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Abstract 

The CDC has classified antibiotic resistance as the biggest health challenge of our era; every 

year 2 million lives are impacted and even lost due to resistant bacteria. Bacteriophages provide 

an alternative route to fighting infections that does not further the development of antibiotic 

resistance among bacterial species. A bacteriophage replicates inside a bacterial cell and then 

causes that cell to lyse, an event that kills the bacterial host. However, some phage can integrate 

their genomes into the host chromosome without causing lysis.  The HHMI SEA-PHAGES 

program has generated a collection of bacteriophage that infect Actinobacteria species. Over 

13,000 phages have been collected thus far, but fewer than 3,000 have been sequenced and 

genetically analyzed. The purpose of research into the lysogeny of discovered, but unsequenced, 

bacteriophage is to classify them by immunity range; that is, closely related bacteriophage are 

unable to infect the lysogenic host, while more distantly related phage are. Initially, a lysogen 

had to be isolated. For Pita2, a phage isolated and analyzed at Bowling Green State University, 

the host is Mycobacterium smegmatis. A purified lysogen of Pita2 was analyzed against 

bacteriophage with known DNA sequences to confirm that it is immune to infection by closely 

related phage.  The lysogeny was then examined for its ability to identify close vs. more distantly 

related phage among a set unknown bacteriophage.  Another virus, namely SARS-CoV2, 

prevented the completion of this study.  However, it was possible to generate preliminary data 

that established the ability to use immunity as a means to classify newly isolated phage based 

upon the degree to which they can successfully infect the Pita2 lysogen. 

 

Introduction 

Bacteriophage, or phage, are viruses that infect bacteria.  They belong to two broad types; lytic 

and temperate.  Lytic phage infect and kill their host.  Temperate phage can infect with host cell 

killing, but they can also integrate their DNA into the host's genome (Ofir & Sorek, 2017; Figure 

1). The phage DNA-modified bacterium is called a lysogen. When phage are operating in this 

“stealth mode”, the lytic pathway is turned off by a phage-encoded silencer gene product called 

the cI repressor protein. In addition to the suppression of the phage's own lytic pathway, the cI 

product can prevent infection by other related phage.  This resistance to a secondary infection is 

known as superimmunity.  

  

Phage have proven to be effective antibacterial agents, providing an increasingly important 

alternative to antibiotic therapies as bacterial resistance escalates. (Romero-Calle, 2019).  

Bacteriophage therapy was first pioneered in the treatment of dysentery by Felix d’Herelle as 

early as 1915. Since d’Herelle’s initial excursion into medicinal use of bacteriophage, more work 

has been done in the categorization and discovery of new phage. To develop their use in 

therapies, it is important to continue investigating the biology of phage, which includes studying 

their relatedness. Based upon the principle of superimmunity, it should be possible to determine 

phage relatedness by examining the ability of phage to superinfect a lysogen.  If the phage is 

closely related, infection should be blocked by superimmunity, if the phage is more distantly 

related, then newly infecting phage should be able to lyse the bacteria. (Mavrich, 2019). The goal 

of this project is to test the superimmunity hypothesis for the bacterium Mycobacterium 

smegmatis mc² 155 using newly isolated lysogens of the temperate bacteriophage Pita2. 
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Materials and Methods 

Host and Media 

The bacterial host used in the following described research was Mycobacterium smegmatis mc² 

155. The media used in isolation and immunity assays was L-agar (carbenicillin 50 μg/ml and 

cycloheximide 10 μg/m). When bacterial cells were plated on top of L-agar they were suspended 

in 3 mL of Top Agar (50 mL 7H9 media, 1 ml 100 mM of CaCl, and 50 ml top agar). Phage 

buffer used in these experiments was made from 10 mM Tris (pH 7.5), 10 mM MgSO₄, 68 mM 

NaCl, and 1 mM CaCl₂.  

Isolation of Pita2 

Pita2 was originally isolated in the Fall of 2017 by Natalie Wise.  Protocols described in the 

HHMI Phage Discovery Guide were used.  The phage was first isolated from an environmental 

soil sample using the direct isolation procedure.  Pita2 phage was then purified through a series 

of dilutions and platings, and then amplified to obtain a high titer lysate.  Phage DNA was 

extracted and sequenced.  The phage genome was annotated by the SEA-PHAGES Spring 2018 

cohort of students.  Both the sequence and annotation were deposited in Genbank at the National 

Center for Biotechnology Information (Accession # MH576959). During the annotation process 

it was discovered that Pita2 has an immunity repressor gene.  This gene confirmed that Pita2 is a 

phage that follows the temperate life cycle and thus is capable of forming a lysogen. 

Lysogen Isolation 

To isolate a lysogen of Pita2 serial dilutions were plated on a lawn of Mycobacterium smegmatis 

mc2 155. Samples of bacterial mesas, areas of bacteria infected with phage, were used to streak 

plates for single M. smegmatis mc2 155 colonies. These single colonies were potential lysogens. 

Following this streak-purification, a patch assay was performed to determine whether the 

candidate isolates were true lysogens. This assay involved streaking a bacterial mass first on a 

"Lysogen-only" L-agar plate and then through a lawn of M. smegmatis mc2155 prepared on a 

second L-agar "Experimental" plate to form a small patch.  Stable lysogens are those that grow 

on the Lysogen-only plate and produce a halo of lysis around the patched area on the 

Experimental plate.  One such confirmed lysogen was then cultured and used in the immunity 

assay with other bacteriophage that were isolated by students in the SEA-PHAGES course. 

Immunity Assay 

Frozen stocks of phage lysates were used to test the bacteriophage isolated in Fall of 2018 by 

spotting serial dilutions onto both lawns of the wild type M. smegmatis mc2155 bacteria and the 

stable Pita2 lysogen that were prepared on L-agar plates.  These plates were incubated for 48 

hours at 37 degrees Celsius. The plaques were then counted to compare titers on wild M. 

smegmatis mc² 155 and the Pita2 lysogen.  

PCR and Agarose Gel Electrophoresis 

Polymerase Chain Reactions (PCR) were performed using primers purchased from Integrated 

DNA Technologies (Coralville, Iowa), "Ready-to-go" PCR tubes (GE Life Sciences; Pittsburgh, 

PA), and a MyCycler thermocycler (BioRad, Hercules, CA).  The amplification protocols used 

for each reaction were STEP 1: 90°C for 1 min; STEP 2 (repeat 34 times): 90°C for 1 min, AT 

(Annealing Temperature corresponding to the melting temperature for the primers used in the 



 
 

 3 

reaction) for 15 sec, 72°C for a sufficient amount of time to allow the DNA polymerase in the 

reaction to synthesize the full-length product; STEP 3: 72°C for 5 min; STEP 4: room 

temperature incubation. 

Each reaction was analyzed using agarose gel electrophoresis. The PCR products were loaded 

into an agarose gel alongside a DNA ladder and positive control. These gels were run for 45 

minutes before destaining and photographing.  

Results 

Isolation of a Pita2 lysogen 

A lysate of Pita2 was diluted and spotted on a lawn of Mycobacterium smegmatis mc² 155.  A 

sterile toothpick was used to scrape the top layer of cells in the cloudy mesa area surrounding the 

plaques (both scrape sites were circled on the dilution plate indicated in Figure 1 below).  The 

scraped samples were streaked multiple times to purify the potential lysogen.  Figure 2 shows 

the patch assay that confirmed potential lysogen ‘D’ was a true lysogen of Pita2.  On a lawn of 

the bacterial host the lysogen caused lysis, forming the plaque on the left plate in Figure 2; in 

contrast, the plate on the right shows normal bacterial growth, indicating the stability of the Pita2 

lysogen. 

Figure 1. (Left) Pita2 dilutions spotted on Mycobacterium smegmatis mc² 155 with circled mesa 

sample sites.  (Right) Successful patch assay indicating a stable lysogen on the spot labelled ‘D’.  

Superimmunity testing 

A total of sixteen phage have been spot-tested against the Pita2 lysogen.  These 16 were chosen 

because there is preliminary DNA sequence data available for all of them.  However, the DNA 

sequences require deconvolution in order to assign a specific sequence to a specific phage.  Until 

that time, only phage cluster representation among the sequences, and so the phage is known.  

Clusters are groups of bacteriophage that have highly similar genomes. A cluster can be further 

divided into subclusters.  Pita2 is an A1 phage, and the expectation is that other A1 phage should 

be unable to infect the Pita2 lysogen.  Table 1 lists the immunity assay results for the 16 

experimental phage.  

 

  



 
 

 4 

Table 1: Immunity test results for phage plated on both wild type (WT) M. smegmatis and the M. 

smegmatis Pita2 lysogen.  

Phage (Cluster) Plaques? Titer on WT 
Titer on 

Pita2 

Fold 

Difference in 

Titer 

Cabo (DOGEMS) ✓ 5.00E-08 1.00E-08 5.0 

Crysler (DOGEMS) ✓ 3.00E-09 1.00E-10 30.0 

Elohim (DOGEMS) - 1.00E-07  -   -  

Eugenia (B1-Lytic) ✓ 2.00E-10 1.00E-10 2.0 

Jerry Smith (DOGEMS) - 7.00E-07  -   -  

Joieb (S-Lytic) ✓ 2.60E-09 2.00E-09 1.3 

Joyride (DOGEMS) - 4.00E-09  -   -  

KekeDoULoveMe 

(DOGEMS) 

✓ 

2.00E-10 1.00E-08 0.0 

Kiddo (DOGEMS) ✓ 1.00E-10 2.00E-09 0.1 

Maliboo (DOGEMS) ✓ 1.00E-10 2.00E-10 0.5 

Maverix (DOGEMS) ✓ 4.00E-10 3.00E-08 0.0 

Pita2 (A1-Temperate) ✓ 2.00E-07 3.00E-04 0.0 

Pringar (DOGEMS/S-Lytic) ✓ 2.00E-10 2.00E-09 0.1 

Qbot (DOGEMS) ✓ 1.20E-10 1.00E-10 1.2 

Qrex (DOGEMS) ✓ 5.00E-09 5.00E-09 1.0 

Shalamarie (DOGEMS) ✓ 1.80E-09 4.00E-10 4.5 

Zilre (DOGEMS) ✓ 6.00E-08 2.00E-08 3.0 

 

The results of the initial immunity assay show the potential cluster alignments of these 16 phage 

in relation to the DOGEMS contigs results. In analyzing the fold difference between the titer of 

an experimental phage on the Pita2 lysogen (labelled Pita2 in Table 1) and the wild type M. 

smegmatis strain (labelled WT in Table 1) three distinct ranges can be deduced.  The first and 

simplest to assign are phages Joyride, Jerry Smith, and Elohim. These three fall in the first range, 

they have absolutely no plaques present on the Pita2 lysogen. (Appendix) The nature of 

superinfection immunity requires a repressor protein encoded by Pita2 to bind to a specific 

sequence on the infecting phage DNA.  This DNA sequence is likely present in Joyride, Jerry 

Smith, and Elohim as seen by their inability to infect and cause a lysis event on the lysogen.  

Because of this hypothesized genetic similarity, Joyride, Jerry Smith, and Elohim are potential 

members of Cluster A4.  Among the DOGEMS contigs, one complete A4 genome is present.  To 

determine which of these three potential A4 phage it belongs to, PCR is necessary.  

The second range is those that have a fold difference in titer between 3.0 and 30.0.  Three phage 

are in this group; Crysler, Cabo, Shalamarie, and Zilre.  These phage are likely members of the 

G1 or J clusters which include only temperate phage.  

The final range is the most ambiguous.  Bacteriophage in clusters B, C, and S all follow the lytic 

life cycle.  The phage in this group are Maverix, KekeDoULoveMe, Kiddo, Qbot, Qrex, and 

Pringar.  They were assigned to this group because the range of difference in titer was between 

0.0 and 2.0.  Eugenia is a known cluster B1 bacteriophage that follows the lytic life cycle.  There 

was a two-fold difference in the number of plaque forming units on Pita2 vs. the wild type. 

Eugenia was used as a benchmark for determining other potential members of the B1 cluster.  
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These six phage likely express the lytic life cycle because their titer was not significantly 

impacted by the presence of the temperate phage Pita2 within the host chromosome.  

Primer Design 

The goal of the primers designed here was to “deconvolute” the DNA sequences of the phage.  

This deconvolution is done using Polymerase Chain Reaction (PCR).  PCR primers 

corresponding to each phage cluster represented in the DNA pool were designed according to an 

analysis of the tail protein sequences of all sequenced phage in that cluster.  The experimental 

clusters present in the 2018 DNA pool are A4, B1, C1, G1, J, and S.  Table 2 lists the resulting 

primers, which are specific for phage in each cluster.  These primers conform to parameters that 

are required for PCR and generate products that are easily visualized by agarose gel 

electrophoresis. 

Table 2: Primer sequences designed to uniquely identify phage DNA belonging to clusters 

represented among the 2018 sequenced phage. 

Cluster Forward Sequence (5'-3') Reverse Sequence (5'-3') 

Product 

Length 

(bp) 

Annealing 

Temp. 

(°C) 

A4 CAT GCC CGA GTT CGG CT  GAT CCA GCT CCC GGT GGA CGA CT 333 64 

B GGC TCA TGA CCG CCG ATG CGA GGC GGT GTC CTC CC 876 61 

C1 AAC AAG CAG TAC GAC GTG TCC  GCG GTG CAC TGC TTC AT  710 57 

G1 CCG GCG GTC TCT ACA TCG C  GCG TTC TTC GAG GAC AAG GCG  353 61 

J CAA CCT GGC CGA CCC CGC  TGG AAG TTC CGC GTC AAG GCC AC  794 65 

S CGC TGG AGG CAA CCG G  CCC TGA ACT GCC AGG CC  460 60 

 

Deconvolution Results 

First, to test the validity of the primers Joieb was run with the S-set of primers. Joieb was 

sequenced separately from the DOGEMS phage and is in the S cluster. The S-primers 

successfully amplified the major tail region of Joieb’s DNA, making Joieb the perfect positive 

control for the other deconvolution PCR results. Figure 2 is a picture of the gel showing Joieb 

PCR product.  
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Figure 3.  Image of agarose gel with PCR product from Joieb DNA and the Cluster S-specific-

primers (see Table 1 for primer sequences).  M is the “2 log” DNA molecular size marker 

(NEB). 

After confirming that the primers designed for cluster S successfully identified Joieb (the 

individually sequenced cluster S phage), experimental trials began.  Figure 4 is an image of the 

results of the first experimental PCR trial.  This trial was done by the 2018 SEA-PHAGES class 

in DNA of all of the sequenced phage were used as template in separate amplification reactions 

using the S primers. 

 

Figure 4.  PCR confirming that Pringar is an S cluster phage.  The template DNA samples used 

are as follows:  Lane 1: Bali, lane 2: Elohim, lane 3: Maverix, lane 4: Crysler, lane 5: Qrex, 

lane 6: Shalamarie, lane 7: Pringar, lane 8: Kiddo, lane 9: Qbot, lane 10: KekeDoULoveMe, 

lane 11: Joyride, and lane 12: Zilre.  Pringar DNA was the only template that was amplified 

with the S primers other than the positive Joieb control.  M:  “2 log” DNA molecular size 

marker (NEB). 
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Pringar is the only S phage present in the DOGEMS group. (Fig. 4). Following this 

identification, the G primers were used in PCR of the remaining phage. The expected product, a 

DNA sequence with a length of 353 base pairs, was not observed. As seen in both figures below, 

the only wells showing any DNA were the two wells with a standard, and the Joieb positive 

control.  

 

Figure 5.  Image of agarose gel with PCR products from amplification of phage DNA with G 

primers.  Joieb DNA is the positive control.  Lanes are as follows:  Lane 1: Cabo, lane 2: 

Crysler, lane 3: Elohim, lane 4: Jerry Smith, lane 5: Joyride, lane 6: KekeDoULoveMe, lane 7: 

Kiddo, lane 8: Maliboo, lane 9: Maverix, lane 10: Qbot, lane 11: Qrex, lane 12: Shalamarie, 

and lane 13: Zilre.  M:  “2 log” DNA molecular size marker (NEB). 

 

Discussion 

The SEA-PHAGES program continues to isolate hundreds of new bacteriophage every year; 

relatively few of these will be sequenced or annotated.  Characterization of bacteriophage is 

critical to the development of effective methods of phage therapy, it provides information about 

superinfection, host range, and life cycle.  The immunity repressor gene of Pita2 was identified 

during annotation of its genome, and the presence of this gene allowed for this project to 

proceed.  The ability of the phage DNA to integrate into the host chromosome gave us the 

opportunity to test for superinfection by other bacteriophage.  Those that were closely genetically 

related to Pita2 were hypothesized to be unable to infect the Pita2 lysogen. Conversely, those 

bacteriophage that proved capable of infecting the lysogen would likely be more distantly related 

or unrelated to Pita2. 

Pringar was hypothesized to be a member of clusters B, C, or S based upon the superimmunity 

assays.  Using PCR and the cluster S primers, Pringar was determined to be a cluster S phage.  

Therefore, the ability to use a Pita2 lysogen as a tool in cluster assignments of unsequenced 

phage was confirmed. 

The primers listed in Table 2 were designed based upon the major tail sequences of multiple 

bacteriophage from each represented cluster, except for cluster B.  The cluster B phage did not 

have a large enough major tail gene, and as such the minor tail protein sequence was used in 



 
 

 8 

designing the B primers.  These primers will make it possible to resolve future sequencing results 

involving pools of phage. 

In order to complete the project, multiple addition amplifications were planned; however, 

another virus, SARS-CoV2 postponed them.  Nevertheless, the usefulness of the Pita2 has 

already been demonstrated, and can be used to characterize future newly isolated phage.  
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Appendix 

Figure 6 (left).  Lifestyle options of 

temperate bacteriophage from 

Contemporary Phage Biology Ofir and 

Sorek. 

 

 

 

 

 

 

 

 

 

Figure 7. DOGEMS results from the Bowling Green SEAPHAGES 2018 cohort indicating which 

clusters were potentially present in the DNA pool. 
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Figures 8a (left) and 8b (right). Dilutions of phage Cabo on both the WT host and Pita2 lysogen. 

  

Figures 9a (left) and 9b (right). Dilutions of phage Crysler on both the WT and Pita2 lysogen. 

  

Figures 10a (left) and 10b (right). Dilutions of Elohim on WT and Pita2 lysogen. No plaques 

were observed when dilutions were spotted on the Pita2 lysogen.  
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Figure 11a (left) and 11b (right). Eugenia, a cluster B phage on both WT and Pita2 lysogen. 

  

Figure 12a (left) and 12b (right). DOGEMS phage Jerry Smith on WT and Pita2 lysogen. No 

plaques were observed on the Pita2 lysogen.  

  

Figure 13a (left) and 13b (right). S phage Joieb on WT and Pita2 lysogen.  
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Figure 14a (left) and 14b (right). Joyride on WT and Pita2 lysogen. No plaques were observed 

when dilutions were plated on the lysogen.  

  

Figure 15a (left) and 15b (right). KekeDoULoveMe on WT and Pita2 lysogen.  

  

Figure 16a (left) and 16b (right). Kiddo on WT and Pita2 lysogen. 
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Figure 17a (left) and 17b (right). Maliboo on WT and Pita2 lysogen.  

\   

Figure 18a (left) and 18b (right). Maverix on WT and Pita2 lysogen.  
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Figure 19a (left) and 19b (right). Pita2 phage plated on WT and Pita2 lysogen. 

  

Figure 20a (left) and 20b (right). Pringar, an S phage, on WT and Pita2 lysogen.  

  

Figure 21a (left) and 21b (right). Qbot on WT and Pita2 lysogen.  
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Figure 22a (left) and 22b (right). Qrex on WT and Pita2 lysogen. 

  

Figure 23a (left) and 23b (right). Shalamarie on WT and Pita2 lysogen 

 



 
 

 16 

  

Figure 24a (left) and 24b (right). Zilre on both WT and Pita2 lysogen.  
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