °C for 18 hours, and high vacu-

um application for 4-6 hours following the reaction allows for 

a thorough removal of the pyrrolidine-BH3 complex formed. 

The resulting deprotected ligands (Me4PNP
R
 ligand) were 

isolated in pure form and characterized by NMR spectroscopy, 

and XRD for Me4PNP
tBu

. The deprotected ligand Me4PNP
iPr

 

is a viscous jelly that is unstable in air, while Me4PNP
tBu

 is a 

crystalline solid. Both protected forms are crystalline and can 

be kept for months under air without degradation. The depro-

tected ligands can be reacted in situ, in one pot after the depro-

tection step, with anhydrous Ni
II
 dihalides in THF at 60 °C 

overnight to afford complexes [Me4PNP
iPr

NiBr]Br ([1]Br), 

[Me4PNP
iPr

NiCl]Cl ([2]Cl), [Me4PNP
tBu

NiBr]Br ([3]Br), and 

[Me4PNP
tBu

NiCl]Cl ([4]Cl) in 57% to 85% yield. The halide 

counter-ion can be replaced using sodium tetrakis[3,5-

bis(trifluoromethyl)phenyl]borate (NaB(Ar
F
)4) to afford com-

plexes [1]B(Ar
F
)4, [2]B(Ar

F
)4, [3]B(Ar

F
)4, and [4]B(Ar

F
)4 in 

67% to quantitative yield (See Scheme 2). Those complexes 

allow for facile characterization by electrochemical methods.  
1
H NMR spectra of bis(isopropyl)phosphine-based complexes 

[1]X and [2]X (X = Br, Cl, or B(Ar
F
)4) exhibit two overlap-

ping doublets corresponding to Me groups of the CMe2 arms 

with splitting to the phosphorus atom, suggesting a lack of a 

mirror plane through the coordination plane of the square pla-

nar Ni complexes. This is also consistent with their solid-state 

structures (vide infra). Methyl groups of 
i
Pr groups also appear 

as two sets of multiplets showing splitting to the phosphorus 

atom. Complexes with bis(tert-butyl)phosphine donors show 

broadened signals for 
t
Bu groups and Me groups of the ligand 

arm in 
1
H NMR spectrum due to hindered rotation. VT NMR 

study of complex [3]B(Ar
F
)4 reveals that a broadened signal of 

one of the 
t
Bu groups resolves into three separate signals of 

Me groups, while the other broad singlet of 
t
Bu group remains 

unresolved even at −60 °C (see Figure S76).  

Solid-state structures of Ni
II
 complexes. All the complexes 

shown in Scheme 2 were analyzed by X-ray diffraction after 

their crystals were grown by different methods using either 

THF, acetone or benzene at rt or -30 °C. Table 1 lists the Ni-

ligand bond lengths and Ni centered bond angles for complex-

es [1]-[4], showing almost ideal square planar geometry 

around the metal center for this series of Ni
II
 complexes. The 

ORTEP diagrams of complexes [1]X-[4]X (X= Cl, Br) are 

presented in Figure 1, while those of complexes [1]B(Ar
F
)4-

[4]B(Ar
F
)4 are presented in Figures S5 to S8 of the SI.  

 

Figure 1. ORTEP diagrams for the cationic parts of complexes 

[1]Br (a), [2]Cl (b), [3]Br (c), and [4]Cl (d) with the thermal 

ellipsoids set at 50% probability level. Hydrogen atoms, counteri-

ons and solvent molecules are omitted for clarity. 

 

 



 

 

 

Table 1. Bond distances [Å] and angles [deg] for complexes [1]-[4]. The atom numbering corresponds to that of Figure 1. 

Complex Ni1–N1 Ni1–Hal Ni1–P1 Ni1–P2 ∠ P1–Ni1–P2 ∠ N1–Ni1–Hal 4’
a 4

[1]Br 1.918(2) 2.3015(4) 2.1880(6) 2.1924(6) 171.36(3) 176.49(6) 0.07 0.09 

[2]Cl 1.9153(7) 2.1658(2) 2.1922(2) 2.1861(2) 171.336(10) 176.52(2) 0.07 0.09 

[3]Br 1.9222(19) 2.3070(3) 2.2394(6) 2.2413(6) 171.68(2) 179.45(6) 0.04 0.06 

[4]Cl 1.9166(8) 2.1643(3) 2.2220(3) 2.2201(3) 171.405(11) 179.51(3) 0.04 0.06 

[1]B(ArF)4
b 

1.9095(13) 2.2827(2) 2.1786(4) 2.1805(4) 172.320(18) 176.66(4) 0.06 0.08 

[2]B(ArF)4
b 1.9135(11) 2.1548(3) 2.1763(3) 2.1779(3) 173.359(14) 179.34(3) 0.03 0.05 

[3]B(ArF)4
c 

1.9236(15) 2.2877(12) 2.2324(12) 2.2454(13) 171.87(5) 178.84(7) 0.04 0.07 

[4]B(ArF)4 1.9119(9) 2.1531(3) 2.2333(3) 2.2275(3) 172.587(12) 179.29(3) 0.04 0.06 

a Geometrical index 4’ and 4 for the nickel centers is calculated according to refs. 99-101. b There are two complexes in the asymmetric 

unit; data are tabulated for the first one. c Data are listed for the main disordered component. 

.  

 

Figure 2. Cyclic voltammogram of complexes [1]B(ArF)4 to 

[4]B(ArF)4 (1 mM) in 0.1 M nBu4NPF6/MeCN solution at 23 °C 

(scan rate 0.1 V s–1; 1.0 mm GC disk working electrode; the arrow 

indicates the initial scan direction).  

Table 2. Electrochemical properties of complexes 

[1]B(Ar
F
)4 to [4]B(Ar

F
)4 (V vs. Fc) 

Complex  E1/2 for NiII/I vs. Fca (ΔEp)
b
 

[1]B(ArF)4 –1.27 V (94 mV)  

[2]B(ArF)4 –1.35 V (90 mV) 

[3]B(ArF)4 –1.17 V (99 mV) 

[4]B(ArF)4 –1.34 V (95 mV) 

a
Measured vs. Fc+/Fc by CV in 0.1 M nBu4NPF6/MeCN, scan 

rate 100 mV s–1. b∆Ep is the peak potential separation calculated as 

difference between forward and reverse peak potentials. 

The geometry index for 4-coordinate complexes, 4’, varies 

between 0.03 and 0.07, which is close to the ideal square pla-

nar value of 4’ = 0.
101

 Complexes [1] to [4] show insignificant 

variation in the Ni–Npy bond lengths (1.9034(11) to 

1.9236(15) Å) and the Ni-halogen bond length varies only 

slightly between the same halogen-containing complexes 

(2.2827(2) to 2.3070(3) Å for Br, 2.1462(3) to 2.1658(2) Å for 

Cl-containing complexes). 

Electrochemical properties of Ni
II
 complexes. To test the 

stability of the bulky PNP framework and the possibility of 

oxidation or reduction of its associated nickel complexes, we 

studied the redox properties of the BH3 protected ligand and 

Ni
II
 complexes with [B(Ar

F
)4] counterion using cyclic 

voltammetry in MeCN solution using 
n
Bu4NPF6 as an 

electrolyte. (See Figures S102 to S107 in Supporting 

Information for the full voltammograms of all complexes and 

ligands).  

The protected ligands show two irreversible oxidation peaks in 

acetonitrile (See Table S9 in Supporting Information). For 

Me4PNP
iPr

BH3, the first oxidation appears at 0.92V and the 

second at 1.78 V, while Me4PNP
tBu

BH3 has oxidation 

potentials at 1.16 V and 1.87 V. No reduction waves are 

observed to -2.5 V vs. Fc for both ligands The complexes 

[1]B(Ar
F
)4 to [4]B(Ar

F
)4 exhibit quasi-reversible reduction 

waves (See Figure 2 and Table 2) with redox potentials 

ranging from -1.17 to -1.35 V vs. Fc and a peak-to-peak 

separation between 90-99 mV. We assign this wave to the 

Ni
II/I

 reduction, which is confirmed by further studies (vide 

infra). Generally, the Ni
II/I

 reduction potentials E1/2 of 

complexes containing a chloride, such as [2]B(Ar
F
)4 (E1/2 = -

1.35 V) or [4]B(Ar
F
)4 (E1/2 = -1.34 V),  

Scheme 3. Preparation of neutral Ni
I
 complexes 5-8 via 

electrochemical or chemical reduction with cobaltocene 

 



 

Table 3. Selected EPR parameters
a
 and effective magnetic moment μeff in solution for Ni

I
 complexes. 

Complex gx, gy, gz
b giso Axx (G)b Ayy (G)b Azz (G)b μeff (μB)c 

5 2.316, 2.309, 1.993 2.206 n.d. n.d. n.d. 2.07 

6 2.355, 2.293, 1.990 2.213 n.d. n.d. AP
zz = 18.7; 

AN
zz = 9.34 

2.18 

7 2.240, 2.150, 1.983 2.124 ABr
xx = 57.5; 

AP
xx = 49.8; 

AN
xx = 7.77. 

ABr
yy = 60.4; 

AP
yy = 51.8; 

AN
yy = 8.48. 

ABr
zz = 62.3; 

AP
zz = 55.6; 

AN
zz = 9.31. 

1.94 

8 2.250, 2.120, 2.000 2.123 ACl
xx = 10.7; 

AP
xx = 44.5; 

AN
xx = 7.56. 

ACl
yy = 11.3; 

AP
yy = 67.4; 

AN
yy = 8.02. 

ACl
zz = 12.0; 

AP
zz = 71.4; 

AN
zz = 8.50. 

1.82 

aMeTHF/acetone glass or frozen acetone, 84-95 K. bFrom simulated spectra. For complex 6, simulation cannot provide reliable superhy-

perfine splitting constants for gx and gy components due to signal broadening. cEvans method, acetone-d6 solvent, 298 K. 

 

are more negative than those of complexes containing a 

bromide ligand, such as [1]B(Ar
F
)4 (E1/2 = -1.27 V) and 

[3]B(Ar
F
)4 (E1/2 = -1.17 V). All complexes also show 

irreversible oxidation waves around 0.93 to 1.45 V. However, 

considering that the protected ligands also feature an 

irreversible oxidation wave at 0.98 V and 1.16 V vs. Fc for the 

Me4PNP
iPr

BH3 and Me4PNP
tBu

BH3, respectively, it likely 

corresponds to ligand oxidation. Accordingly, attempted 

detection of Ni
III

 intermediates by EPR spectroscopy during 

one-electron electrochemical or chemical oxidation of 

complex [1]B(Ar
F
)4 did not lead to any detectable 

paramagnetic species, and no single product could be isolated.  

Coulometric study of the reduction of complex [1]B(Ar
F
)4 

confirmed that the reduction wave corresponds to a one-

electron process (See Supporting Information Figure S108 for 

experimental details). Such reversible reduction waves 

suggested that stabilization of the uncommon Ni
I
 oxidation 

state might be possible and led us to further investigate one-

electron reduction chemistry of Me4PNP nickel halide 

complexes. A second irreversible reduction wave is observed 

at around -2.0 V for all complexes, which likely corresponds 

to the Ni
I/0

 reduction (see Supp. Info for more detail).  

Synthesis of Ni
I 

complexes and their characterization in 

solution. Following the cyclic voltammetry analysis, we 

performed bulk electrolysis of a 1 mM solution of [1]B(Ar
F
)4 

in anhydrous acetonitrile, which led to a gradual change of the 

solution color from orange to dark brown. An aliquot of the 

solution obtained via electroreduction of [1]B(Ar
F
)4 was 

analyzed by EPR spectroscopy (See Figure 3a, dashed lines), 

which showed a nearly axial signal with g-values significantly 

deviating from 2 (vide infra), suggesting significant metal-

centered radical character (See Supporting Information for 

details). 

In order to isolate the reduction product in pure form, we 

attempted chemical reduction of complex [1]Br with 1 

equivalent of cobaltocene in dry acetone solution at room 

temperature. Gratifyingly, chemical reduction led to the 

formation of a dark-red solution, from which crystalline 

product 5 was isolated in 79% yield. The EPR spectrum of 

crystalline 5 re-dissolved in acetone was essentially identical 

to that obtained by electrochemical reduction (see Figure 3a, 

solid lines). 

 

Figure 3. Experimental (black line) and simulated (red line) EPR 

spectra of NiI complexes: (a) isolated complex 5 in frozen acetone, 

80K (solid line) and the product of electroreduction of [1]B(ArF)4 

(dashed blue line), frozen MeCN, 83.5K; (b) isolated complex 6, 

MeTHF glass, 92K; (c) isolated complex 7, 20% acetone/80% 

MeTHF/acetone glass, 95K; (d) isolated complex 8, 

MeTHF/acetone glass, 95K. See Table 3 and Table S1 in SI for 

simulated and experimental parameters, respectively. 

In a similar way, chemical reduction of complexes [2]Cl, 

[3]Br, and [4]Cl with cobaltocene in dry acetone at room tem-

perature led to the formation of complexes 6, 7, and 8, which 

were isolated as crystalline samples in 65-85% yields by slow 

evaporation of concentrated acetone solution at -30°C. The 

complexes were characterized by UV-vis, FT-IR, EPR, UV-

vis and X-ray diffraction (vide infra).  

The EPR spectrum of isolated bromo-complex 5 reveals a 

rhombic signal with gx and gy values that are close to each 

other, and without discernible superhyperfine splitting due to 

signal broadening. This signal broadening might be due to 

unresolved splitting from Br and P nuclei similar to other re-

ported Ni
I
 complexes.

57
 By comparison, EPR spectra of an 

analogous chloro-complex 6 shows a rhombic signal (Figure 3 

b), with gx = 2.355; gy = 2.293 and gz = 1.990. Superhyperfine 

splitting was observed for gz component, which could be simu-

lated as splitting from two phosphorus atoms.  

 



 

Table 4. Selected bond distances [Å] and angles [deg] for complexes 5 to 8 

Complex Ni1–N1 Ni1–Hal Ni1–P1 Ni1–P2 ∠ P1–Ni1–P2 ∠ N1–Ni1–Hal 4’ 
 

5 1.9821(10) 2.48133(19) 2.2030(3) 2.1952(3) 149.357(13) 109.65(3) 0.59 0.72 

6a 1.9833(9) 2.3414(3) 2.2066(3) 2.1976(3) 148.029(13) 110.76(3) 0.60 0.72 

7 2.0973(9) 2.51129(18) 2.3021(3) 2.3024(3) 161.830(12) 173.54(3) 0.14 0.17 

8 2.1176(7) 2.3723(2) 2.2943(2) 2.2960(2) 161.509(9) 173.88(2) 0.14 0.17 

a The bond distances and angles are those of the major disordered component. 

 

and one nitrogen donor, with superhyperfine splitting con-

stants of 18.7 G and 9.34 G, respectively  

Interestingly, 
t
Bu substituted complexes 7 and 8 feature a more 

complex EPR signal pattern, which shows distinct splitting 

from the pincer ligand donor atoms as well as the halogen. The 

spectra could be simulated as rhombic signals showing split-

ting from nitrogen and two phosphorus atoms and with a con-

tribution from bromide for complex 7 or chloride for complex 

8 (Figure 3 c). The g-values and superhyperfine splitting con-

stants for complexes 5-8 are summarized in Table 3. In all 

cases, EPR spectroscopy confirms an S = ½ spin state for 

complexes 5-8, while giso values (2.123-2.213) suggest metal-

loradical character, consistent with our DFT studies (vide in-

fra).  

The magnetic moment of complexes 5-8 in acetone solution 

was measured using the Evans method at RT (see Table 3). 

The value for eff was found to be in a range from 1.82 to 2.18 

B, consistent with a d
9
 configuration. 

Solid-state structures of Ni
I
 complexes. The different EPR 

signal symmetry and splitting patterns in the case of 
t
Bu and 

i
Pr substituted complexes suggested that the geometry around 

the metal center might also show significant differences de-

pending on the steric environment of the phosphine donors. 

We were able to grow single crystals of Ni
I
 complexes, 5 and 

6 (red crystals), 7 (dark orange), and 8 (dark red crystals), 

which were analyzed by X-ray diffraction. Analysis of the 

crystal structures confirmed that complexes 5-6 and 7-8 have 

very different geometry around the metal center that were 

consistent with their different EPR spectral patterns. As shown 

in Figure 4 and Table 4, Ni
I
 complexes containing 

i
Pr groups 

on the phosphine donor have a very unusual see-saw-like ge-

ometry (4’= 0.59 and 0.60 for 5 and 6, respectively) with the 

halide ligand present above the plane formed by the Ni atom 

with PNP pincer ligand. Thus, Npy–Ni–Hal (Hal = Br, Cl) an-

gles for 5 and 6 were found to be 109.65(3) and 110.76(3), 

respectively. Coordination of the Me4PNP
iPr

 is not planar and 

shows P1-Ni1-P2 angles of 149.357(13) and 148.029(13) for 

complexes 5 and 6, respectively. By contrast, 
t
Bu substituted 

complexes 7 and 8 display a distorted square planar geometry 

(4’= 0.14) with the halide present trans to pyridine and Npy–

Ni–Hal (X = Br, Cl) angles of 173.54(3) and 173.88(2), re-

spectively.  

All the Ni
I
 complexes show elongation of the Ni–Hal bond 

compared to the corresponding Ni
II
 precursors. Ni

I
 bromide 

complexes 5 and 7 have Ni1–Br1 bond lengths 0.17 and 0.20 

Å longer than their Ni
II
 bromo analogues [1]Br and [3]Br.  

 

Figure 4. ORTEP diagrams of complexes 5 (a), 6 (b), 7 (c), and 8 

(d) with the thermal ellipsoids set at 50% probability level. Hy-

drogen atoms, solvent molecules and a minor disordered compo-

nent for 6 are omitted for clarity. 

 

Figure 5. Mulliken atomic spin density plots of 5 (a), 6 (b), 7 (c), 

and 8 (d) (DFT-optimized geometries, B3LYP, lanl2dz/6-

311++G**). (a) Ni 88.8%, Br 1.2%, P 1.7%, N 3.4%; (b) Ni 

87.9%, Cl 1.2%, P 2.4%, N 3.4%; (c) Ni 86.8%, Br 4.1%, P 0.9%, 

N 1.8%; (d) Ni 85.2%, Cl 3.8%, P 1.8%, N 1.4%. 

 

 



 

 

Figure 6. The SOMO representation of 5 (a), 6 (b), 7 (c), and 8 

(d) (DFT-optimized geometries, B3LYP, lanl2dz/6-311++G**)).  

The same trend is repeated in chloro-containing complexes 6 

and 8 with respect to [2]Cl and [4]Cl. No significant differ-

ences in the ligand C-C or C-P bond lengths are present be-

tween the complexes [1]Br to [4]Cl and 5 to 8, giving cre-

dence to the initial vision of designing the ligand system with 

a view to limit ligand-centered reactivity. 

Computational analysis of the Ni
I
 complexes. The metallo-

radical nature of the Ni
I
 complexes was further confirmed by 

DFT studies, which showed that the spin density is mainly 

localized on the metal. Figure 5 shows the Mulliken atomic 

spin density plot for the optimized geometries for complexes 

5-8, with 85-89% of spin density present at the Ni center, con-

sistent with a d
9
 configuration. At the same time, slightly 

higher Mulliken spin density at the halogen atoms was found 

for square-planar complexes 7 and 8 than in bent complexes 5 

and 6. 

The Natural Population Analysis (NPA), Mulliken population 

and LCAO-MO analyses reveal that the SOMO has essentially 

a 𝑑𝑥2−𝑦2  character in all the complexes (Figure 6 and Support-

ing Information, Tables S11 and S14), which resembles the Ni
I
 

complexes reported by Lee and Gade.
 65,92

 In combination with 

higher calculated spin density at the halogen atoms, this is also 

in accordance with more pronounced superhyperfine splitting 

from halogens observed in EPR spectra of square planar com-

plexes 7 and 8 compared to bent complexes 5 and 6. In Lee’s 

case, T-shaped complexes could be obtained for Ni complexes 

bearing anionic PNP ligands having a central amide donor, 

where no ligands were present in trans position to that amide. 

Addition of CO or PMe3 to their complexes lead to the for-

mation of complexes where the CO or PMe3 ligands deviate 

from the (PNP)Ni plane. 

Such deviations helped to diminish the antibonding interac-

tions of the SOMO, which has the character of a singly-

occupied 𝑑𝑥2−𝑦2  orbital.
92

 Similarly, the formation of bent 

geometries in 5 and 6 by bending of the NPy–Ni–Hal (Hal = Br, 

Cl) plane and the elongation of Ni–Hal bond might be driven 

by the minimization of antibonding interactions in our system.  

Energy minimization of square planar 
i
Pr complexes 5 and 6 

led to an energy minimum where the bent structure was ob-

tained, while the geometry of the more sterically hindered 
t
Bu 

complexes 7 and 8 remained square planar after optimization 

of the structures where the halide ligand was forced into the 

bent position. This is likely due to the steric clash between the 

bulky 
t
Bu groups and Me groups on the phosphine and ligand 

arm, respectively, which prevents the formation of the bent 

structure.  

Table 5. Exact ligand solid angle and ligand shielding pa-

rameters from the DFT-optimized geometry Ni
I
 complexes 

with
a
 and without the halogen

b 

Entry Complex 
Exact solid angles 

str c 

Gd  

% c 

1 5 10.34 (10.89) 82.3 (86.7) 

2 5 w/out Br 8.43 (9.09) 67.1 (72.4) 

3 6  10.09 (10.92) 80.3 (86.9) 

4 6 w/out Cl 8.50 (9.18) 67.7 (73.1) 

5 7  10.65 (11.31) 84.7 (90.0) 

6 7 w/out Br 8.98 (9.77) 71.4 (77.8) 

7 8  10.52 (11.38) 83.7 (90.6) 

8 8 w/out Cl 9.09 (9.90) 72.3 (78.7) 

aCalculated for DFT-optimized structures, B3LYP, lanl2dz/6-

311++G**. bCalculated for fragments of DFT-optimized struc-

tures with halide atom artificially removed; after removing halo-

gen, no further geometry optimization was carried out. cThe val-

ues in parenthesis were calculated using the Bondi radii for all 

atoms,102 while the values outside the parentheses were calculated 

using the zero energy point radii.103 dLigand shielding parameter. 



 

 

Figure 7. Selected ligand solid angle representations (grey area) of the optimized structure of 5 (a-c). Corresponding space filling model 

representation of the optimized structure of 5 (d-f). Nickel atom is represented in green, phosphorous atoms in light orange, bromide atom 

in light brown. Atoms highlighted in red are the methyl groups on the ligand arms; the isopropyl C-H hydrogen is highlighted in magenta. 

Zero energy radii were used for computation.  

 

Figure 8. Selected ligand solid angle representations (grey area) of the optimized structure of 7 (a-c). Corresponding space filling model 

representation of the optimized structure of 7 (d-f). Nickel atom is represented in green, phosphorous atoms in light orange, bromide atom 

in light brown. 

To rationalize and as alternative to visualize that the Ni-

halogen bond is out of the plane in 
i
Pr-containing complexes, 

we calculated the exact solid angles of the DFT-optimized 

geometries of Ni
I
 complexes, the solid-state complexes, as 

well as their fragments from which halogen was removed (to 

better visualize the area occupied by the halogen, see Support-

ing Information). As an alternative to the Tolman cone angle, 

especially for rotationally hindered or highly asymmetric lig-

ands, the exact ligand solid angle () should be able to de-

scribe the steric hindrance of our ligand system in a quantita-

tive and visual manner. Moreover, we can calculate an easily 

interpretable parameter (G) that describes ligand shielding as a 

simple percentage of the maximum solid angle of 4 steradi-

ans (G = 100/4which is described and advocated both 

by Guzei and Wendt,
103

 as well as by Allen.
104

 The results of 

the exact solid angle ( calculations and of the ligand 

shielding parameter (G) are reported in Table 5. An overlay of 

a ball-and-stick representation of the calculated geometry, or 

of the experimental X-ray coordinates on the sphere created by 

the exact ligand solid angle method are shown in Figures 7 

and 8, and Figure S121 to S156 in the Supporting Information. 

The 
i
Pr-containing complexes 5 and 6 have exact solid angles 

of 10.34 and 10.09, which correspond to a ligand shielding (G) 

of 82.3 and 80.3 % for DFT-optimized structures. In contrast, 
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both the 
t
Bu containing complexes 7 and 8 have higher exact 

solid angles () of 10.65 and 10.52, which corresponds to 

higher ligand shielding of 84.7 and 83.7%, respectively.  

Although the exact ligand angles or the ligand shielding pa-

rameter by itself might seem to show only a small difference 

between 
i
Pr and 

t
Bu containing complexes, it is a useful way 

to visualize the voids available in the complexes, alternative to 

space filling models (Figure 7). For example, comparison of 

the solid angle representation of complexes 5 and 6 shows that 

while for the bis(iso-propyl)phoshine-substituted 5, the void is 

available to bind Br in the position bent from the plane of 

(PNP)Ni fragment, such binding would not be possible for 

bis(tert-butyl)phoshine-substituted 6 due to steric clash be-

tween Me groups of the CMe2 arm (shown in red) and tert-

butyl groups on the phosphines.  

To estimate the steric requirements of the new bulky PNP 

ligands in these complexes, we also compared exact solid an-

gles for both ligands with 
i
Pr and 

t
Bu substituents by calculat-

ing and G parameters for a hypothetical (Me4PNP
R
)Ni (R = 

t
Bu, 

i
Pr) fragment where halide was removed from DFT-

optimized structures (Table 5, entries 2, 4, 6, and 8). These 

parameters can be used as approximate estimates applicable to 

the system under consideration as not all possible conformers 

of the ligands were considered. This gives G values of 67.1-

67.7% for 
i
Pr-substituted ligand and expectedly larger values, 

77.8-78.7%, for 
t
Bu-substituted ligand, meaning that these 

new bulky ligands occupy as much as ca. 67-79% of the total 

unit sphere.  

Overall, this analysis shows that not only steric parameters of 
t
Bu- and 

i
Pr-substituted ligands are different, but also greater 

steric hindrance of the 
t
Bu-substituted ligand likely makes the 

bent position above the coordination plane of the (PNP)Ni 

fragment unavailable to binding an additional ligand, leading 

to an enforced square planar coordination.  

SUMMARY AND CONCLUSION 

By designing a ligand that is both bulky and blocks possible 

MLC via dearomatization on the pincer arm, we were able to 

stabilize and fully characterize reactive Ni
I
 species, which are 

usually difficult to isolate. We first investigated the redox 

properties of the Ni
II
 complexes and found that the reduction 

of Ni
II
 to Ni

I
 is both reversible and easily accessible by reduct-

ants such as cobaltocene. We also investigated the EPR spec-

tra of each Ni
I
 species and found that both their shape, g-

values and hyperfine coupling constants vary significantly 

when changing from the less bulky 
i
Pr complexes 5 and 6 to 

the bulkier 
t
Bu complexes 7 and 8. Solid-state structural anal-

ysis revealed that the geometry around the metal center is 

completely different for 5 and 6 (see-saw) and 7 and 8 (dis-

torted square planar). Spin density and orbital analysis of the 

complexes has shown that all complexes are essentially metal-

loradicals with the SOMO that has mostly a 𝑑𝑥2−𝑦2 character, 

similar to previously reported Ni
I
 complexes with anionic PNP 

ligands. Interestingly, having bulkier 
t
Bu substituents on the 

phosphine donors results in a dramatic geometry difference for 

the reduced Ni
I
 complexes; with calculations of steric envi-

ronment around the complex showing that this difference, 

which is reflected in EPR spectra, is brought about by steric 

and not electronic effects.  

Overall, introducing new bulky PNP pincer ligands may open 

new possibilities for studying one-electron redox-

transformations of late 1
st
 row transition metals by providing 

steric protection and disabling metal-ligand cooperative reac-

tivity, as we have shown for the Ni
I
 test case. Additional steric 

hindrance introduced by four methyl groups at the pincer lig-

and arm also creates new modes of controlling coordination 

geometry of the metal center. Utilizing these ‘innocent’ lig-

ands may enable for the tuning of desired reactivity by varying 

steric (and/or electronic) parameters in a systematic manner, 

without turning on undesired side-reactivity. Further studies 

will focus on studying the reactivity and catalytic activity of 

organometallic late transition metal complexes coordinated by 

these new, bulky PNP ligands.  

EXPERIMENTAL SECTION 

Unless otherwise indicated, all solvents and reagents were 

used as received. Non-deuterated solvents were taken from a 

solvent purification system (MBRAUN SPS). Acetone-d6 was 

vacuum distilled over dried magnesium sulfate at low temper-

ature. All other deuterated solvents were added to activated 3 

Å molecular sieves. Di-iso-propylchlorophosphine, di-tert-

butylchlorophosphine, nickel(II) chloride anhydrous, and co-

baltocene were purchased from Sigma-Aldrich; BH3-THF and 

nickel(II) bromide 99% were purchased from Acros Organics; 
n
butyl lithium, 2,6-bis(chloromethyl)pyridine was purchased 

from Kanto Chemical Co., Inc. The reported yields are based 

on isolated solids. NMR spectra were recorded using JEOL 

ECZR-400 MHz or ECZR-600 MHz. Chemical shifts are re-

ported in ppm (δ) and referenced internally to the residual 

solvent signals (
1
H and 

13
C: 7.26 and 77.16 ppm for CDCl3; 

2.05 and 29.84, 206.26 ppm for acetone-d6; 1.94 and 1.32, 

118.26 ppm for CD3CN). The signal abbreviation is as fol-

lows: d – doublet, t – triplet, v – virtual, q – quartet, br - broad, 

m – multiplet. X-band EPR spectra were recorded on an X-

band JEOL JES-X330 instrument using liquid nitrogen-cooled 

cryostat in 5 mm diameter quartz tubes. Fourier transform 

infrared (FT-IR) spectra were recorded for crystalline samples 

under an Ar atmosphere on a Cary 630 with an attenuated-

total-reflectance (ATR) module. Electrochemical grade tet-

rabutylammonium hexafluorophosphate (
n
Bu4NPF6) from 

Sigma-Aldrich was used as the supporting electrolyte. Cyclic 

voltammetry and control potential electrolysis experiments 

were performed on an ALS CHI 660E electrochemical work-

station. The electrochemical measurements were done under 

an N2 atmosphere. Acetonitrile used for the solutions was 

dried by the MBRAUN SPS solvent system. A glassy carbon 

disk electrode (d = 1.0 mm) or a Pt gauze were used as work-

ing electrodes for cyclic voltammetry and for controlled po-

tential electrolysis, respectively. A non-aqueous Ag-wire ref-

erence electrode assembly was filled with 0.01M AgNO3 in 

0.1 M 
n
Bu4NPF6/MeCN solution as a reference electrode. A 

Pt-wire or a Pt gauze were used as an auxiliary electrode for 

cyclic voltammetry and for the controlled potential electrolysis 

experiments, respectively. The reference electrodes were cali-

brated against FeCp2 (Fc), where the Fc/Fc
+
 couple vs 

Ag/AgNO3/MeCN non-aqueous reference is 102 V in 0.1 M 
n
Bu4NPF6/MeCN. The preparation of PH

t
Bu2-BH3 and PH

i
Pr2-

BH3 were reported elsewhere.
105,106  

The X-ray diffraction data for the single crystals was collected 

on a Rigaku XtaLab PRO instrument (an ω-scan mode) with a 

PILATUS3 R 200K hybrid pixel array detector and a Micro-

Max
TM

-003 microfocus X-ray tube using MoKα (0.71073 Å) 

radiation at low temperature. Images were indexed and inte-

grated using the CrysAlis
Pro

 data reduction package. Data were 

corrected for systematic errors and absorption using the 

ABSPACK module: Numerical absorption correction based on 

Gaussian integration over a multifaceted crystal model and 



 

 

9  

empirical absorption correction based on spherical harmonics 

according to the point group symmetry using equivalent re-

flections. The GRAL module was used for analysis of system-

atic absences and space group determination. The structures 

were solved by direct methods using SHELXT
107

 and refined 

by the full-matrix least-squares on F
2
 using SHELXL.

108
 Non-

hydrogen atoms were refined anisotropically. The hydrogen 

atoms were inserted at the calculated positions and refined as 

riding atoms. The positions of the hydrogen atoms of methyl 

groups were found using rotating group refinement with ideal-

ized tetrahedral angles. The disorder, if present, was resolved 

using free variables and reasonable restraints on geometry and 

anisotropic displacement parameters. 

2,6-bis(di-tert-butylphosphinomethyl)pyridine, boron tri-

hydride adduct, PNP
tBu

BH3. Although this ligand was previ-

ously reported,
109

 an alternative procedure was used to give 

the desired product that does not require further purification. 

In a flame-dried 500 mL round-bottom flask under Ar the 

previously synthesized precursor PH
t
Bu2-BH3 was added, 

(10.00 g, 62.48 mmol, 2.22 eq.) followed by 200 mL of dry 

THF, after which the temperature was lowered to 0 °C. After 

10 minutes of stirring a 2.6 M solution of n-butyl lithium 

(26.24 mL, 68.66 mmol, 2.44 eq.) was added. The reaction 

was stirred for 3 hours at room temperature, and 2,6-

bis(chloromethyl)pyridine (4.955 g, 28.14 mmol, 1.00 eq.) 

was added. The reaction was allowed to reach  room tempera-

ture and left to stir overnight. Water was added to quench the 

reaction and the aqueous phase was extracted with 3 portions 

of 150 mL of diethyl ether. The combined organic phases were 

washed with a saturated sodium hydrogen carbonate solution, 

then with a saturated brine solution. The organic phases were 

combined, dried over magnesium sulfate, filtered and evapo-

rated under reduced pressure to afford a white crystalline solid, 

that was washed several times with a minimum amount of 

hexane to afford the pure product (11.83 g, 87.7 %). Crystals 

suitable for X-ray analysis were obtained by slow evaporation 

of THF at room temperature. 

[2,6-bis(2-di-tert-butylphosphino-2-propyl)pyridine boron 

trihydride adduct, Me4PNP
tBu

BH3. PNP
tBu

BH3 (1.00 g, 2.36 

mmol, 1.00 eq.) was added into a dry 250 mL round-bottom 

flask under Ar, to which was later added 100 mL of dry THF 

and the entire solution was then cooled to 0 °C with an ice 

bath. Then, successively and with 2 minutes between each 

addition, a 2.6 M solution of n-butyl lithium (0.91mL, 2.36 

mmol, 1.00 eq.) was slowly added, followed by iodomethane 

(147 µL, 2.36 mmol, 1.00 eq.) for a total of 6 additions of both 

reagents. The reaction was further stirred at room temperature 

for 10 minutes and was quenched with 50 mL of water. The 

aqueous phase was separated and washed with 3 portions ethyl 

acetate (note: washing with diethyl ether gives similar yields if 

the extraction is done quickly). The organic phases were then 

washed with a saturated solution of sodium hydrogen car-

bonate followed by a saturated brine solution. The organic 

phases were combined, dried over magnesium sulfate, filtered, 

and concentrated under reduced pressure. The resulting slight-

ly off-white solid was washed 3 times with a minimal amount 

of hexanes (1-2 mL) and the liquid was carefully decanted 

using a Pasteur pipet. The solid was then dried again under 

reduced pressure to afford a white solid (0.96 g, 85%). 
1
H 

NMR (600 MHz, CDCl3) δ 0.41-0.71 (br m, 6H, P-BH3), 1.05-

1.48 (br m, 36H, Me of 
t
Bu), 1.92 (br s, 12H, PC-(CH3)2Cpy), 

7.57 (t, JHH = 8.0 Hz, 1H, Cpy-Hpara), 7.90 (d, JHH = 8.0 Hz, 2H, 

Cpy-Hmeta). 
13

C{
1
H} NMR (151 MHz, CDCl3) δ 28.46 (d, JPC = 

36.6 Hz, Cquat of 
t
Bu), 30.24 (br, Me of 

t
Bu), 36.91 (d, JPC = 

19.5 Hz, P-C(CH3)2Cpy), 45.68 (d, JPC = 14.7 Hz, PC-

(CH3)2Cpy), 125.16 (Cpy,meta), 135.59 (Cpy,para), 161.19 (Cpy,ortho). 
31

P{
1
H} NMR (162 MHz, CDCl3) δ 63.99, 63.66. UV-vis 

(CH2Cl2, [1·10
-4

 M]), max, nm (, L·mol
-1

·cm
-1

): 263 (10500), 

269 (12100), 276 (10000). Anal. Calcd. For C27H57B2NP2: C, 

67.66; H, 12.06; N, 2.92. Found: C, 67.59; H, 12.01; N, 3.20. 

2,6-bis(di-isopropylphosphinomethyl)pyridine, boron tri-

hydride adduct, PNP
iPr

BH3. The analogous procedure to 

prepare PNP
tBu

BH3 ligand was used to prepare PNP
iPr

-BH3 

ligand. PH
i
Pr2-BH3 (10.0 g, 76.9 mmol, 2.44 eq.), 

n
butyl lithi-

um 2.6 M solution (26.2 mL, 68.7 mmol, 2.22 eq.) and 2,6-

bis(chloromethyl)pyridine 4.95 g, 28.1 mmol, 1.00 eq.) was 

used to afford a white solid (10.47 g, 99 %). 
1
H NMR (400 

MHz, CDCl3) δ 0.01-0.68 (br, m, 6H, P-BH3), 1.13-1.19 (m, 

12 H, PCH-CH3), 2.03-2.16 (m, 4H, P-CHCH3), 3.18 (d, JHH = 

11.24 Hz, 4H, P-CH2Cpy), 7.20 (d, JHH = 7.7 Hz, 2H, Cpy-

Hmeta), 7.56 (t, JHH = 7.7 Hz, 1H, Cpy-Hpara). 
13

C{
1
H} NMR 

(101 MHz, CDCl3) δ 17.13 (d, JPC= 36.9 Hz, PCH-CH3), 21.87 

(d, JPC = 31.4 Hz, P-CHCH3), 30.54 (d, JPC = 26.5 Hz, P-

CH2Cpy), 123.12 (Cpy,meta), 136.79 (Cpy,para), 154.43 (d, JPC= 5.7 

Hz, Cpy,ortho). 
31

P{
1
H} NMR (162 MHz, CDCl3) δ 35.90, 36.38.  

2,6-bis(2-(di-tert-butylphosphino-2-propyl)pyridine, 

Me4PNP
tBu

. Me4PNP
tBu

BH3 (500 mg, 1.04 mmol, 1.00 eq.) 

was put into a dry 100 mL Schlenk flask under Ar, to which 

20 mL of pyrrolidine was then added in an N2 glovebox. The 

solution was stirred at 90 °C for 18h followed by a thorough 

evaporation under reduced pressure (0.3Torr) for at least 6 

hours to remove all traces of the pyrrolidine-BH3 adduct and 

unreacted pyrrolidine (use of a second trap is recommended as 

pyrrolidine is corrosive), giving an off-white solid as the 

product (450mg, 96%). Colorless crystals suitable for X-ray 

diffraction study were grown by slow evaporation of a concen-

trated solution of the ligand in C6D6. 
1
H NMR (400 MHz, 

C6D6): δ 1.19 (d, JHP= 10.0 Hz, 36 H, Me of 
t
Bu), 1.83 (d, JHP 

= 6.9 Hz, 12 H, PC-(CH3)2Cpy), 7.17 (t, JHH= 7.9 Hz, 1 H 

(overlaps with C6D6), Cpy-Hpara), 7.59 (d, JHH= 7.9 Hz, 2H, 

Cpy-Hmeta). 
13

C{
1
H} NMR (101 MHz, C6D6): δ 29.35 (br, PC-

(CH3)2Cpy), 32.46 (d, JPC= 13.8 Hz, Me of 
t
Bu), 35.10 (d, JPC= 

34.7 Hz, Cquat of 
t
Bu), 45.31 (P-C(CH3)2Cpy), 121.24 (d, JPC= 

16.2 Hz, Cpy,meta), 135.03 (Cpy,para), 167.30 (d, JPC= 14.6 Hz, 

Cpy,ortho). 
31

P{
1
H} NMR (162 MHz, C6D6): δ 69.55.  

2,6-bis(2-(di-isopropylphosphino-2-propyl)pyridine, boron 

trihydride adduct, Me4PNP
iPr

BH3. This ligand was prepared 

following the same procedure as for the Me4PNP
tBu

BH3. 

PNP
iPr

BH3 (1.00 g, 2.74 mmol, 1.00 eq.), a 2.6 M solution of 
n
butyl lithium (1.05 mL, 2.74 mmol, 1.00 eq.) and iodome-

thane (171 µL, 2.74 mmol, 1.00 eq.) were used to prepare the 

ligand, affording a white crystalline solid (0.96 g, 83%). 
1
H 

NMR (400 MHz, CDCl3) δ 0.11-0.59 (br m, 6H, P-BH3),0.87 

(dd, JHP = 13.0 Hz, JHH = 7.1 Hz, 12H, PCH-CH3), 1.17 (dd, 

JHP = 13.9 Hz, JHH = 7.2 Hz, 12H, PCH-CH3), 1.73 (d, JHP = 

12.6 Hz, 12H, P-(CH3)2Cpy), 2.13-2.27 (m, 4H, P-CHCH3), 

7.46 (d, JHH = 8Hz, 2H, Cpy-Hmeta), 7.65 (t, JHH = 8 Hz, 1H, 

Cpy-Hpara). 
13

C{
1
H} NMR (101 MHz, CDCl3) δ 18.34 (PCH-

CH3), 19.23 (PCH-CH3), 22.14 (d, JPC= 28 Hz, P-CHCH3), 

26.66 (PC-(CH3)2Cpy), 41.35 (d, JPC=21.7 Hz, P-C(CH3)2Cpy), 

121.28 (Cpy,meta), 136.89 (Cpy,para), 167.77 (Cpy,ortho). 
31

P{
1
H} 

NMR (162 MHz, CDCl3) δ 50.78, 50.29. ESI-HRMS (m/z) 

calculated for [C23H49NB2P2 + H
+
] = 424.3599. Found for 

[C23H50NB2P2 + H
+
] = 424.3603. UV-vis (CH2Cl2, [1·10

-4
 M]), 

max, nm (, L·mol
-1

·cm
-1

): 269 (7670). Anal. Calcd. For 

C23H49B2NP2: C, 65.27; H, 11.66; N, 3.31. Found: C, 65.22; H, 

11.79; N, 3.84. 
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2,6-bis(2-(di-isopropylphosphino-2-propyl)pyridine, 

Me4PNP
iPr

. Me4PNP
iPr

BH3 (40 mg, 0.095 mmol, 1.0 eq.) was 

put into a dry 50 mL Schlenk flask under Ar and 10 mL of 

pyrrolidine (under N2) was added. The solution was stirred at 

90 °C for 18h followed by a thorough evaporation under re-

duced pressure for at least 6 hours to remove all traces of the 

pyrrolidine-BH3 adduct (use of a second trap is recommended 

as pyrrolidine is corrosive), giving a viscous colorless oil as 

the product (38 mg, 100%). 
1
H NMR (400 MHz, C6D6) δ 0.90 

(dd, JHP = 10.1 Hz, JHH = 7.1 Hz, 12H, PCH-CH3), 1.15 (dd, 

JHP= 14.2 Hz, JHH= 7.3 Hz, 12H, PCH-CH3), 1.65 (d, JHH = 

10.1 Hz, 12H, PC-(CH3)2Cpy), 1.75-1.87 (m, 4H, P-CHCH3), 

7.13 (s, 3H, Cpy-Hmeta + Cpy-Hpara). 
13

C{
1
H} NMR (101 MHz, 

C6D6) δ 20.36 (d, JPC= 9.9 Hz, PCH-(CH3)2), 22.68 (d, JPC = 

23.3 Hz, P-CH(CH3)2), 23.48 (d, JPC= 22.1 Hz, PCH-(CH3)2), 

27.53 (d, JPC= 13.7 Hz, PC-(CH3)2Cpy), 41.49 (d, JPC=24.3 Hz, 

P-C(CH3)2Cpy), 118.58 (d, JPC= 8.1 Hz, Cpy,meta), 135.67 

(Cpy,para), 165.71 (d, JPC =5.0 Hz, Cpy,ortho). 
31

P{
1
H} NMR (162 

MHz, C6D6) δ 43.46.  

[(Me4PNP
iPr

)Ni
II
Br][Br], [1]Br. Me4PNP

iPr
BH3 (400 mg, 

1.01 mmol, 1.00 eq.) was added to a pre-dried Schlenk flask 

under Ar and approximately 15 mL of pyrrolidine was added 

to this flask inside a glovebox after which time it was sealed 

and taken outside. The reaction is stirred for 24 hours at 

100 °C and then the pyrrolidine is evaporated under reduced 

pressure for at least 6 hours (use of a second trap is recom-

mended as pyrrolidine is corrosive). The resulting deprotected 

ligand was a viscous oil that was taken back inside the glove-

box and used directly without isolation for the metalation reac-

tion, assuming a 100% conversion to deprotected form. 20 mL 

of dry THF was added to the oil, followed by anhydrous nick-

el(II) bromide (232 mg, 1.06 mmol, 1.05 eq.). The mixture 

was stirred and heated at 60 °C overnight. After cooling, a 

cannula was used to remove the dark liquid residue to give a 

solid that was washed two times with hexanes and evaporated 

under reduced pressure to give a brown-orange powder (388 

mg, 62%). Orange crystals suitable for X-ray diffraction were 

obtained by slow evaporation from an acetone solution of 

[1]Br at-30 °C. 
1
H NMR (400 MHz, CDCl3) δ 1.23-1.29 (m, 

12H, PCH-CH3), 1.55-1.60 (m, 12H, PCH-CH3), 1.83-1.86 (m, 

12 H, PC-CH3Cpy), 2.52–2.65 (m, 4H, P-CHCH3), 7.74 (d, JHH 

= 7.8 Hz, 2H, Cpy-Hmeta), 8.54 (t, JHH= 8.1 Hz, 1H, Cpy-Hpara). 
13

C{
1
H} NMR (101 MHz, CDCl3) δ 19.26, (PCH-CH3), 19.79 

(PCH-CH3), 23.45 (vt, JPC = 10.8 Hz, P-CHCH3), 28.35 (PC-

(CH3)2Cpy), 50.44 (vt, JPC = 8.1 Hz, P-C(CH3)2Cpy), 121.76 (vt, 

JPC = 4.4 Hz, Cpy,meta), 145.20 (Cpy,para), 172.74 (vt, JPC = 7.2 

Hz, Cpy,ortho). 
31

P{
1
H} NMR (162 MHz, CDCl3) δ 73.82. UV-

vis (CH2Cl2, [1·10
-4

 M]), max, nm (, L·mol
-1

·cm
-1

): 261 

(10100), 303 (3400), 347 (8240), 468 (1130). ATR-IR (cm
-1

): 

3039 (w), 2965 (m), 2896 (w), 2872 (w), 1589 (m), 1559 (w), 

1455 (s), 1389 (s), 1367 (s), 1292 (s), 1241 (s), 1164 (w), 1133 

(w), 1096 (w), 1034 (m), 1012 (w), 928 (m), 888 (m), 831 (s), 

752 (w), 715 (w), 664 (s). ESI-HRMS (m/z) calculated for 

[C23H43NNiP2Br]
+
 = 534.15. Found for [C23H43NNiP2Br]

+
 = 

534.1367. Anal. Calcd. For C23H4Br2NP2Ni: C, 44.99; H, 7.06; 

N, 2.28. Found: C, 44.98; H, 7.04; N, 2.33.  

[(Me4PNP
iPr

)Ni
II
Cl][Cl], [2]Cl. The procedure to prepare 

[1]Br was also used to prepare [2]Cl. Me4PNP
iPr

BH3 ligand 

(500 mg, 1.18 mmol, 1.00 eq.), and anhydrous nickel(II) chlo-

ride (153 mg, 1.18 mmol, 1.00 eq.) were used to afford a light 

yellow powder (427 mg, 69 % yield). Crystals suitable for X-

ray diffraction studies were obtained by vapor diffusion of 

hexanes into a concentrated solution of [2]Cl in benzene at rt. 

Although stable under air, the product complex is highly hy-

groscopic, and as it was taken out of, and used outside the 

glovebox, water molecules were present in the elemental anal-

ysis and NMR, as well as in the X-ray structure.
1
H NMR. (400 

MHz, acetone-d6) δ 1.34 (d, JHH = 7.0 Hz, 12H, PCH-CH3), 

1.60 (d, JHH = 7.0 Hz, 12H, PCH-CH3), 1.92 (br s, 12H, P-

C(CH3)2Cpy), 2.61–2.72 (hept, 
3
JHH = 7 Hz, 4H, P-CHCH3), 

7.78 (d, JHH = 7.7 Hz, 2H, Cpy-Hmeta), 8.35 (t, JHH = 7.7 Hz, 1H, 

Cpy-Hpara). 
13

C{
1
H} NMR (101 MHz, acetone-d6) δ 19.26 

(PCH-(CH3)2), 19.63 (PCH-(CH3)2), 23.67 (P-CH(CH3)2), 

28.17 (PC-(CH3)2Cpy), 50.52 (P-C(CH3)2Cpy), 122.20 (Cpy,meta), 

144.76 (Cpy,para), 174.23 (Cpy,ortho). Water present in hygroscop-

ic sample of [2]Cl was detected by NMR and X-ray. 
31

P{
1
H} 

NMR (162 MHz, CDCl3) δ 71.38. UV-vis (CH2Cl2, 1·10
-4

 M]), 

max, nm (, L mol
-1 

cm
-1

): 259 (5430), 305 (3520), 338 (6970), 

452 (903). ATR-IR (cm
-1

): 2963 (m), 2871 (m), 1592 (w), 

1563 (w), 1454 (s), 1387 (m), 1638 (m), 1268 (w), 1167 (w), 

1126 (w), 1099 (w), 1072 (w), 1032 (m), 931 (m), 884 (m), 

828 (m), 759 (m), 696 (w), 665 (s). ESI-HRMS (m/z) calcu-

lated for [C23H43NNiP2Cl]
+
= 488.1904. Found for 

[C23H43NNiP2Cl]
+
 = 488.1895. Anal. Calcd. For 

C23H43Cl2NP2Ni·H2O: C, 50.86; H, 8.35; N, 2.58 (according to 

X-ray, one water molecule per complex present in the crystal-

line sample of [2[Cl]). Found: C, 49.74; H, 8.13; N, 2.69. De-

viation of %C could be due to hygroscropic nature of complex. 

[(Me4PNP
tBu

)Pyridine)Ni
II
Br][Br], [3]Br. The analogous 

procedure to prepare [1]Br was used to prepare [3]Br. 

Me4PNP
tBu

BH3 (359 mg, 0.749 mmol, 1.00 eq.) and anhy-

drous nickel(II) bromide (164 mg, 0.749 mmol, 1.00 eq.) are 

reacted to afford a dark red powder (288 mg, 57%). Red crys-

tals suitable for X-ray diffraction were obtained by slow evap-

oration of an acetone solution of [3]Br at rt. 
1
H NMR (400 

MHz, acetone-d6) δ 1.51-1.54 (br m, 18H, Me of 
t
Bu), 1.65-

1.92 (br m, 18H, Me of 
t
Bu), 2.08-2.12 (br m, 6H, PC-

(CH3)2Cpy), 2.18-2.21 (br m, 6H, P-C(CH3)2Cpy), 7.73 (d, JHH 

= 8 Hz, 2H, Cpy-Hmeta), 8.34 (tt,
 
JHH = 8.0 Hz, JHP = 1.6 Hz, 1H, 

Cpy-Hpara). 
13

C{
1
H} NMR (101 MHz, acetone-d6) δ 24.98 (P-

C(CH3)2Cpy), 32.20 (Me of 
t
Bu), 32.89 (br, Me of 

t
Bu), 36.00 

(P-C(CH3)2Cpy), 40.11 (Cquat of 
t
Bu), 41.52 (Cquat of 

t
Bu), 53.32 

(P-C(CH3)2Cpy), 121.93 (Cpy,meta), 145.04 (Cpy,para), 173.87 

(Cpy,ortho). 
31

P{
1
H} (162 MHz, acetone-d6) δ 87.00. ATR-IR 

(cm
-1

): 3425 (w), 3377 (w), 2959 (m), 2903 (m), 2114 (w), 

2080 (w), 1593 (m), 1457 (m), 1395 (s), 1365 (m), 1168 (s), 

1019 (m), 935 (m), 919 (m), 829 (m), 806 (m), 767 (m), 745 

(m). UV-vis (CH2Cl2, [1·10
-4

 M]), max, nm (, L mol
-1 

cm
-1

): 

263 (15600), 363 (8820). 505 (1740). Anal. Calcd. For 

C27H51NP2NiBr2: C, 48.39; H, 7.67; N, 2.09. Found: C, 47.95; 

H, 7.29; N, 2.19. 

[(Me4PNP
tBu

)Pyridine)Ni
II
Cl][Cl], [4]Cl. The same proce-

dure to prepare [3]Br was used to prepare [4]Cl. 

Me4PNP
tBu

BH3 ligand (500 mg, 1.04 mmol, 1.00 eq.), and 

anhydrous nickel(II) chloride (135 mg, 1.04 mmol, 1.00 eq.) 

was used to afford a bright orange powder (516 mg, 85.0% 

yield). Crystals suitable for X-ray diffraction studies were 

obtained by vapor diffusion of hexanes into a concentrated 

THF solution of [4]Cl at rt. 
1
H NMR (600 MHz, acetone-d6) δ 

1.43-1.61 (br m, 18H, Me of 
t
Bu), 1.65-1.91 (br m, Me of 

t
Bu), 

2.06-2.13 (br m, 6H, P-C(CH3)2Cpy), 2.14-2.24 (br m, 6H, P-

C(CH3)2Cpy), 7.77 (d, JHH = 8.0 Hz, 2H, Cpy-Hmeta), 8.35 (t, JHH 

= 8.0 Hz, Cpy-Hpara). Water present in hygroscopic sample of 

[2]Cl is confirmed by X-ray diffraction as one molecule of 

water. 
13

C{
1
H} NMR (151 MHz, acetone-d6) δ 24.61 (PC-

(CH3)2Cpy), 31.89 (br, Me of 
t
Bu), 35.93 (br, PC-(CH3)2Cpy), 

39.95 (br, Cquat of 
t
Bu), 40.64 (br, Cquat of 

t
Bu), 52.82 (vt, JPC = 
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5.4 Hz, P-C(CH3)2Cpy), 121.86 (Cpy,meta), 145.10 (Cpy,para), 

174.17 (Cpy,ortho). 
31

P{
1
H} (262 MHz, acetone-d6) = 83.63. 

ATR-IR (cm
-1

): 2977 (m), 2962 (m), 2906 (m), 2872 (m), 

1596 (w), 1565 (w), 1459 (s), 1395 (m), 1363 (s), 1276 (m), 

1172 (s), 1136 (w), 1106 (w), 1067 (s), 1020 (m), 923 (m), 

831 (w), 810 (m), 761 (m), 710 (w), 662 (w). UV-vis (CH2Cl2, 

[1·10
-4

 M]), max, nm (, L mol
-1 

cm
-1

): 256 (7620), 308 (sh, 

2980), 351 (9580), 481 (1360). ESI-HRMS (m/z) calculated 

for [C27H51NNiP2Cl]
+
= 544.2533. Found for [C27H51NNiP2Cl]

+
 

= 544.2520. Anal. Calcd. For C27H51NP2NiCl2+ 1 H2O: C, 

54.12; H, 8.91; N, 2.34. Found: C, 54.08; H, 8.90; N, 2.44. 

According to X-ray analysis, one water molecule per complex 

was present in crystalline sample of [4]Cl. 

[(Me4PNP
iPr

)Ni
II
Br][B(3,5-CF3C6H3)4], [1]B(Ar

F
)4. To a 

solution of [1]Br (10.0 mg, 0.0163 mmol, 1.00 eq.) in 10 mL 

of dry THF in an N2 glovebox at room temperature, sodium 

tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (14.7 mg, 

0.0163 mmol, 1.00 eq.) was added and the solution was agitat-

ed by hand for 5 minutes. Then, the solution was filtered 

through a small celite plug and concentrated under reduced 

pressure to afford a light orange solid (24 mg, 100%). Crystals 

suitable for X-ray diffraction analysis were obtained by vapor 

diffusion of hexanes into a concentrated THF solution of 

[1]B(Ar
F
)4 at RT. 

1
H NMR (400 MHz, acetone-d6) δ 1.31-1.36 

(m, 12H, PCH-CH3), 1.58-1.64 (m, 6H, PCH-CH3), 1.89-1.91 

(m, 12H, PC-CH3Cpy), 2.68-2.78 (m, 4H, P-CHCH3), 7.66 (br 

m, 6H total, BCAr-Hpara (4H) + Cpy-Hmeta (2H)), 7.78 (br m, 8H, 

BCAr-Hortho), 8.31 (tt, JHH = 8.0 Hz, JPH = 1.3 Hz, 1H, Cpy-

Hpara). 
13

C{
1
H} NMR (101 MHz, acetone-d6) δ 19.31 (PCH-

CH3), 19.91 (PCH-CH3), 24.08 (vt, JPC = 11.2 Hz,P-CHCH3), 

28.29 (PC-(CH3)2Cpy), 51.08 (vt, JPC = 8.4, Hz, P-C(CH3)2Cpy), 

118.46 (m, B-CAr,para), 121.85 (vt, JPC = 4.4 Hz, Cpy,meta), 

125.37 (q, JCF = 273.1 Hz, BCAr,meta-CF3), 130.02 (m, B-

CAr,metaCF3), 135.53 (B-CAr.ortho), 144.45 (Cpy,para), 162.59 (dd, 

JBC = 50.0 Hz, B-CAr,ipso), 174.36 (vt, JPC = 7.1 Hz, Cpy,ortho). 
31

P{
1
H} NMR (162 MHz, acetone-d6) δ 74.73. 

19
F NMR 

(376.2 MHz, acetone-d6) δ -63.13. ATR-IR (cm
-1

): 2972 (w), 

1610 (w), 1459 (w), 1353 (m), 1272 (s), 1115 (s), 885 (m), 

839 (m), 715 (m), 682 (m), 668 (m). UV-vis (CH2Cl2, [1·10
-4

 

M]), max, nm (, L mol
-1 

cm
-1

): 262 (13100), 279 (sh, 7120), 

307 (3030), 348 (7300), 469 (1040). Anal. Calcd. For 

C55H55NP2NiBrBF24: C, 47.27; H, 3.97; N, 1.00. Found: C, 

45.38; H, 3.45; N, 1.38. Despite multiple attempts, we were 

unable to obtain satisfactory elemental analysis for this com-

pound. 

[(Me4PNP
iPr

)Ni
II
Cl][B(3,5-CF3C6H3)4], [2]B(Ar

F
)4. To a 

solution of [2]Cl (100 mg, 0.190 mmol, 1.00 eq.) in 10 mL of 

dry THF in an N2 glovebox at room temperature, sodium 

tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (169 mg, 0.190 

mmol, 1.00 eq.) was added and the solution was stirred for an 

hour. The reaction mixture was filtered through a small celite 

plug and concentrated under reduced pressure. The solid was 

then washed with approximately 3 mL of diethyl ether to af-

ford an orange solid (226 mg, 88 %). Crystals suitable for X-

ray diffraction were obtained by vapor diffusion of hexanes 

into a concentrated THF solution of [2]B(Ar
F
)4 at RT. 

1
H 

NMR (400 MHz, acetone-d6) δ 1.30-1.35 (m, 12H, PCH-CH3), 

1.56-1.62 (m, 12H, PCH-CH3), 1.88-1.90 (m, 12 H, PC-

CH3Cpy), 2.57-2.70 (m, 4H, P-CHCH3), 2.77 (br s, 1H, HDO), 

2.81 (br s, 1.5H, H2O) 7.62 (d, JHH = 8.1 Hz, Cpy-Hmeta), 7.64 

(br s, 4H, BCAr-Hpara), 7.75-7.76 (m, 8H, BCAr-Hortho), 8.26 (tt, 

JHH = 7.9 Hz, JHP = 1.3 Hz, 1H, Cpy-Hpara). 
13

C{
1
H} NMR (101 

MHz, acetone-d6) δ 19.20 (PCH-(CH3)2), 19.59 (PCH-(CH3)2), 

23.66 (vt, JPC = 10.6 Hz, P-CH(CH3)2), 28.12 (PC-(CH3)2Cpy), 

50.52 (vt, JPC = 8.30 Hz, P-C(CH3)2Cpy), 118.46 (m, B-CAr,para), 

121.85 (vt, JPC = 3.03 Hz, Cpy,meta), 125.37 (q, JCF = 273.2 Hz, 

BCAr,meta-CF3), 130.01 (qdd, JCF = 31.0 Hz; JCB = 5.3 Hz; JCF= 

2.8 Hz, B-CAr,metaCF3), 135.53 (B-CAr,ortho), 144.40 (Cpy,para), 

162.59 (dd, JBC = 50.0 Hz, B-CAr,ipso), 174.45 (vt, JPC = 7.47 

Hz, Cpy,ortho). 
31

P{
1
H} NMR (162 MHz, acetone-d6) δ 72.23. 

19
F NMR (376.2 MHz, acetone-d6) δ -63.14. ATR-IR (cm

-1
): 

2974 (w), 1606 (w), 1465 (w), 1394 (w), 1354 (m), 1273 (s), 

1160 (m), 1119 (s), 1035 (w), 931 (w), 885 (m), 838 (w), 813 

(w), 752 (w), 713 (m), 670 (m). UV-vis (CH2Cl2, [1·10
-4

 M]), 

max, nm (, L mol
-1 

cm
-1

): 260 (12500), 279 (sh, 6100), 307 

(sh, 5650), 339 (11000), 454 (1410). ESI-HRMS (m/z) calcu-

lated for [C23H43NNiP2Cl]
+
= 488.1904 and for [C32H12BF24]

-
 = 

863.0643. Found for [C23H43NNiP2Cl]
+
 = 488.1900 and for 

[C32H12BF24]
-
 = 863.0643. Anal. Calcd. For 

C55H55BClF24NNiP2: C, 48.83; H, 4.10; N, 1.04. Found: C, 

48.5; H, 4.07; N, 1.15. 

[(Me4PNP
tBu

)Ni
II
Br][B(3,5-CF3C6H3)4], [3]B(Ar

F
)4. [3]Br 

(20.0 mg, 0.0298 mmol, 1.00 eq) was dissolved  in dry toluene 

in a 20 mL vial in the Ar glovebox. A few drops of anhydrous 

CH2Cl2 were added to facilitate dissolution. Sodium 

tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (26.4 mg, 0.298 

mmol, 1.00 eq) was added and the mixture agitated for 5 

minutes. The solution was filtered through a short celite plug, 

then concentrated to give the pure product as a light pink solid 

(35 mg, 80 %). Red crystals of diffraction quality were ob-

tained by liquid diffusion of pentane into a concentrated THF 

solution of [3]B(Ar
F
)4 at -30 °C. 

1
H NMR (600 MHz, acetone-

d6) δ 1.48-1.56 (br m, 18H, Me of 
t
Bu), 1.70-1.87 (br m, 18H, 

Me of 
t
Bu), 2.07-2.11 (br m, 6H, PC-(CH3)Cpy), 2.17-2.22 (br 

m, 6H, PC-(CH3)2Cpy), 7.64 (d, JHH = 7.9 Hz, 2H, Cpy-Hmeta), 

7.66 (br s, 4 H, BCAr-Hpara), 7.77-7.78 (br m, 8H, BCAr-Hortho), 

8.28 (t, JHH = 7.9 Hz, 1H, Cpy-Hpara). 
13

C{
1
H} NMR (151 MHz, 

acetone-d6) δ 24.87 (PC-(CH3)2Cpy), 32.20 (Me of 
t
Bu), 33.04 

(br, Me of 
t
Bu), 36.07 (PC-(CH3)2Cpy), 40.15 (Cquat of 

t
Bu), 

41.62 (Cquat of 
t
Bu), 53.28 (vt, JPC = 4.4 Hz, P-C(CH3)2Cpy), 

118.46 (m, B-CAr,para), 121.60 (br, Cpy,meta), 125.38 (q, JCF = 

272.0 Hz, BCAr,meta-CF3), 130.01 (qdd, JCF = 31.7 Hz; JCB = 5.2 

Hz; JCF= 2.6 Hz, B-CAr,meta CF3), 135.54 (B-CAr,ortho), 144.64 

(Cpy,para), 162.61 (q, JBC = Hz, 50.0 Hz, B-CAr,ipso), 174.14 

(Cpy,ortho). 
31

P{
1
H} NMR (242.95 MHz, acetone-d6) δ 87.28. 

19
F{

1
H} NMR (564.73 MHz, acetone-d6) δ -63.15. ATR-IR 

(cm
-1

): 3005 (w), 2976 (w), 2914 (w), 1605 (w), 1482 (w), 

1397 (w), 1353 (m), 1273 (s), 1121 (s), 1017 (w), 928 (w), 

888 (m), 838 (w), 806 (w), 746 (w), 714 (m), 871 (m). UV-vis 

(CH2Cl2, [1·10
-4

 M]), max, nm (, L mol
-1 

cm
-1

) : 263 (9860), 

363 (4370), 505 (811). ESI-HRMS (m/z) calculated for 

[C27H51NNiP2Br]
+
= 588.2028 and for [C32H12BF24]

-
 = 

863.0643 Found for [C27H51NNiP2Br]
+
 = 588.2014 and for 

[C32H12BF24]
-
 = 863.0569. Anal. Calcd. For 

C59H63B1Br1F24N1P2Ni1: C, 48.76; H, 4.37; N, 0.96. Found: C, 

48.66; H, 4.34; N, 1.12. 

[(Me4PNP
tBu

)Ni
II
Cl][B(3,5-CF3C6H3)4], [4]B(Ar

F
)4. To a 

solution of [4]Cl (100 mg, 0.172 mmol, 1.00 eq.) in 10 mL of 

anhydrous THF in an N2 glovebox at room temperature, sodi-

um tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (152 mg, 

0.172 mmol, 1.00 eq.) was added and the solution was stirred 

for an hour. The reaction mixture was filtered through a small 

celite plug and concentrated under reduced pressure. The solid 

was subsequently washed with approximately 3 mL of diethyl 

ether to afford an orange solid (163 mg, 67 %). 
1
H NMR (600 

MHz, acetone-d6) δ 1.44-1.61 (br m, 18H, Me of 
t
Bu), 1.64-

1.91 (br m, 18H, Me of 
t
Bu), 2.05-2.11 (br m, 6H, PC-

(CH3)2Cpy), 2.15-2.23 (br m, 6H, PC-(CH3)2Cpy), 7.60 (d, JHH 
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= 8.1 Hz, 2H, Cpy-Hmeta), 7.66 (br s, 4 H, BCAr-Hpara), 7.77-

7.79 (m, 8H, BCAr-Hortho), 8.25 (tt, JHH = 8.1 Hz, JHP = 1.1 Hz, 

1H, Cpy-Hpara). 
13

C{
1
H} NMR (151 MHz, acetone-d6) δ 24.53 

(br, PC-(CH3)2Cpy), 31.89 (br, Me of 
t
Bu), 36.04 (br, PC-

(CH3)2Cpy), 40.03 (br, Cquat of 
t
Bu), 40.79 (br, Cquat of 

t
Bu), 

52.77 (vt, JPC = 4.8 Hz, P-C(CH3)2Cpy), 118.43-118.49 (m, B-

CAr,para), 121.39 (br, Cpy,meta), 125.40 (q, JCF = 272.0 Hz, BCAr-

CF3), 130.04 (qdd, JCF = 31.7 Hz; JCB = 5.2 Hz; JCF= 2.7 Hz, 

B-CAr,metaCF3), 135.56 (B-CAr,ortho), 144.59 (Cpy,para), 162.62 

(dd, JBC = 49.83 Hz, B-CAr,ipso), 174.46 (Cpy,ortho). 
31

P{
1
H} 

NMR (242.95 MHz, acetone-d6) δ 83.92. 
19

F{
1
H} NMR 

(564.73 MHz, acetone-d6) δ -63.14. ATR-IR (cm
-1

): 2975 (w), 

2912 (w), 1743 (w), 1606 (w), 1569 (w), 1486 (w), 1396 (w), 

1353 (m), 1273 (s), 1119 (s), 1018 (w), 929 (w), 887 (m), 837 

(w), 806 (w), 745 (w), 713 (m), 672 (m). UV-vis (CH2Cl2, 

[1·10
-4

 M]), max, nm (, L mol
-1 

cm
-1

): 261 (15700), 278 (sh, 

7590), 309 (sh, 4260), 351 (14000), 481 (1910). ESI-HRMS 

(m/z) calculated for [C27H51NNiP2Cl]
+
= 544.2533 and for 

[C32H12BF24]
-
 = 863.0643 Found for [C23H43NNiP2Cl]

+
 = 

544.2525 and for [C32H12BF24]
-
 = 863.0638. Anal. Calcd. For 

C59H63BClF24NNiP2: C, 50.29; H, 4.51; N, 0.99. Found: C, 

48.93; H, 4.15; N, 1.10. 

(Me4PNP
iPr

)Ni
I
Br, 5. Method 1: Chemical reduction using 

CoCp2. To a solution of [1]Br (50.0 mg, 0.081 mmol, 1.00 

eq.) in dry acetone, cobaltocene (15.4 mg, 0.081 mmol, 1.00 

eq.) was added at room temperature. The solution turns dark 

red immediately and after 5 minutes of stirring, the mixture 

was filtered through a short celite plug. The acetone was 

evaporated to afford a red solid (34.5 mg, 79% yield). Red 

crystals suitable for X-ray diffraction were obtained by cool-

ing down a solution of 5 acetone-d6 at -30 °C under nitrogen 

atmosphere. Crystals of the complex in in acetone or MeTHF 

mixture was characterized by EPR spectroscopy (see main 

text). 
1
H NMR (400 MHz, C6D6):  44.01 (br), 34.38 (br s), 

5.02 (br s), 4.02 (br s), 1.56 (s), -0.20 (br s), -51.45 (br s). 

ATR-IR (cm
-1

): 3055 (w), 2954 (s), 2923 (m), 2866 (s), 2717 

(w), 2110 (w), 2073 (w), 1888 (w), 1809 (w), 1709 (w), 1581 

(w), 1559 (w), 1452 (s), 1382 (m), 1296 (w), 1231 (m), 1183 

(w), 1156 (w), 1084 (w), 1035 (m), 1003 (m), 954 (w), 928 

(w), 867 (m), 808(s), 746 (s), 663 (s). UV-vis (THF, [1·10
-4

 

M]), max, nm (, L mol
-1 

cm
-1

): 237 (9630), 263 (10700), 298 

(sh, 6650), 464 (1430), 529 (941). 

Method 2: Generation of Ni
1
 complex by electrochemical 

reduction and coulometric analysis. Ni
I
 complex 5 was pre-

pared via bulk electrolysis at the same time as a coulometric 

analysis was performed. A voltage of -1500 mV was applied 

(using an Ag/AgNO3 reference electrode, a platinum gauze 

working electrode and a platinum gauze counter-electrode) to 

a yellow solution of [1]B(Ar
F
)4 (1·10

-3
M using 0.1M 

n
Bu4NPF6 in dry CH3CN as the electrolyte). The voltage was 

applied for 1830 s, until the current measured was less than 

1% of the starting current (charge measured = 0.800 C, theo-

retical charge for 1 electron reduction = 0.771 C). At that point 

the solution had become brown. The nature of the product 

formed was confirmed by comparing its low temperature EPR 

spectra and g tensor values with those from the chemically 

reduced 5 (see main text).  

(Me4PNP
iPr

)Ni
I
Cl, 6. The complex was prepared via method 1 

described for the preparation of complex 5 above, using the 

following quantities: [2]Cl (70.0 mg, 0.133 mmol, 1.00 eq.) 

and cobaltocene (25.2 mg, 0.133 mmol, 1.00 eq.) gave a dark 

red powder (55.4 mg, 85%). Red crystals of 6 were obtained 

in the same way as described in method 1 for the preparation 

of 5. The complex solution in 20% acetone/MeTHF was ana-

lyzed by EPR spectroscopy (See main text). 
1
H NMR (400 

MHz, C6D6):  44.07 (br), 36.64 (br s), 4.77 (br s), 3.92 (br s), 

3.11 (s), 0.30 (br s), -51.52 (br s). ATR-IR (cm
-1

): 3069 (w), 

2983 (m), 2960 (m), 2943 (m), 2922(m), 2893 (m), 1712 (w), 

1584 (w), 1539 (w), 1464 (m), 1451 (m), 1413 (m), 1388 (m), 

1380 (m), 1364 (w), 1234 (w), 1220 (w), 1188 (w), 1156 (w), 

1109 (w), 1087 (w), 1040 (m), 1016 (w), 996 (m), 958 (w), 

950 (w), 925 (w), 895 (w), 879 (m), 810 (m), 779 (s), 753 (s), 

732 (w), 668 (s). UV-vis (THF, [1·10
-4

 M]), max, nm (, L 

mol
-1 

cm
-1

): 233 (19200), 260 (16200), 294 (sh, 9680), 338 

(9440), 480 (1070). Anal. Calcd. For C23H43ClNNiP2: C, 

56.41; H, 8.85; N, 2.86. Found: C, 55.81 H, 7.75; N, 2.27 

(Me4PNP
tBu

)Pyridine)Ni
I
Br, 7. The complex was prepared 

following method 1 used to prepare complex 5 using the fol-

lowing quantities: [3]Br (40.0 mg, 0.060 mmol, 1.00 eq.) and 

cobaltocene (11.3 mg, 0.060 mmol, 1.00 eq.) and gave a red 

powder (26.1 mg, 65% yield). Dark orange crystals of com-

plex 7 were obtained by crystallization of a concentrated solu-

tion in acetone-d6 at -30 °C under a nitrogen atmosphere. The 

complex solution in 35% acetone/MeTHF was analyzed by 

EPR spectroscopy (See main text). 
1
H NMR (400 MHz, 

C6D6):  11.12 (br s), 5.24 (br s), 1.97 (br s), -51.50 (br s). 

ATR-IR (cm
-1

): 3329 (w), 3057 (w), 2991 (m), 2955 (m), 2891 

(m), 2864 (m), 2708 (w), 2656 (w), 2111 (w), 1701 (w), 1558 

(w), 1486 (m), 1443 (m), 1388 (s), 1359 (m), 1251 (w), 1217 

(w), 1172 (m), 1106 (m), 995 (m), 947 (w), 931 (w), 891 (w), 

858 (w), 808 (m), 776 (s), 757 (s), 726 (w), 680 (w). UV-vis 

(THF, [1·10
-4

 M]), max, nm (, L mol
-1 

cm
-1

): 261 (12000), 328 

(8840), 499 (1100).  

(Me4PNP
tBu

)Ni
I
Cl, 8. The complex was prepared via method 

1 described for the preparation of complex 5 above, except 

that a 2 hour mixing time was needed, using the following 

quantities: [4]Cl (25.0 mg, 0.043 mmol, 1.00 eq.) and cobalto-

cene (8.1 mg, 0.043 mmol, 1.00 eq.). A dark red powder (20.7 

mg, 88 % yield) was obtained. Dark red crystals of 8 were 

obtained in the same way as described in method 1 for the 

preparation of 5. The complex solution in MeTHF was ana-

lyzed by EPR spectroscopy (See main text). 
1
H NMR (400 

MHz, C6D6):  12.09 (br s), 6.23 (br s), -51.52 (br s). ATR-IR 

(Solid state, cm
-1

): 3057 (w), 2979 (m), 2960 (m), 2894 (m), 

2872 (m), 1702 (m), 1595 (m), 1579 (w), 1563 (w), 1470 (m), 

1461 (m), 1450 (m), 1409 (w), 1395 (m), 1364 (m), 1253 (m), 

1212 (w), 1196 (w), 1171 (m), 1137 (m), 1107 (m), 1018 (m), 

987 (w), 978 (m), 932 (w), 903 (w), 891 (w), 831 (m), 806 (s), 

763 (m), 758 (m), 746 (m), 724 (w), 661 (m), 654 (m). UV-vis 

(THF, [1·10
-4

 M]), max, nm (, L mol
-1 

cm
-1

): 267 (12800), 334 

(3220), 462 (508) 

ASSOCIATED CONTENT  

Supporting Information 

The Supporting Information is available free of charge on the 

ACS Publications website: experimental details, characterization 

data, computational details and xyz coordinates. Complete details 

or the X-ray analysis reported herein have been deposited at the 

Cambridge Crystallographic Data Center (CCDC 1885748 

(Me4PNPiPrBH3), 1885747 (Me4PNPtBuBH3), 1885755 

(Me4PNPtBu), 1885758 ([1]Br), 1885751 ([2]Cl), 1885754 
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