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Abstract

Clear cell renal cell carcinoma (ccRCC) represents the most common subtype of renal cell carcinoma (RCC). In spite of recent advances in the 
treatment armamentarium and outcomes with the combined use of immune checkpoint and angiogenesis inhibitors, prediction of responses and 
selection of patients remain a challenge. This is a case of ccRCC with recurrence to the liver 1 year following right radical nephrectomy, who 
rapidly progressed on frontline therapy with axitinib/pembrolizumab. The clinical course and targeted tumor sequencing findings are discussed. 
In addition to established clinical prognostication in RCC, several surrogate markers of efficacy or/and resistance have been proposed for immu-
notherapy or/and anti-angiogenic therapy. Since the majority of patients will still progress after these combinations, it is becoming increasingly 
important to develop robust predictive biomarkers to guide patient selection and sequencing of targeted therapies.
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Introduction
Recent advances in the frontline therapy of advanced renal 
cell carcinoma (RCC) have led to novel combinations of 
agents targeting programmed death-1/programmed death-1 
ligand (PD-1/PD-L1) and the angiogenesis/vascular endo-
thelial growth factor receptor (VEGFR) pathway. The 
anti PD-1 monoclonal antibody (Mab) pembrolizumab 
(anti-PD-1) and the anti-PD-L1 avelumab were both FDA 
approved, each in combination with the VEGFR tyrosine 
kinase inhibitor (TKI) axitinib for previously untreated 
patients with advanced RCC, after improving the objective 

response rate (ORR), progression-free survival (PFS), or/and 
overall survival (OS), compared to the prior standard, suni-
tinib (1–3). This benefit was observed across all International 
Metastatic Renal Cell Carcinoma Database Consortium 
risk groups (favorable, intermediate, and poor risk) (1–4). In 
addition, the combination of the cytotoxic T-lymphocyte- 
associated protein 4 (CTLA-4) inhibitor ipilimumab and 
the PD-1 inhibitor nivolumab was approved for intermedi-
ate- and poor-risk, patients with advanced RCC (5). Nev-
ertheless, metastatic RCC remains a lethal disease overall, 
with a 5-year survival of approximately 10–20% (6), and a 
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required dose reduction of her axitinib to 3 mg twice daily 
due to fatigue, and experienced elevated thyroid stimulating 
hormone (TSH) of 16.5 mcIU/mL (normal free T4), which 
improved on levothyroxine. Unfortunately, after completing 
12 weeks on combination axitinib/pembrolizumab, repeat 
CT scans for assessment of response disclosed progression of 
liver metastases (Figure 1B).

A left hepatic lobe lesion was biopsied under CT guidance. 
Four core specimens were obtained. Deoxyribonucleic acid 
(DNA) and ribonucleic acid (RNA) were extracted from 
macrodissected, paraffin-embedded tumor of the patient 
using the Maxwell 16 instrument (Promega, Madison, WI) 
and RecoverAll Total Nucleid Acid Isolation Kit (Life 
Technologies, Walltham, MA), respectively. The extracted 
DNA and synthesized complementary DNA (cDNA) from 
the extracted RNA were amplified by the Oncomine Com-
prehensive Panel (OCP) and subjected to Next Generation 
Sequencing (NGS) using the Ion Torrent S5TM (Life Tech-
nologies), as previously described  (8). OCP was developed, 
and its performance characteristics were determined by the 
Clinical Genomics Laboratory, Englander Institute for Pre-
cision Medicine, Department of Pathology and Laboratory 
Medicine at Weill Cornell Medicine, New York-Presbyterian 
Hospital. OCP is approved by the New York State Depart-
ment of Health (NYS-DOH). Targeted tumor sequencing 
of patient’s CT-guided liver biopsy showed loss of func-
tion (pathogenic) mutations in von Hippel-Lindau (VHL) 
and BRCA1-associated protein (BAP1) genes, as well as 
copy-number loss of cyclin- dependent kinase inhibitor 2A 
(CDKN2A) (Table 1). Tumor purity (neoplastic content) of 
the tissue analyzed was 80%.

Discussion
Resistance to systemic therapies in advanced RCC, either 
intrinsic due to presence of resistant clones or acquired 

proportion of patients will still progress in spite of optimal 
therapy. At present, the majority of clinicians are not using 
any predictive biomarkers for treatment decision- making (7). 
A small proportion (10.9–12.4%) of advanced RCC patients 
treated with frontline PD-1/VEGFR-targeted combina-
tion therapy have demonstrated progressive disease as best 
response in the two major phase III studies of axitinib/
pembrolizumab and axitinib/avelumab, respectively (1–3). 
The underlying biology of this intrinsic resistance is poorly 
understood. Herein, the clinical and genomic evaluation of 
a case of advanced refractory RCC with lack of response 
to first-line axitinib/pembrolizumab is presented. The aim 
of molecular analysis of a liver metastasis from this patient 
was to assess for somatic alterations that could potentially be 
indicators of primary resistance to the combination or/and 
sensitivity to other agents.

Case Report
A 70-year-old woman presented with worsening right upper 
quadrant pain of 2 weeks duration, associated with anorexia 
and 10 lb weight loss. She had a history of right nephrectomy 
13 months earlier for a grade 3, stage III pT3aNxM0 clear 
cell renal cell carcinoma (ccRCC), with extension to the renal 
vein and uninvolved margins; however, she did not follow up 
after surgery. No family history of cancer was reported. A 
computed tomography (CT) scan of her abdomen and pel-
vis disclosed hepatomegaly and several hypodense lesions 
throughout the liver parenchyma consistent with liver metas-
tases (Figure 1A). Labs were remarkable for a hemoglobin 
level of 11.2 g/dL and an elevated serum lactate dehydroge-
nase level of 612 U/L.

The patient was started on pembrolizumab 200 mg intra-
venously every 3 weeks and axitinib 5 mg orally twice daily 
as first-line therapy for her recurrent/metastatic disease after 
completing full restaging, which was otherwise negative. She 
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Figure 1: (A) Computed tomography (CT) abdomen and pelvis (pre-treatment) showing hepatomegaly and several hypodense 
lesions throughout the liver parenchyma consistent with liver metastases. (B) CT abdomen and pelvis (post-treatment) showing 
enlargement of existing lesions and new hepatic metastases.
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expression scores from a 43-gene signature were lower in 
patients with BAP1-mutated tumors, suggesting that BAP1 
loss correlates with lower angiogenic signaling and worse 
outcomes after treatment with TKIs (20). Overall, both 
BAP1 and VHL deleterious/loss of function mutations were 
identified in hyperprogressive tumors post anti-PD-1 treat-
ment, suggesting a potential involvement in the development 
of resistance (21).

CDKN2A is a ubiquitously expressed gene that encodes 
two other key genes, the INK4 family member p16 
(p16INK4a) and p14ARF, both of which act as tumor sup-
pressors regulating the cell cycle. CDKN2A gene aberra-
tions, including mutations, hypermethylation, or deletions, 
occur in approximately 16% of ccRCCs (10), with loss of the 
chromosome 9p region encoding CDKN2A being the most 
frequent event (12%) in these cases (10). CDKN2A loss is 
associated with a higher tumor stage at diagnosis (22) and 
predicts shorter OS across all TCGA RCC subtypes (10). 
Patients with tumors that harbor chromosomal CDKN2A 
loss are frequently characterized by resistance to immuno-
therapy, which has been mechanistically explained, at least 
partially, by a concurrent deletion of the interferon-gamma 
(IFNγ) signaling pathway gene JAK2 (23). In addition, 
copy-number variations of CDKN2A or/and other genes 
in the CDK4 pathway (CDK4, CCND1) are associated 
with innate resistance to anti-PD-1 therapy in patients with 
advanced melanoma, which can be reversed with addition 
of CDK4/6 inhibitors to anti-PD-1 antibodies (24). Inter-
estingly, CDK4/6 inhibitors have shown activity in RCC in 
vitro, and the combination of abemaciclib with sunitinib 
resulted in a dramatic reduction in tumor sizes in a RCC 
mouse model (25). A phase 1 trial of these two agents is 
currently ongoing in progressing patients with metastatic 
ccRCC (NCT03905889).

Collectively, treatment of RCC patients with disease pro-
gression after axitinib/pembrolizumab or axitinib/avelumab 
is complex, and the current expert consensus agreement is 
on the use of another VEGFR pathway inhibitor, cabozan-
tinib, which also has activity against MET, AXL, and RET 
kinases  (7). A potential predictive value of T-effector gene 
expression and angiogenesis signatures has been supported 
from exploratory biomarker analyses of PD-1/PD-L1 plus 

after initial tumor regression can directly impact the clinical 
course and additional treatment approach of these patients 
in contemporary practice.

While the underlying mechanisms are a field of ongoing 
investigation, numerous studies have identified molecular 
alterations in primary and metastatic RCC tumors that may 
be contributing to the development of resistance (9).

The VHL gene is the most frequently mutated gene in 
the majority (80–90%) of sporadic RCCs (9–11). Mechanis-
tically, the loss of VHL protein function leads to the accu-
mulation of hypoxia-inducible factor (HIF) that promotes 
angiogenesis and tumor growth (9, 11). It has been found that 
the effect of VHL mutation on responses to VEGFR TKIs in 
patients with metastatic ccRCC is minimal, if  any (12). Fur-
thermore, although VHL is an inducer of PD-L1 through 
upregulation of HIF-2α (13), PD-L1 immunohistochemical 
expression status had no effect on ORR and PFS in neither 
of the two large phase 3 trials testing the PD-1/PD-L1 plus 
VEGFR pathway inhibitors combination (1–3). Other stud-
ies have demonstrated that overexpression and activation of 
the receptor tyrosine kinases MET and AXL due to VHL 
inactivation is implicated in resistance to VEGFR-targeted 
therapies (14). Specifically, combination of axitinib with the 
c-met inhibitor crizotinib in RCC patient-derived xenograft 
models resulted in decreased tumor microvessel density, 
growth inhibition, and improved survival (15).

The BAP1 gene is mutated in different cancers, includ-
ing ccRCC in up to 11% of cases (10). The resultant loss 
of function of this tumor suppressor was associated with 
more aggressive morphologic features (16) and decreased 
OS both in The Cancer Genome Atlas (TCGA) RCC 
cohort and within the ccRCC group (10). Besides its prog-
nostic relevance, BAP1 loss in non-RCC tumors was cor-
related with upregulation of suppressive immune gene 
responses, for example, HLA-DR, CD38, and CD74 (uveal 
 melanoma)  (17), and the promotion of an inflammatory 
tumor microenvironment (peritoneal mesothelioma) (18). 
Interestingly, an integrated biomarker analysis of 412 RCC 
patients who were treated on the phase 3 COMPARZ trial 
comparing pazopanib versus sunitinib (19) demonstrated 
that those with tumors harboring mutated BAP1 had infe-
rior OS compared to wild-type ones (20). Angiogenesis gene 

Table 1: Genomic alterations (pathogenic) of liver metastasis from clear cell renal cell carcinoma.

Gene Alteration Type VAF

VHL c.162_163insCG, p.Glu55Argfs*13 Mutation – frameshift insertion 32.8%

BAP1 c.509T>G, p.Phe170Cys Mutation – missense 42.6%

CDKN2A loss Copy number alteration – loss N/A

VAF: variant allele frequency, N/A: not applicable, VHL, von Hippel-Lindau, BAP1, BRCA1-associated protein, CDKN2A, cyclin-dependent 
kinase inhibitor 2A.
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VEGFR TKI  combination studies (26–28); however, this 
is largely hypothesis-generating and not ready for clinical 
use. It also remains ill-defined as to how potential genomic 
biomarkers could be combined with the established clini-
cal prognostication tools (the IMDC, the Cleveland Clinic 
Foundation CCF model, the International Kidney Cancer 
Working Group IKCWG model, the French model, and 
the Memorial Sloan-Kettering Cancer Center model) (4) to 
improve our prediction of effective therapies. In phase 2 and 
3 studies of the anti-PD-L1 Mab atezolizumab combined 
with the anti-VEGF-A Mab bevacizumab, expression of 
angiogenesis genes was enriched in patients with favorable 
risk, compared to those with intermediate and poor risk 
according to the MSKCC risk stratification model (28).

Conclusion
This case of advanced refractory RCC with clinical and 
genomic evaluation highlights an unmet need for better 
characterizing the underlying biology of treatment-resistant 
RCC in order to improve our ability to conduct biology- and 
biomarker- driven trials to help guide selection of the right 
drug, for the right target, in the right patient, at the right 
time.
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