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Abstract

NMR is emerging as a valuable testbed for the investigation of
foundational questions in quantum mechanics. The present paper
outlines the preparation of a class of mixed states, called pseudo-pure
states, that emulate pure quantum states in the highly mixed environ-
ment typically used to describe solution-state NMR samples. It also
describes the NMR observation of spinor behavior in spin 1/2 nuclei,
the simulation of wave function collapse using a magnetic field gradi-
ent, the creation of entangled (or Bell) pseudo-pure states, and a brief
discussion of quantum computing logic gates, including the Quantum
Fourier Transform. These experiments show that liquid-state NMR
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can be used to demonstrate quantum dynamics at a level suitable for
laboratory exercises.

1 Introduction

The fundamental physics of NMR is again, 50 years after its discovery, the
subject of much discussion. The impetus behind this recent interest is the
dramatic potential of quantum information processing (QIP) [1], particularly
quantum computing, along with the realization that liquid-state NMR pro-
vides an experimentally accessible testbed for developing and demonstrating
these new ideas [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

Most descriptions of quantum information processors have focused on the
preparation, manipulation, and measurement of a single quantum system
in a pure state. The applicability of NMR to QIP is somewhat surprising
because, at finite temperatures, the spins constitute a highly mixed state,
as opposed to the preferred pure state. However, NMR technology applied
to the mixed state ensemble of spins (the liquid sample) does offer several
advantages. Decoherence, which plays a detrimental role in the storage of
quantum information, is conveniently long (on the order of seconds) in a
typical solution sample, and it acts on the system by attenuating the elements
of the density matrix and rarely mixes them. NMR spectrometers allow for
precise control of the spin system via the application of arbitrary sequences
of RF excitations, permitting the implementation of unitary transformations
on the spins. Effective non-unitary transformations are also possible using
magnetic field gradients. The gradient produces a spatially varying phase
throughout the sample, and since the detection over the sample is essentially
a sum over all the spins, phase cancellations from spins in distinct positions
occur. These characteristics of NMR enable the creation of a class of mixed
states, called pseudo-pure states, which transform identically to a quantum
system in a pure state[3].

NMR does have several noteworthy disadvantages. A single density ma-
trix cannot be associated with a unique microscopic picture of the sample,
and the close proximity of the spins prevents the study of non-local effects.
Additionally, the preparation of pseudo-pure states from the high tempera-
ture equilibrium state in solution NMR entails an exponential loss in polar-
ization. [13]

In this paper, we review the results of a number of simple NMR experi-
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ments demonstrating interesting quantum dynamics. The experiments illus-
trate spinor behavior under rotations, the creation and validation of pseudo-
pure states, their transformation into “entangled” states, and the simulation
of wave function collapse via gradients. Additionally, the implementations
of basic quantum logic gates are described, along with the Quantum Fourier
Transform.

2 The Spin System

The experiments were performed on the two-spin heteronuclear spin system,
13C-labeled chloroform (13CHCl3), thereby eliminating the use of shaped RF
pulses. The 13C (I) and the 1H (S) nuclei interact via weak scalar coupling,
and the Hamiltonian for this system is written as

H = ωIIz + ωSSz + 2πJIzSz, (1)

where ωI and ωS are the Larmor frequencies of the 13C and 1H spins respec-
tively and J << |ωI − ωS| is the scalar coupling constant.

In the standard model of quantum computation, the quantum system
is described by a pure state. However, liquid-state NMR samples at room
temperature are in highly mixed states, requiring the state of the system to
be described by the density operator. In a liquid sample, the inter-molecular
interactions are, for most practical purposes, averaged to zero so that only
interactions within a molecule are observable; in other words, the sample
can be thought of as an ensemble of quantum processors, each permitting
quantum coherence within but not between molecules. For the purposes of
this paper, the large density matrix of size 2N × 2N , where N is the number
of spins in the sample, may be replaced by a much smaller density matrix
of size 2n × 2n, where n is the number of distinguishable spin-1

2
nuclei in

the molecule. In the high temperature regime (ǫ = h̄γIBo

2kT
∼ O(10−6)) the

equilibrium density operator for the ensemble is

ρ = e−H/kT

Z
≈ 1

4
1 + 1

4
ǫρdev =

1
4
1+ 1

4
ǫ

(

Iz +
γS
γI
Sz

)

, (2)

where the relative value of the gyromagnetic ratios is γS/γI ∼ 4.
From the above, it is clear that at room temperature a spin system cannot

be prepared in a pure state. However, it is possible to prepare a pseudo-pure
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state that transforms like a pure state. Also, notice that since the identity
part of the density operator is invariant under unitary transformations, it is
the deviation part of the density operator, that holds the information on the
spin dynamics. Henceforth in this paper, the deviation density matrix will be
simply referred to as the density matrix. The density operator is often written
in the product operator basis formed by the direct product of individual
spin operators[14, 15]. The product operator technique is used throughout
this paper to express the dynamics of the spin system. Furthermore, if n
spins are coupled to one another, any arbitrary unitary operation can be
composed from a series of RF pulses, chemical shift evolution and scalar
coupling evolutions. [4, 16]

3 Preparation of Pseudo-Pure States

Before describing the creation of the pseudo-pure state, it is convenient to
begin with a system of equal spin populations. This is achieved by applying
the pulse sequence

[

π

2

]I,S

x

→
(

1

4J

)

→
[

π

2

]I,S

y

→
(

1

4J

)

→
[

π

2

]I,S

−x

→ [grad(z)] , (3)

to the equilibrium density matrix, resulting in

1

4
1 +

ǫ

4

(

1 + γS
γI

)

(Iz + Sz), (4)

which has a balanced spin population. Because the eigenvalue structure of
this density matrix is different from that of thermal equilibrium, there is no
unitary transformation which could transform one to the other. The non-
unitary gradient (where the non-unitarity refers to the spatial average over
the phases created by the gradient) at the end of the above pulse sequence
makes this transformation possible. Figure 1 shows a spectrum obtained
after applying this sequence.

Since the identity part of the equalized density matrix is unaffected by
unitary transformations and undetectable in NMR, only the deviation density
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matrix,

Iz + Sz =

|0I0S〉 |0I1S〉 |1I0S〉 |1I1S〉
〈0I0S|
〈0I1S|
〈1I0S|
〈1I1S|











1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 -1











,
(5)

which represents the excess magnetization aligned with the external magnetic
field, is of interest. The above matrix representation has been made in the
eigenbasis of the unperturbed Hamiltonian, and here the rows and columns
have been labeled explicitly to avoid ambiguity. In the subsequent matrix
expressions, the labels will be dropped.

QIP requires the ability to create and manipulate pure states. NMR
systems, however, are in a highly mixed state at thermal equilibrium. While
single spin manipulation is not feasible in NMR, Cory et. al. [2, 3, 5] have
developed a technique by which the equilibrium state is turned into a pseudo-
pure state. Such a state can be shown to transform identically to a true pure
state as follows: according to the rules of quantum mechanics, a unitary
transformation U maps the density matrix ρ to ρ′ = UρU †. Thus an N -spin
density matrix of the form ρ = (1+ |ψ〉〈ψ|)/2N is mapped to

1+ (U|ψ〉)(U|ψ〉)†
2N

. (6)

This shows that the underlying spinor |ψ〉 is transformed one-sidedly by U
just as a spinor which describes a pure state would be.

After equalizing the spin population from the thermal equilibrium state
(eq. (5)), the application of

[

π

4

]I,S

x

→
(

1

2J

)

→
[

π

6

]I,S

y

→ [grad(z)] (7)

results in the pseudo-pure state (neglecting the initial identity component)

√

3

32
1+

√

3

8
(Iz + Sz + 2IzSz) =

√

3

2











1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0











. (8)

Figure 2 shows a series of spectra confirming the preparation of a pseudo-
pure state.
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4 Spinor Behavior

Particles of half-integral spin have the curious property that when rotated by
2π, their wave functions change sign while a 4π rotation returns their phase
factors to their original value. The change in the sign of the wavefunction is
not observable for a single particle, but it can be seen through an interference
effect with a second “reference spin.” Spinor behavior, as this effect is called,
was first experimentally measured using neutron interferometry [17, 18] and
later using NMR interferometry [19].

The following simple experiment describes how the spinor behavior can be
seen in chloroform, where the spinor behavior of 13C is correlated with the 1H
nuclei as a multiplicative phase factor. Consider the unitary transformation

U =













1 0 0 0

0 cos
(

φ

2

)

0 − sin
(

φ

2

)

0 0 1 0

0 sin
(

φ

2

)

0 cos
(

φ

2

)













= e−iφIy(
1
2
−Sz). (9)

As explained in section 6, this can be viewed as a rotation by φ of the 13C
conditional on the 1H being in the down state. This can be implemented via
the pulse sequence

[

φ

2

]I

y

→
[

π

2

]I

x

→
[

φ

2πJ

]

→
[

π

2

]I

−x

. (10)

Application of this pulse sequence to the state 2IzSx, where the spinor be-
havior of the I-spin is revealed by its correlation to the S-spin, results in

2 cos(φ/2)IzSx + 2 sin(φ/2)IxSx. (11)

It can be clearly seen that when φ = 2π the initial state gains a minus sign,
but when φ = 4π the state returns to its initial value. The state 2IzSx is
made observable under the evolution of the internal hamiltonian previously
defined and can be created from the equalized equilibrium state (eq. 4) using
the sequence

[

π

2

]I

x

→ [grad(z)] →
[

π

2

]S

x

→
(

1

2J

)

. (12)

Figure 3 shows the spectra for several values of φ = 0, 2π, and 4π.
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5 Entangled States

The Einstein-Podolski-Rosen (EPR) [20, 21] paradox, concerning the spatial
correlations of two entangled quantum systems, is perhaps the most famous
example of quantum dynamics that is incompatible with a classical view.
An entangled state is one that cannot be factored into the product of the
individual particle wavefunctions. As a result, the state of one particle is
necessarily correlated with the state of the other, and these correlations dif-
fer from those allowed by classical mechanics. Entanglement in quantum
mechanics is normally raised to explore aspects of non-local effects and hid-
den variable theories. Due to the close proximity of nuclear spins and the
fact that the ensemble is in a highly mixed state, the NMR measurements
discussed below do not address these issues. Nevertheless, we can use the
ability of liquid state NMR to simulate strong measurement to show that the
behavior of an entangled state is inconsistent with a simple classical picture.

The entangled state |ψ〉 = 1√
2
(|00〉 + |11〉), otherwise known as a Bell

state, is given by the density matrix

ρBell =
1
2

(

1
2
1+ 2IzSz + 2IxSx − 2IySy

)

. (13)

The above state can be prepared directly from the pseudo-pure ground state
|00〉 by the transformation

U ≡ e−iIxSyπ (14)

which is implemented by the pulse sequence

[

π

2

]S

−x

→
[

π

2

]I

y

→
(

1

2J

)

→
[

π

2

]I

−y

→
[

π

2

]S

x

. (15)

Readout pulses can then be used to verify the creation of this Bell state, as
shown in Fig 4.

One of the advantages of working with an ensemble is that we can in-
troduce a pseudo-random phase variation accross the sample to simulate the
decoherence that accompanies strong measurement. A pseudo-random phase
variation in a given basis can be achieved by rotating the preferred axis to
the z-axis and then applying a magnetic field gradient followed by the inverse
rotation. This leads to the pulse sequence

[

π

2

]I

y

→ [grad(z)] → [π]Sy → [grad(z)] →
[

π

2

]I

−y

. (16)
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It can be shown that such a measurement also “collapses” the S spin along
this direction. Thus, half the magnetization is along the +x-axis and the
other half is along the -x-axis leaving zero magnetization in the y–z plane.
This is verified in our experiment by applying a series of readout pulses to
confirm the creation of the 2IxSx state which corresponds to “collapsing” the
pseudo-pure Bell state along the x-axis. The experimental results are shown
in Fig 5.

An incoherent mixture of entangled states is easily generated by the pulse
sequence

[

π

2

]S

90◦
→
(

1

2J

)

→
[

π

2

]I

135◦
→
(

1

2J

)

→
[

π

2

]S

90◦
(17)

applied to ρeq (Eq. 4), yielding the reduced density matrix

ρf =













0 0 0 −1−i√
2

0 0 0 0
0 0 0 0

−1+i√
2

0 0 0













. (18)

Suppose one wishes to measure the polarization of spin I along the x–axis
and spin S along the z–axis. One possibility is to use selective RF pulses
to rotate the desired axis (x in this case) to the z–axis, apply a z-gradient,
and then rotate back to the x–y plane to observe the induction signal as in
Eq. 16. Alternatively, one could rotate the desired measurement axis of one
of the spins to the z–axis, rotate the other spin to the x–y plane and then
spin-lock the sample on resonance. In this latter case the inhomogeneities
in the RF pulse and background field serve to effectively remove any signal
perpendicular to the desired axis, and the induction signal is the same as in
the first case. Thus for example, if a measurement along y for spin I and
along x for spin S were required, observing the induction signal after the
sequence

[

π

2

]S

x

− [spinlock]Ix . (19)

Because one of the spins remains along the z–axis while the receiver is in
phase with the other, the measured signals are anti-phase. The spectro-
graphic traces shown in Figs. 6a-d indicate the results of the measurements
Tr (4IxSyρf), Tr (4IySxρf ), Tr (4IySyρf), and Tr (4IxSxρf ), respectively. The
traces show the Fourier-transformed induction signal read on the 13C channel,
with absorptive peaks in phase along either the +x– or +y–axis, depending
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on which axis the carbon nucleus was spin-locked. Notice that Fig. 6(d)
shows the same anti-phase signal as the other spectra, but “flipped” by 180◦.

The results of the four plots, taken together, show a simple inconsistency
compared to a model of only two uncorrelated classical magnetic dipoles.
The product of the four traces has an overall factor of −1, yet each magnetic
moment is measured twice so that their signals should cancel. Each mea-
surement is assumed to record either the x or y polarization if each dipole is
measured independently of the state of the other.

6 Quantum Logic Gates

NMR provides a means whereby it is possible to analyze experiments as
building blocks for a quantum information processor (QIP). Because spin 1

2

particles can have two possible orientations (up or down), it is natural to
associate spin states with computational bits. Further, NMR experiments
can be viewed as performing computations on these quantum bits (qubits).

6.1 Pulse Sequences As Logic Gates

Suppose we wanted to implement the controlled-NOT (c-NOT, or also XOR)
gate, common in computer science, using NMR techniques. A c-NOT gate
performs a NOT operation on one bit, conditional on the other bit being set
to 1. The action of a c-NOT gate is summarized by the truth table

Ainput Binput Aoutput Boutput

F (up) F (up) F (up) F (up)
F (up) T (down) F (up) T (down)
T (down) F (up) T (down) T (down)
T (down) T (down) T (down) F (up),

where the True and False values have been associated with up spins and
down spins, respectively. The above truth table corresponds to a unitary
transformation that implements

|00〉 → |00〉
|01〉 → |01〉
|10〉 → |11〉
|11〉 → |10〉.

(20)
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In a weakly coupled two-spin system, a single transition can be excited
via application of the propagator,

U = e−ı
1
2
Sx(1−2Iz)ωt =











1 0 0 0
0 1 0 0
0 0 cos ωt

2
−ı sin ωt

2

0 0 ı sin ωt
2

cos ωt
2











, (21)

which for a perfect ωt = π rotation becomes (to within a phase factor)

U =











1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0











. (22)

It is clear that exciting a single transition in an NMR experiment is the same
as a c-NOT operation from computer logic. In NMR terms, the action of
the c-NOT gate is to rotate one spin, conditional on the other spin being
down. Figure 7 shows the result of performing a c-NOT on ρeq. While NMR
is certainly capable of implementing the c-NOT operation as is done on a
classical computer, that alone does not demonstrate any of the quantum
dynamics. Gates implemented on a quantum information processor which
have no classical counterpart are of much more interest. An example of such
a gate is the single-spin Hadamard transform,

H = 1√
2

(

1 1
1 −1

)

= e
i

(

1
2
− Ix+Iz√

2

)

π
, (23)

which takes a spin from the state |0〉 into the state 1√
2
(|0〉+ |1〉). This is just

a π rotation around the vector 45o between the x and z axes. A spectrum
demonstrating the application of the Hadamard transform to the equilibrium
state ρeq is shown in figure 8. The c-NOT and single-spin rotations can be
combined to generate any desired unitary transformation, and for this reason
they are referred to as a universal set of gates. [16]

Analysis of conventional NMR experiments in terms of quantum infor-
mation processing has led to a great deal of insight into areas such as the
dynamics of pulse sequences for logic gates [22], and the effective Hamiltonian
for exciting a single transition [23].
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6.2 The Quantum Fourier Transform

One of the most important transformations in quantum computing is the
Quantum Fourier Transform (QFT). The QFT is a necessary component of
Shor’s algorithm, which allows the factorization of numbers in polynomial
time[24], a task which no classical computer can achieve (so far as is known).
Essentially, the QFT is the discrete Fourier transform which, for q dimen-
sions, is defined as follows

QFTq|a〉 →
1√
q

q−1
∑

c=0

exp(2πiac/q)|c〉 (24)

This transform measures the input amplitudes of |a〉 in the |c〉 basis. Notice
how the quantum Fourier transform on |0〉 will create an equal superposition
in the |c〉 basis, allowing for parallel computation. In matrix form the two-
qubit QFT transformation QFT2, is expressed as

QFT2 =
1

2











1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i











. (25)

As formulated by Coppersmith [25], the QFT can be constructed from two
basic unitary operations; the Hadamard gate Hj (Eq. 23), operating on the
jth qubit and the conditional phase transformation Bjk, acting on the jth
and kth qubits, which is given by

Bjk =











1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiθjk











= eiθjk
1

2
(1−2Iz)

1

2
(1−2Sz) (26)

where θjk =
π

2k−j . The two-qubit QFT, in particular, can be constructed as

QFT2 = H0B01H1 (27)

The Bjk transformation can be implemented by performing the chemical
shift and coupling transformations shown in Eq. 26. Figure 9 shows the
implementation of the QFT on a two spin system. The spectra show the 90o

phase shifts created after the QFT application.
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7 Conclusion

Several basic but important concepts relevant to QIP are illustrated by ex-
periments on a liquid-state ensemble NMR quantum information processor.
While pure quantum mechanical states are not achievable here, the creation
and application of pseudo-pure states is demonstrated. Tests of spinor be-
havior and entanglement are also described, illustrating quantum mechanical
dynamics. Finally, building blocks (the Hadamard, c-NOT, and QFT) for a
more complicated quantum computer are also introduced.
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Below are the Captions for the Figures.

1. At room temperature, the equilibrium state of chloroform molecules
in solution is described by γIIz + γSSz. In order to create a pseudo-
pure state from the equilibrium state, it is convenient to start with
an equalized magnetization for I and S. Since the ratio of γI to γS
is a factor of four, then the spectra of I and S following a π

2
pulse

should reflect the 4:1 ratio in the peak heights (figure (a)). In order to
compensate for the different electronics in the two channels, the gains of
the channels were manually calibrated to produce the desired 4:1 ratio
in signal intensity. After this, the pulse sequence discussed in the text
was applied. A subsequent π

2
read out pulse results in the spectrum of

figure (b). The peaks have equal intensity, confirming the creation of
the state γI+γS

2
(Iz + Sz).

2. Once the pseudo-pure state ρpp = Iz+Sz+2IzSz has been prepared, we
use readout pulses to generate a series of spectra confirming that the
desired state has been created. This is done by applying π

2
|Sy , π

2
|Iy, and

π
2
|I,Sy read pulses on the pseudo-pure state. The results are shown in

figures (a)-(c), respectively, on both the carbon and hydrogen channels.
The signature of the appropriate terms in ρpp is seen from the three
sets of spectra generated.

3. The state 2IzSx correlates the spinor behavior of spin I to the reference

spin S. The propagator U = e−iφIy(
1
2
−Sz) then rotates all the I spins

coupled to the down S spins by the angle φ about the y-axis. Apply-
ing U to the density matrix 2IzSx creates the state 2 cos(φ/2)IzSz +
2 sin(φ/2)IxSx, where only the first (antiphase) state is made observ-
able by evolution under the internal Hamiltonian. When φ = 0, the
state is of course 2IzSx, as shown in figure (a). When φ = 2π, this state
is inverted, contrary to common intuition. The resulting spectrum is
shown in figure (b). Only when φ = 4π does the antiphase state return
to its original state as seen in the spectrum (c). These spectra clearly
demonstrate the spinor behaviour of spin 1

2
.

4. The pseudo-pure Bell state, ρBell = 2IzSz + 2IxSx − 2IySy, created by
the application of the propagator, U = eiIxSyπ on the pseudo-pure state
discussed above can be verified by applying a series of readout pulses
on ρBell. Using the read pulses π

2
|Sy , π

2
|Sx , π

2
|Iy, and π

2
|Ix on ρBell, figures
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(a)-(d), respectively, and observing the resulting spectra on both the I
and S channels confirms both the signature and the individual terms
of ρBell.

5. We simulate a strong measurement (one that collapses the wave func-
tion along a preferred basis or axis) on a Bell State using magnetic
field gradients. An x-measurement on the I-spin is imitnated by apply-
ing a selective x-gradient to it. Since the two spin state is entangled,
this measurement necessarily collapses the S-spin along the x-direction.
Subsequent measurements confirm that both I and S spins have trans-
formed identically and that they are aligned along the x-axis. This was
verified by observing the creation of the 2IxSx state where in (a) we
observe immediately after the “strong measurement” in both channels
and see zero signal as expected. In (b) we show that π

2
pulses along the

x-axis has no effect and in (c) we verify that a π
2
|Sy pulse indeed creates

an anti-phase signal on the carbon channel and a π
2
|Iy pulse creates an

antiphase signal on the hydrogen channel.

6. Strong Measurements After EPR Preparation. All four measurements
are made on the Carbon (1st spin) channel, and show the expected
anti-phase correlation. (a) Measurement of correlation IySx, in phase
along the +y direction. (b) Measurement of correlation IxSy, in phase
along the +x direction. (c) Measurement of correlation IySy, in phase
along the +y direction. (d) Measurement of correlation IxSx, in phase
along the +x direction. Note that the last spectrum is “flipped,” or
inverted, with respect to the other three.

7. The above spectra show the implementation of a controlled-NOT (c-
NOT) gate on the equilibrium state of 13C-chloroform. The spectrum
on the right represents the readout on the I spins, and the spectrum
on the left is the readout on the S spins. Both spectra have the ex-
pected appearance and confirm the creation of the state Iz+2IzSz, the
expected state after application of the c-NOT.

8. The Hadamard gate H is a one bit gate that can be geometrically inter-
preted as a π rotation about the 1√

2
(x+z) axis. If the net magnetization

is along the +y direction then the Hadamard gate should simply rotate
it to the −y direction (figure (a)). However, since any π rotation about
an axis in the x-z plane performs the same transformation, H was also
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applied to an initial +x magnetization. The result (figure (b)) shows
how the magnetization was sent to the z-axis, as expected.

9. The two-qubit QFT was implemented by applying a Hadamard gate
on the first spin, a conditional phase operator, and a Hadamard on
the second spin. A Hadamard gate can be performed by a simple
combination of three pulses: π

4
|x−π|y− π

4
|−x. Because it was performed

on the thermal state, the initial Hadamard was simplified to a π/2y
pulse. The conditional phase change operator, B01, was implemented
by delay 2 and pulses 3 to 6, where pulses 4 to 6 are a π/4 z-rotation.
The final Hadamard gate was implemented by the three pulses labeled
7. The phase difference of each peak on the spectra shows the two-
bit QFT’s ability to separate input states by 90 degrees. After the
application of the QFT, the spins were phase shifted by 45 degrees and
were allowed to evolve for a time 1/4J in order to bring out the phase
differences.
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