
Dakota State University Dakota State University 

Beadle Scholar Beadle Scholar 

Masters Theses & Doctoral Dissertations 

Fall 12-2019 

Escape Puzzler Escape Puzzler 

Shane Robertson 

Follow this and additional works at: https://scholar.dsu.edu/theses 

 Part of the Computer Sciences Commons 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Beadle Scholar at Dakota State University

https://core.ac.uk/display/327163112?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.dsu.edu/
https://scholar.dsu.edu/theses
https://scholar.dsu.edu/theses?utm_source=scholar.dsu.edu%2Ftheses%2F352&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholar.dsu.edu%2Ftheses%2F352&utm_medium=PDF&utm_campaign=PDFCoverPages


 

ESCAPE PUZZLER 

 

 

 

 

A graduate project submitted to Dakota State University in partial fulfillment of the 

requirements for the degree of 

 

Master of Science 

 

in 

 

Information Systems 

 

December, 2019 

 

 

By 

Shane Robertson 

 

 

Project Committee: 

 

Dr. David Bishop 

Dr. Christopher Olson 

Dr. Ronghua Shan 

  



 ii 

 

 

PROJECT APPROVAL FORM 

 

We certify that we have read this project and that, in our opinion, it is satisfactory in scope 

and quality as a project for the degree of Master of Science in Information Systems. 

        

 

 

 

Student Name:   Shane Robertson     

 

Master’s Project Title:  Escape Puzzler     

 

 

Faculty supervisor:      Date:  12/17/2019 

 

 

Committee member:      Date:  12/16/2019  

 

 

Committee member:      Date:  12/16/2019  



 iii 

ACKNOWLEDGMENT 

First and foremost, I would like to thank my three children for providing inspiration and 

motivation to help fuel the nature of the project. 

I would like to thank Daniel Thomas (http://www.danielthomasart.com) for providing the 

tile graphics used throughout this project. 

I would like to thank Toke Game Art (http://tokegameart.net) for providing the graphics 

for the sprites. 

I would like to thank Angelina Avgustova (https://www.gamedevmarket.net/asset/loot-

icons-8786/) for providing additional graphics for the project.  These include keys, lanterns, 

and various props. 

I would like to thank Tao & Sound (https://www.gamedevmarket.net/member/tao-sound/) 

for providing audio assets for the project.  This includes music and sound effects. 

I would like to thank Dr. David Bishop for his participation as committee chairman for 

this project. 

I would like to thank Dr. Christopher Olson for his participation on the project committee. 

I would like to thank Dr. Ronghua Shan for his participation on the project committee. 

 

 

http://www.danielthomasart.com/
http://tokegameart.net/
https://www.gamedevmarket.net/asset/loot-icons-8786/
https://www.gamedevmarket.net/asset/loot-icons-8786/
https://www.gamedevmarket.net/member/tao-sound/


 iv 

ABSTRACT 

This project is a systems design project.  The goal of the project was to complete an 

online game for the purpose of entertaining an end-user.  There is also additional research 

potential with analyzing the end-user behavior.  This project showcases various skills learned 

at Dakota State University.  This project required systems analysis, research of information 

technologies, database design, and project management. 

About 50% of the planning phase was dedicated to scanning the IT industry for 

various technologies.  We researched web hosting providers that would support the 

technologies we wanted to use.  Also, a survey of available game engines was conducted.  

Additionally, all of the creative elements of the game were drafted during the design phase.  

Game mechanics were also contemplated.  We decided to outsource the game assets, such as 

graphics and audio.  However, no single vendor could provide everything needed.  This led to 

a careful consideration of purchases to ensure that all of the game assets would weave 

together seamlessly.  Finally, time was dedicated to create several technical artifacts, such as 

wireframe diagrams, entity relationship diagrams, and UML class diagrams. 

During the implementation phase, all of the planning was put into action.  There were 

three main components created: the client, the MVC web application, and the class library 

that contained all of the core game logic.  A supplementary unit / integration project was also 

created dedicated to testing. 

The end result was a finished game.  Escape Puzzler is now live on 

https://www.escapepuzzler.fun and it is currently being tested.  Once testing is complete, 

another iteration of development will help refine and polish the game even further. 

https://www.escapepuzzler.fun/


 v 

DECLARATION 

I hereby certify that this project constitutes my own product, that where the language 

of others is set forth, quotation marks so indicate, and that appropriate credit is given where I 

have used the language, ideas, expressions or writings of another. 

I declare that the project describes original work that has not previously been 

presented for the award of any other degree of any institution. 

 

 

Signed,  

 

Shane Robertson 



 vi 

TABLE OF CONTENTS 

PROJECT APPROVAL FORM ...........................................................................................................II 

ACKNOWLEDGMENT ...................................................................................................................... III 

ABSTRACT .......................................................................................................................................... IV 

DECLARATION .................................................................................................................................... V 

TABLE OF CONTENTS ..................................................................................................................... VI 

LIST OF TABLES ............................................................................................................................... VII 

LIST OF FIGURES ........................................................................................................................... VIII 

INTRODUCTION ................................................................................................................................... 1 

LITERATURE REVIEW ....................................................................................................................... 2 

SYSTEM DESIGN .................................................................................................................................. 4 

GAME DESIGN ....................................................................................................................................... 4 

TECHNICAL DESIGN ............................................................................................................................... 9 

PROJECT MANAGEMENT ............................................................................................................... 33 

PROJECT PHASES ................................................................................................................................. 33 

PROJECT MANAGEMENT PROCESS ....................................................................................................... 34 

USER STORY LIST ................................................................................................................................ 35 

CONCLUSIONS .................................................................................................................................... 42 

OBSTACLES ......................................................................................................................................... 43 

REFERENCES ...................................................................................................................................... 47 

APPENDIX A: BROWSER COMPATIBILITY ................................................................................ 49 

APPENDIX B: USER MANUAL ......................................................................................................... 50 

APPENDIX C: LICENSE AGREEMENTS ........................................................................................ 53 

TOKE GAME ART ................................................................................................................................. 53 

STANDARD GAMEDEV MARKET LICENSE ........................................................................................... 54 

 



 vii 

LIST OF TABLES 

Table 1. Reference Games ............................................................................................. 9 

Table 2. Chosen Technologies ....................................................................................... 9 

Table 3. User Story List ............................................................................................... 41 

Table 4. Browser Compatibility ................................................................................... 49 

Table 5. Menu Options ................................................................................................. 52 

 

  



 viii 

LIST OF FIGURES 

Figure 1. Class Diagram - Main Core Classes ............................................................. 15 

Figure 2. Class Diagram - Managers ........................................................................... 16 

Figure 3. Class Diagram - Repositories ....................................................................... 18 

Figure 4. Class Diagram - Tiles ................................................................................... 18 

Figure 5. Class Diagram - Playable Objects 1 ............................................................. 19 

Figure 6. Class Diagram - Playable Objects 2 ............................................................. 20 

Figure 7. Class Diagram - Playable Objects 3 ............................................................. 21 

Figure 8. Class Diagram - Constants ........................................................................... 22 

Figure 9. Class Diagram - Action Script Core ............................................................. 23 

Figure 10. Class Diagram - ActionScript Conditions .................................................. 24 

Figure 11. Class Diagram - Action Consequences....................................................... 25 

Figure 12. End User Menu Flowchart .......................................................................... 31 

Figure 13. Data Flow Diagram - Client and Server Communication .......................... 32 

Figure 14. Negate y-coord to align multidimensional array to quadrant IV ................ 45 

 



1 

CHAPTER 1 

INTRODUCTION 

Background of the Problem 

This project is a systems development project.  The system is an application of 

gamification.  It uses entertainment and game design patterns to promote critical thinking.  

The game genre is a casual logical puzzle game with elements of an adventure game.  The 

puzzles will present the end-user with a series of challenges for either critical thinking, pattern 

recognition, or memory. 

Objectives of the project 

The goal of the project is to complete an online game that entertains the end-user.  As 

a minor complementary objective, telemetry is inserted into the game to analyze end-user 

difficulty.  One reason for this is to understand end-user usage to make future improvements.  

Another reason is to potentially convert this project into a tool for further research correlating 

end-user behavior with cognitive abilities and overall personality traits. 



2 

CHAPTER 2 

LITERATURE REVIEW 

 

Before the project commenced, we contemplated several possibilities for a system 

design project.  This brainstorming session led to the decision to write a video game.  In one 

sense, writing a game would provide a good illustration of technical capabilities.  It would 

require several skills that exemplify a comprehension indicative of what is learned from the 

master’s program.  It would require systems analysis, research of various new information 

technologies, RDBMS design, and project management.  A game would require graphics 

rendering alongside client/server communication with score computations and database 

queries in the background all in real-time.  Unlike other software creations, a game poses an 

additional challenge because the application domain did not seem to have any reliable 

template or standard operating procedure.  With accounting systems, a programmer can rely 

on GAAP.  ERP design might be able to lean on established operating procedures not yet 

digitized.  With created a game, there is no template.  However, in deeper research, game 

design patterns and methodologies were discovered. (Rogers, 2014) (Scolastici & Nolte, 

2013) 

 Additionally, video games uniquely lure end-users in to become deeply engaged and 

immersed.  Creating a game that provides an educational benefit to the end-user, for example, 

can be achieved.  (National Research Council, 2011) (Edvardsen & Kulle, 2010) (Fisher, 

2015) 

A puzzle game had a manageable time frame within semester requirements and 

potentially had the capability to provide both of the original requirements (analysis 

capabilities and educational) without needing to specialize in either domain. 

We knew that we wanted to program for the ASP.NetCore platform and host on 

Azure.  This was inspired by the industry and resources from the INFS 730 course (Freeman, 

2017).   



3 

We did not want to reinvent the wheel with game-related programming, so we decided 

to pick an established game engine.  The requirements for the game engine were as follows: it 

must be stable and mature, it must be relatively popular, it could not be expensive, it had to 

work with the decided server technologies (Azure and ASP.Net Core), and it had to work 

within the realm of HTTP and HTML.  We researched many different game engines, but 

eventually narrowed the research down to three different products: GameMaker, Godot, and 

Unity. 

GameMaker seemed interesting, but it had several flaws.  It did not have the 

reputation as a serious professional tool.  Additionally, the programming language that it 

used, GML, was a proprietary language that would have no use outside of the platform.  It 

was useful for making 2D games, but was missing key 3D features.  When compiling to 

HTML, it relied on the Canvas tag and JavaScript, which did not seem as powerful as possible 

in today’s market.  These limits were also considered due to versatility for potential future 

projects. (Elliott, 2013) 

Godot was another interesting find.  It seemed to have more power than GameMaker 

and it allowed C# as a scripting language.  It had the additional benefit of being free and open 

source.  However, Godot is still fairly new, only being five years old.  Unity, in contrast is 

fourteen years old.  GameMaker is twenty years old.  Godot lacks a mature following 

associated with many successful technologies.  It has a lot of good news associated with it.  

However, that in itself, may not be a good thing.  We suspect that such news indicates that 

Godot is still early in the Gartner Hype Cycle.  We will continue to keep an eye on it to see 

how it develops and might consider it for other projects in the future. 

Unity was ultimately chosen for development.  Unity is the most successful out of the 

three choices.  It is actually one of those most popular game engines in the market.  It is more 

powerful than GameMaker (and probably Godot).  It can target over a dozen different 

platforms.  It works well with either 2D or 3D technology.  It has associations with other large 

IT companies.  The scripting language that it uses is C#, lowering barrier to entry and 

maintaining a smaller learning curve.  There also exists a wealth of knowledge associated 

with it.  (Unity Learn Premium, n.d.) (Cohen, 2016) (Jeffrey, 2017) (Lander, 2019) 

(Somasegar, 2015)   

 



4 

CHAPTER 3 

SYSTEM DESIGN 

This system design chapter is broken down into two sub-chapters: game design and 

technical design.  The game design covers high-level design patterns and explores the creative 

aspects of the game.  It also serves as tool for understanding the game from the perspectives 

of non-technical professionals, such as artists and marketers.  A game design component is a 

standard in the game production industry.  The technical design, in contrast, focuses on IT-

related components and decisions related to the project. 

Game Design 

Game Design Introduction 

This escape puzzler is a game where a player tries to use pattern matching skills, 

memorization, and his/her surroundings in a room to solve the room’s puzzle.  The goal of 

each room is to walk through the exit door successfully.  There is no concept of combat or 

fighting in this game. 

Genre 

The genre of the game is a casual puzzle game with a few elements of an adventure 

game laced into it.  It is meant to be picked up on a lunch break to provide some mental 

stimulation.  A single room should not take more than ten minutes to complete.  It is a single-

player game.  The style of graphics will be retro cartoonish.  The end-user view is top-down 

2D tile set. 

Characters 

The main character is Crona, an androgynous ninja.  A secondary character is Lyric, 

the mapmaker of the levels and the main antagonist of the story. 

Setting 

The game is timeless and embeds anachronistic elements into one setting. 

Graphics 



5 

The graphical interface is a 2-dimensional top-down tile set.  All artwork is outsourced 

so that the project can focus on technical design and development.  The style of the artwork 

will all conform to a look of a cartoonish atmosphere. 

Tile Set 

The tile set graphics are purchased from Daniel Thomas. (Thomas, n.d.)  The tile set is 

a hand-painted set of drawings for elements of a dungeon.  There are three variations in the 

color theme: purple, blue, and gray. 

Sprites 

While some additional graphics from Daniel Thomas are used for sprites, the graphics 

associated with the sprite of the main character is purchased from Toke Game Art 

(http://tokegameart.net/).  Each sprite will animate when in movement and each direction will 

appear with a smooth transition. 

Miscellaneous Graphics 

Other miscellaneous graphics are purchased from other vendors from the 

GameDev.net asset store.  (Avgustova, n.d.)  These include keys, lanterns, and various props 

to sprinkle around the dungeon floors and bring the levels to life. 

Gameplay Features 

Scoring System 

The system uses several variables to determine the score earned after completing a 

room: 

• Gems collected: The more gems uncovered, the higher the score 

• Lantern usage: The less a lantern was used, the higher the score 

• Duration: Date/time entering the exit door minus date/time starting the level 

Player Character Navigation 

The player begins each room in a predefined location unique to each room.  The main 

objective of each room is to transcend to the exit door successfully.  The player uses the 

regular arrow keyboard keys (up, down, left, right) to control the player’s character to 

navigate around.  Obstacles, such as walls or braziers, usually block the playing character’s 

progress. 

Collecting Items 

http://tokegameart.net/


6 

In order for a player to collect items, he/she must control the playing character to 

navigate to the item.  Once the playing character stands over the item, the item will seemingly 

disappear from the room floor and appear in the character’s inventory instead. 

Keys 

A key is an item that the player must sometimes discover and pick up before 

unlocking a locked door.  It acts as an intermediate task to complete a level.  One a key is 

used to open a door, that door is forever open and the key disappears from the player’s 

inventory.  A key is only useful for the level in which it is found.  Obtaining a key and using a 

key will both trigger server-side events to help track player accomplishments and their skill.   

Lanterns 

For levels shrouded in darkness, a lantern acts as a method for removing the obstacle 

of the darkness.  Light from a lantern is temporary – it goes out after a designated time.  

However, the player can re-light the lantern.  Not only will a lantern acquisition be used as a 

milestone in a level, but the usage will help determine the player’s score.  This is based on the 

player’s memory.  Each time a lantern is used, a server-side event is recorded.  The more 

frequent a player uses a lantern, the less the player’s score.  A lantern can also be used to 

illuminate secrets, such as hidden text or hidden passageways. 

Braziers 

A brazier is completely immobile and impassable, so the player is not able to walk 

through it.  However, in levels with low visibility, a brazier produces a little bit of heat.  This 

allows a player to progress through a level.  Reaching a brazier can act as milestones as the 

player progresses through a level. 

Gems 

Gems are extra items found in rooms.  They are not mandatory to collect, but they do 

provide extra points if the player successfully exits a room.  As such, they add a bit of replay 

value to the rooms when a player attempts to return to previously explored rooms.  They are 

often hidden and require special attention for a player to go out of their way to uncover. 

Exit Doors 

An open exit door is the main goal of each level.  Passing through an exit door marks 

the completion of the room.  However, many exit doors will be locked and will require a key, 



7 

located somewhere else within the level.  When a player walks through an exit door, a server-

side event will be recorded and the system will record the player’s progress. 

Treasure Chests 

Treasure chests are another intermediate level achievement.  Treasure chests are often 

initially locked and must be unlocked by some mechanism in the room.  Their contents vary 

by room, but they usually hold a gem or a key.   

Floor Buttons 

Floor buttons are another intermediate level achievement.  They act as mechanisms for 

opening or unlocking other items, such as treasure chests or locked exit doors.  Usually when 

a floor button is present in a room a player must first navigate to the floor button to press it by 

walking over it in order to unlock the next step in a room.  Some floor buttons stay pressed 

when initially stepped on.  However, other floor buttons will re-lock once depressed.  In this 

situation, a player must push a block on the floor button in order to keep it from re-locking. 

Blocks 

The basic obstacle of the game is a simple block.  Blocks have several variants to 

them.  Some blocks are completely immobile and prevent the player’s movement.  A player 

will be unable to walk through the block.  Other blocks can be pushed forward indefinitely 

until they press up against something else immobile, such as a wall or another block.  Other 

blocks can only be moved for a finite number of tiles until they become completely immobile. 

In order to push a movable block, a player needs to walk up to a block and continue 

walking forward.  If a block is capable of being moved, the block will move forward along 

with the player’s movement.  While pushing blocks forward, a player’s movement is hindered 

and the player moves more slowly.  Blocks can only be moved forward, not pulled 

backwards.  Thus, careful consideration must be taken regarding the direction a player decides 

to push a block.  Some rooms are designed where block movement order is also important. 

In some cases, a block is not merely an obstacle, but a foundational tool for pattern 

matching or solving problems.  For example, there is a level where the exit door only opens if 

a floor button is pressed.  The player can step on the button to open the door.  However, as 

soon as the player walks off of the button the door closes again.  The solution is to push a 

block over the button. 



8 

In another example, certain blocks might need to be pushed in a specific pattern in 

order to unlock the exit door. 

Illusion Walls 

On rare occasions, certain walls will be imaginary.  If a player attempts to walk 

through a wall then he/she will be able to do so without any difficulty.  This might be the only 

way to progress through a level.  Secret passages through walls act as obstacles by exploiting 

a player’s assumptions in their capabilities.  There might be some visual hints that a wall is an 

illusion, such as a carpet leading to nowhere or the illusion wall may be surrounded by 

braziers.  Illusion walls are a test of the player’s ability to comprehend surrounding cues and 

experiment with his/her surroundings. 

Darkness 

When the player is unable to see, progress through a room becomes much more 

difficult.  A player might stumble around, hitting blocks and walls without ever knowing it.  

Darkness can be diminished with braziers or with lanterns. 

Time 

While not usually an obstacle, room progression will be timed and used as a basis for 

scoring.  Some players might want to use time as a metric of competition against themselves 

to beat a level faster than before.  The less time a player needs to successfully complete a 

room, the higher the player’s score when room completion is achieved. 

Locked Doors 

Many exit doors will be locked and will require a key to unlock them.  Opening a 

locked door is essentially the last obstacle in a room.  Once a door is unlocked a player can 

walk through the door and win the level. 

Target Audience 

The target audience is a casual gamer interested in playing something simple but 

thought-provoking within small quantities of time. 

Reference Games 

The following games are similar in tone and style to Escape Puzzler.  These games are 

listed as a reference to provide an understanding of what to expect and the surrounding 

market: 

 



9 

Product Name Platform Released  

Bomberman Nintendo Entertainment System 1985 

Adventures of Lolo Nintendo Entertainment System 1989 

A Good Snowman is Hard to Build iOS, Android, Windows, Linux, OS X 2015 

Maze of Adventures Windows 2018 

Table 1. Reference Games 

Technical Design 

The following table summarizes all of the relevant technical decisions for the project: 

Category Selection 

Server-side programming language C# 

Server-side platform / model ASP.Net Core MVC 

Client-side platform HTML, JavaScript, Web Assembly, WebGL 

Client-side programming HTML, JavaScript, C# 

Game development engine Unity 

Web hosting Microsoft Azure 

Domain registration / DNS NameCheap.com 

Chosen domain name www.escapepuzzler.fun 

Table 2. Chosen Technologies and Services 

Server details 

The server-side code is written in C#.  It is separated into two different projects, a 

class library for the core logic and domain code and an MVC web application to handle the 

web server requests. 

The domain name registered was www.escapepuzzler.fun.  The domain registrar used 

is named NameCheap.com.  That domain name registrar was chosen because they offered free 

WHOIS masking and cheap domain name registration.  NameCheap is also providing Escape 

Puzzler’s name server services.  We had to manually adjust the CNAME and A DNS records 

to point to Azure’s web hosting servers.   

MVC 

The Model-View-Controller (MVC) web app is essentially the glue that connects the 

game logic on the server to the client.  It handles the incoming HTTP requests from the client.  

http://www.escapepuzzler.fun/


10 

The MVC controller passes the end-user’s commands to the game logic and receives back any 

changes.  It then sends those changes back to the end-user.  It is also responsible for invoking 

the repository object and calling its save method to save the game state for later.  The 

following are the main methods of the controller applicable to Escape Puzzler: 

 

[Authorize] 
        public IActionResult Index() 
        { 
            if (Models.Admin.SystemControl.IsOffline) 
                return View("Offline"); 
 
            return View(); 
        } 

 

This index method calls the view of the main page.  The view includes the web 

assembly to load the actual game.  Alternatively, if the system has been switched offline by an 

administrator then it returns the “Offline” view, which provides a user-friendly message to 

ask the end-user to try again in a few minutes. 

 

public IActionResult GetRoomList() 
        { 
            var roomList = roomRepo.GetRoomSummaries(); 
            return Ok(roomList); 
        } 

 

When the client enters the “Get Room List” scene, the client makes a call to this 

method to get a summary of the rooms.  It produces a room summary result, which is a data 

transfer object that contains the room name and unique ID.  This array is passed to the client, 

which it uses to dynamically create a list of buttons. 

 

public IActionResult GetRoom(int Id) 
        { 
            var userId = GetIdentity(); 
            var room = roomRepo.GetRoom(Id); 
            var gs = new EscapePuzzler.Core.Entities.GameState(room, userId); 
            gsRepo.SaveGameState(gs); 
            var returnVal = ClientRoomManager.CreateClientRoom(gs); 
            return Ok(returnVal); 
        } 

 



11 

The GetRoom method is called when an end-user initially selects a new room to play.  

This method gets all of the data for the room and uses the data to create a game state.  The 

game state is immediately saved.  The game state is then converted in to a ClientRoom object 

(for purposes of a DTO) and the ClientRoom object is sent to the client.  Once the client 

receives the ClientRoom object, it renders the room to the screen. 

 

[HttpPut] 
        public IActionResult SendCommand(string GameStateId, string Command) 
        { 
            var userId = GetIdentity(); 
 
            var gs = gsRepo.GetGameState(int.Parse(GameStateId)); 
            if (gs.Status == GameStateStatus.InProgress) 
            { 
                gs = GameStateManager.ProcessCommand(gs, Command); 
                gsRepo.SaveGameState(gs); 
            } 
            var clientResult = ClientRoomManager.CreateClientRoom(gs); 
            clientResult.broadcastMessage=Models.Admin.SystemControl.BroadcastMessage; 
            return Ok(clientResult); 
        } 

The SendCommand method is where most of the transactions take place.  This is the 

method that is called when the end-user makes commands.  The commands get sent to the 

SendCommand method.  The game state gets retrieved from the repository.  The 

SendCommand method then calls the GameStateManager.ProcessCommand method to 

process the command.  The result, if anything changed, is re-saved using the repository once 

again.  It then converts the game state into a ClientRoom object and sends the object back to 

the client.  The client, at this point, re-renders the screen based on the updated ClientRoom 

object. 

Authentication and Security 

The server utilizes the stock identity management and authentication methods from the 

standard Microsoft ASP.Net Core library.  It also leverages Facebook authentication.  It 

implements both of these through the .Net Core’s middleware library.  The Facebook set up 

first had to occur on Facebook, itself.  After signing up for the Facebook for Apps service, 

Facebook provided a unique application ID and application secret code.  These were fed into 

the Facebook authentication middleware to authenticate the integrity of Escape Puzzler when 

communicating with Facebook’s OpenID identity provider. 



12 

When in production, Escape Puzzler uses HTTP Strict Transport Security. (Hodges, 

2012)  This means that HTTPS is forced upon the end-users, even when they explicitly 

attempt to use the clear-text HTTP.  Azure provides the TLS certificate for the Escape Puzzler 

website through the DigiCert GeoTrust RSA certificate authority.   

Core Game Logic 

Most of the game logic takes place in a separate class library.  The MVC app relies on 

it to make decisions within its domain.  However, the class library, itself, is independent and 

could potentially be placed anywhere in order to duplicate the game logic necessary to 

complete its task.  For example, the presentation layer could be replaced by a Xamarian 

application and the core game class library could be placed along side it.  This class library is 

composed of several different types of classes.  These include entity classes, manager classes, 

repository classes, and helper classes. 

Entity Classes 

Entity classes provide structures for the plain old CLR objects.  These classes are used 

for pure data storage.  They do not interact with the other components of the code, 

themselves.  Instead they rely on repository and manager classes to do the heavy lifting.  The 

main entity classes used by the core logic include the Room class, the GameState class and 

the ClientRoom class. 

Room: The Room class stores all tiles, playable objects, and extra objects of a room.  

It also holds information regarding the beginning and ending of the room.  It essentially acts 

as the initial game state when a player begins to play a room. 

GameState: The GameState class is the heart of the game.  Once a player picks a 

room and the playable component of the game starts, a new GameState instance is created 

based on the Room object.  It is the class that stores all of the various unique elements of the 

specific instantiated gameplay.  This includes the player’s current position, all of the positions 

of all of the playable objects, any objects still hiding in the room, the current lighting of the 

room, the player’s inventory (for example, whether or not he/she has obtained a lantern), and 

the various metrics associated with the score. 

ClientRoom: The ClientRoom class is basically a data transfer object that represents 

all of the information from the GameState that needs to be conveyed to the client.  It is 

trimmed down and excludes any secret information that should not potentially leak to the 



13 

player.  One example of information that should not be conveyed to the client is the list of 

hidden and invisible objects.  The ClientRoom class exists on both the server side and the 

client side.  It is serialized and deserialized as a JSON object during the AJAX calls between 

the server and the client. 

There exist many other entity classes beyond the main classes.  Many of the remaining 

entity classes adhere to one (or more) of the following contracts: IRoomTile, IRoomPlayable, 

IActionCondition, and IActionConsequence. 

IRoomTile: An IRoomTile object has an image number that corresponds to a tilemap 

element on the client side.  It also has a Boolean variable to determine if it can be walked over 

or if someone would collide against it.  All IRoomTile objects are stored in the GameState 

TileLayer property as a multi-dimensional array of IRoomTile objects.  Examples of 

IRoomTile objects include floor objects and walls. 

IRoomPlayable: An IRoomPlayable object is an object that can potentially interact 

with the player.  It might render a graphic on the client or it might be completely invisible to 

the player.  Because an IRoomPlayable object might change its location in the room, and 

potentially occupy the same location as other IRoomPlayable objects, each object includes 

independent properties for X and Y coordinates.  It also has a mandatory method 

ExecuteMovementTrigger that will trigger when they player moves over the same coordinates 

as the IRoomPlayable object.  IRoomPlayable objects might either be stored in the game 

state’s PlayableLayer property or the HiddenLayer property as a list of IRoomPlayable 

objects.  Examples of IRoomPlayable objects are blocks, braziers, chests, easy buttons, exit 

doors, gems, keys, lanterns, and tricky buttons. 

IActionCondition & IActionConsequence: An IActionCondition object is an object 

that must be triggered for a consequence to occur.  The IActionConsequence object takes the 

appropriate action as a result of the IActionCondition objects being triggered.  The 

IActionCondition object is the first necessary ingredient for an action script.  The 

IActionConsequence object is the second ingredient for an action script.  An 

IActionConsequence can potentially require multiple IActionCondition objects to be 

triggered.  The signature method for an IActionCondition object is 

IsActionConditionTriggered.  The methods required for an IActionConsequence contract are 

ExecuteActionConsequence and UndoActionConsequence.  Examples of IActionCondition 



14 

objects are easy buttons, tricky buttons, invisible buttons, and keys.  Examples of 

IActionConsequence objects are treasure chests and locked exit doors. 

Managers and Repositories 

Manager, factory, and repository classes are responsible for saving, retrieving, 

forming, and manipulating entity objects.  Repositories maintain all of the necessary data 

access layer functionality and act as gateways.  The managers act as interactors and map all of 

the end-user interactions with the in-game entities.  The managers are also responsible for 

reshaping the entities based on end-user input.  They contain all of the necessary domain-

specific game logic.  Managers rely on and manipulate entity data from the repository classes 

in order to make decisions.  Most game-specific user stories and unit tests manifest around the 

manager classes. 



15 

 

Figure 1. Class Diagram - Main Core Classes 



16 

 

Figure 2. Class Diagram - Managers 



17 

 



18 

Figure 3. Class Diagram - Repositories 

 

Figure 4. Class Diagram - Tiles 

 



19 

 

Figure 5. Class Diagram - Playable Objects 1 



20 

 

Figure 6. Class Diagram - Playable Objects 2 



21 

 

Figure 7. Class Diagram - Playable Objects 3 



22 

 

Figure 8. Class Diagram - Constants 



23 

 

 

Figure 9. Class Diagram - Action Script Core 

 



24 

 

Figure 10. Class Diagram - ActionScript Conditions 

 



25 

 

Figure 11. Class Diagram - Action Consequences 

 



26 

 

 

Client details 

The client-side code is written in HTML 5, JavaScript, and Web Assembly.  It uses a 

little bit of Bootstrap for CSS.  However, hand-written client-side of the web site is minimal.  

The HTML and JavaScript is merely a framework for delivering the game.  Most of the 

project focuses on the game.  The game, itself, was created using the Unity Game Engine.  By 

leveraging Unity, the end-result also includes Web Assembly and Web GL. 

Choosing Unity as a game engine 

It was decided in the beginning of the project that development would implement 

some game engine to assist with creating the game.  Leveraging a game engine was an 

obvious choice because there was no need to reinvent the wheel.  However, each game engine 

has its own unique limits and opportunity costs.  Unity was ultimately selected.  This choice 

was due to the following features: 

• Scripting language: Under the hood, Unity uses C# for its scripting language.  

This provided a natural benefit because C# was the chosen language for the 

server-side of the project.  Common technologies between the client and the 

server meant higher cohesion and a lower learning curve. 

• Popularity: A technology is only as useful as the community that keeps it alive.  

Unity is one of the most popular game engines in the world. 

• Cost: Unity is free to use. 

• Asset store: The Unity platform has an immense library of gaming assets.  The 

asset store includes graphics, audio, and additional mechanics.  While other 

game engines have their own asset stores (such as Yoyo Games’ Game Maker 

Marketplace) and third-party asset stores exist (such as the Game Dev Market) 

the Unity asset store was impressive enough to persuade us to evaluate the 

engine. 

• Prominence with Microsoft: Microsoft indicates that they embrace Unity as a 

first-rate product for game development.  (Lander, 2019) (Jeffrey, 2017) 

• Multi-platform: Unity is able to easily compile to HTML5 / WebGL, iOS, 

Android, Windows, or Macs.  Even though the initial target platform is only 



27 

the web, being capable of targeting multiple platforms without worrying about 

rewriting significant amounts of code is definitely desirable. 

The Unity project is divided into four different scenes: 

• The intro scene: This is the splash screen to help introduce the player to the 

game. 

• The room list scene: This is the screen where the player gets to pick which 

room to play. 

• The dynamic room scene: This is where most of the action takes place.  The 

dynamic room queries the server for the room details and renders the server 

result.  The player interacts by moving around and clicking on buttons.  The 

dynamic room continues until either the player quits, returns to the room list, 

or wins the room. 

• The win scene: This scene provides a summary of the player’s score after the 

player wins a room. 

 

The different layers and tile maps: 

In Unity, all of the tiles and game objects are rendered on to a specific tile map and 

sorting layer.  Escape Puzzler uses the following layers: 

1. Default: This is the default location for all of the floor, carpet, and wall tiles. 

2. TilemapExtras: This layer corresponds to extra graphics that should be rendered 

on top of the default layer.  This includes decorative items on walls; like swords, 

shields, or flags; and colorful mood enhancers; such as blood or skulls on the floor. 

3. PlayableObjects: This is the layer where all of the playable items render.  The 

content is dynamically created as the ClientRoom object gets updated.  Examples 

of objects on the PlayableObjects layer include blocks, braziers, buttons, chests, 

gems, keys and lanterns. 

4. Player: This is the layer that the player character renders. 

5. AbovePlayer: This is for objects that need to be rendered above the player.  

Currently, the only item in the AbovePlayer layer is the exit door archway. 

  



28 

 

 

Lighting 

One of the elements in Escape Puzzler is dynamic lighting unique to each room.  The 

natural lighting is stored on the server.  This includes the Room object (in the integer Lighting 

property) and the GameState object (in the integer NaturalLighting and CurrentLighting 

properties).  When the end-user attempts to use a lantern, the “Use Lantern” command is sent 

to the server.  The GameStateManager processes the command.  The end result, if successful, 

is that the room lights up.  The actual rendering is done on the client-side.  The ClientRoom 

object gets an updated lighting property value.  The client, upon detecting this, makes a call to 

the following method: 

public void SetAmbientLighting(int color) 
     { 
        var tempAmbientLight = RenderSettings.ambientLight; 
        float tempColorPercentage = (float)color / 255f; 
        tempAmbientLight.r = tempColorPercentage; 
        tempAmbientLight.g = tempColorPercentage; 
        tempAmbientLight.b = tempColorPercentage; 
        RenderSettings.ambientLight = tempAmbientLight; 
        RenderSettings.ambientIntensity = 0; 
     } 

 

The way that the client controls lighting is with the RenderSettings.ambientLight 

property.  This is a built-in property that can change the background ambient light.  It could 

also be useful for setting a certain mood by distorting a color in the entire scene.  In this 

particular case, the server uses the light integer to set the RGB values.  However, under-the-

hood, the Unity engine expects the RGB values to be percentages instead of integers.  With 

that in mind, the client method just converts it from its raw value from the server (0 – 255) 

into a percentage.  The client method then applies the same value to the red, green, and blue 

values.  This lightens (or darkens) the entire scene with an even color that does not distort any 

of the playable objects or tiles. 

 

Playable Objects 

Playable objects are treated differently than tilesets.  Tile sets are static.  They only 

need to be rendered once to the screen.  They do not even need to be transmitted multiple 



29 

times because the client already knows of their existence and their placement from the initial 

game state load.  Playable objects, in contrast, need to be consistently tracked and maintained 

because they can change.  Treasure chests might open or disappear when accessed.  Exit doors 

may or may not be locked.  Items might be hidden at first but later revealed as a block gets 

pushed.  All playable objects need to be checked every move.  Because of this, each playable 

object has a unique identifier.  After each command, the ClientRoom object is scanned for 

objects.  Any object that exists on the client side that is not in the ClientRoom object is 

destroyed.  Any object that is in the ClientRoom object, but not rendered to the screen, is 

instantiated.  The following methods are used to control these tasks: 

 

    public void RemoveAbsentPlyObjInstances(List<ClientPlayable> plyObjs) 
    { 
        var removeList = new List<int>(); 
        foreach(var thisObj in roomObjList) 
        { 
            if (!plyObjs.Exists(r => r.id == thisObj)) 
            { 
                removeList.Add(thisObj); 
            } 
        } 
        foreach(var thisObj in removeList) 
        { 
            roomObjList.Remove(thisObj); 
            GameObject.Destroy(GameObject.Find(thisObj.ToString())); 
        } 

} 

public GameObject CreatePlyObjInstance(int type, int id, int x, int y) 
     { 
        GameObject o; 
        var pos = new Vector3(x + 0.5f, (-1 * y) + 0.5f, 0); 
        switch (type) 
        { 
            case 75: 
                o = GameObject.Instantiate(Resources.Load<GameObject>("Prefabs/Gem1"), 
pos, Quaternion.identity); break; 
            case 76: 
                o = GameObject.Instantiate(Resources.Load<GameObject>("Prefabs/Gem2"), 
pos, Quaternion.identity); break; 
            case 77: 
                o = GameObject.Instantiate(Resources.Load<GameObject>("Prefabs/Gem3"), 
pos, Quaternion.identity); break; 
            case 80: 
                // Lighting must be a bit distanced from everything else to take 
effect. 
                pos.z = -1.5f; 
                o = 
GameObject.Instantiate(Resources.Load<GameObject>("Prefabs/Brazier"), pos, 
Quaternion.identity); break; 
            case 81: 



30 

                o = 
GameObject.Instantiate(Resources.Load<GameObject>("Prefabs/Lantern"), pos, 
Quaternion.identity); break; 
            case 91: 
                o = 
GameObject.Instantiate(Resources.Load<GameObject>("Prefabs/Block"), pos, 
Quaternion.identity); break; 
            case 144: 
            case 192: 
                { 
                    o = 
GameObject.Instantiate(Resources.Load<GameObject>("Prefabs/ExitDoor"), pos, 
Quaternion.identity); 
                    var t = o.GetComponent<ExitDoorMgr>(); 
                    t.Type = type; 
                    break; 
                } 
            case 300: 
                o = GameObject.Instantiate(Resources.Load<GameObject>("Prefabs/Key"), 
pos, Quaternion.identity); break; 
            case 238: 
            case 244: 
                { 
                    o = 
GameObject.Instantiate(Resources.Load<GameObject>("Prefabs/Chest"), pos, 
Quaternion.identity); 
                    var c = o.GetComponent<ChestMgr>(); 
                    c.UpdateImage(type); 
                    break; 
                } 
            case 245: 
            case 246: 
                { 
                    o = 
GameObject.Instantiate(Resources.Load<GameObject>("Prefabs/Button"), pos, 
Quaternion.identity); 
                    var c = o.GetComponent<ClientPlayableObj>(); 
                    c.UpdateImage(type); 
                    break; 
                } 
 
            default: 
                o = new GameObject(); break; 
        } 
        o.name = id.ToString(); 
        roomObjList.Add(id); 
        return o; 

    } 

 

 



31 

The client end-user menu flowchart is illustrated below: 

 

 

Play Game
Is player logged 

in?

Room Game Play

Choose 
Room

Restart Room

Exit Room
Successfully

Return to 
Room Picker

Website Entry

Exit Abruptly
(closes browser, 
power outage, 

network connection 
severed)

Load Game 
Progress

Logout

Log In Page

Username & 
Password 

Entry

Log in 
Successful?

Input new account 
information

Does new 
account meet 

minimum 
criteria?

Create 
New 

Account

No

Yes

No

Yes

Yes

No

Show Win 
Screen

 

Figure 12. End User Menu Flowchart



32 

Interaction between client and server 

Communication is handled in the following steps: 

1. Send command: The player initiates communication by pressing a key or clicking 

on a button.  The client intercepts the input and sends the command via an 

XmlHttpRequest method. 

2. Process command: The server receives the XmlHttpRequest request on the Play 

controller.  It retrieves the current game state and pushes the command and the 

game state deeper into the core game logic to make the appropriate changes.  The 

core logic then sends the updated game state back to the controller. 

3. Send updated game state: Once the core game logic is complete, the Play 

controller subsequently transforms the game state for client consumption and 

returns the game state back to the client in the XmlHttpRequest return value. 

4. Render updated game state: The client receives the result for the original 

XmlHttpRequest method, compares the updated game state with the previous 

game state, and updates the screen in accordance to the new game state.  Outdated 

objects are destroyed.  New objects are created and rendered to the screen.  If 

necessary, the entire scene will be switched. 

Intercept Input and 
Send Command

Process CommandPlayer

Send Updated Game 
State

Render Updated Game 
State

Player Input Command via XHR Put

Updated Game State

ClientRoom via XHR Put Result

Client Server

 

Figure 13. Data Flow Diagram - Client and Server Communication 



33 

CHAPTER 4 

PROJECT MANAGEMENT 

Project Phases 

Overall, this project required two phases: a planning phase and an implementation 

phase. 

The planning phase included creating all of the creative content.  There already existed 

some basic requirements prior to the planning phase.  The end-result needed to be fun but 

have some varying level of difficulty.  It needed to exercise one’s mind.  It needed to include 

the potential for telemetry for future research and enhancements.  Beyond the basic idea of the 

end-result, most of the creative elements of the game were chosen during the planning phase.  

The basic concept of the game was conjured up during the planning phase.  Player 

motivations and the scoring formula were also devised.  Concepts for various levels were 

created.  Graphics and audio were purchased from outside vendors that specialize in game 

assets.  However, no single vendor covered all of the creative requirements so there was a 

need to carefully select assets that would weave together in a coherent fashion.  Other aspects 

of the game design, such as items and obstacles, were also imagined.   

The planning phase also included the creation of all of the user stories to act as the 

foundation of the requirements.  The user stories were based on the overall vision of the game 

design.  They helped to create a clear understanding of the mechanical element of the game. 

Once user stories were completed, the next portion of the planning phase included 

drafting more technical deliverables.  These include entity-relationship diagrams, UML class 

diagrams, sequence diagrams, and wireframes.  

One final task during the planning phase was conducting research to select various 

technologies.  It was decided that Microsoft Azure would be the hosting provider, Visual 

Studio would be the chosen IDE, C# would be the programming language and ASP.NET Core 

MVC would be the server platform.  After carefully researching various game engines, Unity 

was selected for the game engine and the target platform for the client-side would initially be 

HTML5 with WebGL. 



34 

The implementation phase included putting all of the design into action.  This was the 

phase where all of the software development occurred.  Most of the written code is in the core 

project class library.  Entity classes were written incrementally.  Interactor classes were also 

created to interact with the entities.  Furthermore, manager classes were also written to assist 

with class interaction.  Finally, data access classes were written. 

The implementation phase also included creating the MVC project and integrating the 

core game logic into the MVC web application.  Another project that was written was the unit 

testing project.  As each slice of code was initially prepared, corresponding unit tests were 

also coded to verify the integrity of the code. 

The implementation phase also included debugging, DNS assignment, deployment, 

and end-user feedback.  

Project Management Process 

Due to the unpredictability of software development and unknown variables 

associated with this exploratory and artistic project, a hybrid approach was determined to be 

implemented in order to see the project to its completion.  While the project mostly adhered to 

a waterfall SDLC approach, there was a need for a more nimble and flexible approach for the 

implementation phase.  Instead of using traditional project management tools (such as a work 

breakdown structure, PERT charts, and Gantt charts), project management was treated more 

like an agile project. 

During the planning phase, all requirements were gathered and converted into user 

stories.  Users stories used the Connextra template (User Story Template, n.d.) and focused on 

the end-user experience.  Each user story was subsequently given a relative chronological 

priority and approximate amount of time to develop.  All user stories were stored in the 

product backlog. 

The implementation phase was divided into weekly sprints.  Each sprint focused on a 

task-completion workbook similar to a Kanban board.  The workbook sheets included: to-do, 

work-in-progress, and completed.  In the beginning of each sprint, user stories were taken 

from the product backlog and placed on the to-do section of the Kanban workbook.  As 

development proceeded, the user stories were broken down into functional requirements and 



35 

tasks to code.  By the end of the sprint, all of the user stories would be in the completed 

section of the Kanban workbook.  This cycle continued for the duration of the semester. 

User Story List 

 

As A… I Can… So That… Story 
Points 

admin kick out all players from the system perform updates and system 
changes without worrying 
about players performing any 
real-time tasks 

1 

admin log in to my account from the admin login page I can securely perform 
administrative duties 

1 

admin reset a player's password if the player's credentials 
are stored internally 

a player has a mechanism of 
updating their account 
information just in case they 
can't log in themselves 

1 

admin see a list of established users I can provide basic 
administrative duties 

1 

admin export all reports to pdf I can record formatted data or 
send data to others in pre-
formatted layout 

1 

admin export all reports to xlsx I can record data for later, 
send formatted data to others, 
or export for further data 
analytics 

1 

admin run a "advancement rate" report that shows how 
fast each player is advancing through the rooms 

I can determine if there's 
enough difficulty in each room 
and enough rooms for people 
to play 

1 

admin run a "load" report of how many players are 
playing by date/time in total 

I can assess overall volume of 
player usage 

1 

admin run a "room popularity" report of a list of rooms 
along with the count of how often they're played 

to see which rooms are played 
the most often 

1 

admin run a "user play frequency" report and chart that 
shows how many days each player has played and 
how long per day each player has played over a 
period of time 

I can understand game play 
habits and patterns, such as 
how long it takes before 
individual players start losing 
interest in the game 

1 

admin run an "g factor" report that compares per-user 
difficulty of rooms focusing on memorization and 
rooms that focus on pattern-matching 

to see if there's a correlation in 
per-user difficulty between 
rooms that require memory 
and rooms that require pattern 
recognition 

1 



36 

admin run an "room difficulty" report of a list of rooms 
along with the count of how much time they take 
to complete and how often they're reset / given 
up on 

to see which rooms take the 
longest to complete and 
require the most resets based 
on aggregate data 

1 

admin see a list of support tickets I can hope to resolve software 
bugs 

1 

admin broadcast a message to all players currently in the 
game 

they are warned ahead of time 
if something needs to happen, 
such as a system update/reset 

2 

player click on the "restart room" button while playing in 
a room 

I can try the room again with a 
fresh new start 

1 

player obtain the contents of an unlocked treasure chest 
by walking over the chest 

I can get the contents inside, 
such as a key or a gem 

1 

player add a key into my inventory when I walk over it 
within the room 

I can use that inventory item 
later in the room 

1 

player see a key on the floor unless it is off the screen or 
hidden by an obstacle 

I know where to navigate to 
get the key in my inventory 

1 

player see in the game if I have already picked up a key I can keep track of my 
inventory 

1 

player browse to the game using a friendly DNS name I can connect to the site in an 
easy-to-remember manner 

1 

player unlock a locked door with a key I can enter the previously 
locked door and win the room 

1 

player close my browser and leave the game I can go for a walk or 
something 

1 

player depress certain floor buttons by walking off of 
them and undoing whatever effect they had 

I face a higher level of difficulty 
and frustration 

1 

player push a floor button by walking over it the gameplay progresses and I 
unlock whatever secret it had 
hidden 

1 

player push a movable block over depressable floor 
buttons to keep the floor button pressed 

the effect that the button has 
is maintained and not undone 

1 

player see an uncovered floor button on the floor I know where to navigate to 
push the button 

1 

player unlock some locked treasure chests by finding a 
key for them 

I can subsequently navigate to 
the chest and get the treasure 
inside 

1 

player unlock some locked treasure chests by pressing a 
floor button 

I can subsequently navigate to 
the chest and get the treasure 
inside 

1 

player unlock some locked treasure chests by solving a 
pattern-matching puzzle within the room 

I can subsequently navigate to 
the chest and get the treasure 
inside 

1 

player click on the "Return to Room Picker" option while 
playing in a room 

I can exit the room and pick a 
different room to play 

1 

player play a simple room that introduces me to the 
concept and mechanics of moving single-move 
blocks in isolation to other obstacles (easy room 4) 

enjoy learning about the 
gameplay through playing 

1 



37 

player play a simple room that introduces me to the 
concept and mechanics of moving blocks 
indefinitely in isolation to other obstacles (easy 
room 3) 

enjoy learning about the 
gameplay through playing 

1 

player see an uncovered treasure chest on the floor I know where to navigate to 
get to the chest 

1 

player see if a treasure chest is locked or unlocked I know if getting the treasure 
will require finding a way to 
unlock it first 

1 

player see if a door is locked or unlocked I know that winning the room 
requires finding a key first 

1 

player choose to re-enter a room that I have already 
played 

I can try to improve on my 
previous score 

1 

player connect to a webserver and play the game on a 
modern browser 

enjoy playing the game 
regardless of my underlying 
platform 

1 

player stop moving any direction when I walk up to an 
obstacle such as a wall or brazier 

I obey the laws of physics 1 

player walk through an unlocked door at the end of a 
room 

I beat the room 1 

player type in my established username and password 
when logging in 

restore my progress from the 
last time I played and continue 
where I left off 

1 

player click on the 'log off" option while playing in a room I can exit the game 1 

player make sure that my email address isn't already 
taken 

my account is unique 1 

player make sure that my new account's user name isn't 
already taken 

my account is unique 1 

player try to log in again in case my log in wasn't 
successful 

I get another chance just in 
case I accidently typed in my 
credentials incorrectly 

1 

player update my account password if my account 
credentials are stored internally 

my account is stays secure 1 

player update my account email address my account is kept up-to-date 
per my personal preferences 

1 

player see an uncovered gem on the floor I know where to navigate to 
get the gem 

1 

player stop walking when I run into a brazier I observe the laws of physics 1 

player add a lantern into my inventory when I walk over it 
within the room 

I can use that inventory item 
later in the room 

1 

player see a lantern on the floor I know where to navigate to 
get the lantern in my inventory 

1 

player see in the game if I have a lantern in my inventory I can keep track of my 
inventory 

1 

player not see after the lantern goes out I face a higher level of difficulty 
and frustration 

1 



38 

player see nothing while in complete darkness I face difficulty when playing 
the game 

1 

player still technically move while in darkness, I just won't 
know if I'm successfully making progress towards 
exiting the room 

I face difficulty when playing 
the game 

1 

player temporarily alleviate the darkness completely with 
a lantern 

I can see for a few moments 1 

player click the background music button optional audio is enabled or 
disabled to my liking 

1 

player choose to load my saved progress when the game 
first loads 

continue where I left off and 
restore all of my previous 
progress and accomplishments 

1 

player get a recap of how my score in a level after 
successfully exiting it 

know my progress 1 

player see the title screen when I first connect to the 
game 

I am properly introduced to 
the game 

1 

player see how many gems can possibly be obtained in a 
room 

I know if I can still find more 
and improve my score for the 
room 

1 

player see how many gems I already picked up I can keep track of my 
inventory 

1 

player see how many times I needed to relight my lantern my score is adjusted 
appropriately for the level 

1 

player play a simple room that introduces me to the 
concept and mechanics of dealing with darkness in 
isolation to other obstacles (easy room 1) 

enjoy learning about the 
gameplay through playing 

1 

player play a simple room that introduces me to the 
concept and mechanics of dealing with illusion 
walls in isolation (easy room 2) 

enjoy learning about the 
gameplay through playing 

1 

player see an illusion wall just like it was a real wall I face difficulty when playing 
the game 

1 

player walk through an illusion wall I can progress through the 
room 

1 

player click sound settings for sound options to see a list of sound options 
available to player 

1 

player click the sound button optional audio is enabled or 
disabled to my liking 

1 

player push heavy blocks forward to an adjacent empty 
space once 

hidden items, such as gems or 
keys, are revealed 

2 

player push light blocks forward to an adjacent empty 
space once 

hidden items, such as gems or 
keys, are revealed 

2 

player progress forward more slowly as I push blocks 
forward 

I can carefully place the blocks 
exactly where I need 

2 

player connect to the website via https and a valid TLS 
certificate 

I know that my communication 
is secure 

2 

player push any block forward over a floor button the consequence of the button 
remains in effect 

2 



39 

player choose to play any room from a room picker menu 
once I successfully log in or create an account 

I can start playing 2 

player move up, down, left, and right so long as there 
isn't anything blocking me 

I can navigate around the 
room to reach the end 

2 

player see the view of the room shift alongside my 
movement as I move around a large room 

I can see my general vicinity 
instead of moving off of the 
screen 

2 

player create a new account when I put in account 
information that meets the unique criteria 

save my progress for later 2 

player link my established account to a Facebook or 
another established account 

I don't need to have a separate 
account for this game 

2 

player start a new account from the main menu I can begin the account 
creation process 

2 

player request a full GDPR-compliant erase from the 
"change user account settings" menu option 

I am sure that the system does 
not keep any information on 
me 

2 

player see admin broadcasted messages I can prepare for any upcoming 
issues 

2 

player pick up hidden gems within a room I can get extra points for the 
room after I successfully exit it 

2 

player uncover hidden gems by pushing blocks that hide 
them or unlock chests that hold them 

I can see where to navigate to 
in order to obtain the gems 
and increase my score 

2 

player see a little bit within the proximity of a brazier I see basic milestones 
throughout the room 

2 

player see braziers and the light that illuminates from 
them in dark rooms 

I can see a little easier within 
the proximity of the brazier 

2 

player (re)light a lantern I can see where I'm going in a 
dark room for a short amount 
of time 

2 

player see my surroundings better when I light my 
lantern 

I can navigate more effectively 2 

player see my best score next to my most recent score in 
a level after successfully exiting it 

know my progress 2 

player see my previous best score for each room that I 
have successfully exited 

I can see how well I did and 
aim to improve my score next 
time 

2 

player play a moderately complicated room that 
incorporates several obstacles (medium room 1) 

Enjoy playing the game with 
medium difficulty 

2 

player play a moderately complicated room that 
incorporates several obstacles (medium room 2) 

Enjoy playing the game with 
medium difficulty 

2 

player play a moderately complicated room that 
incorporates several obstacles (medium room 3) 

Enjoy playing the game with 
medium difficulty 

2 

player play a moderately complicated room that 
incorporates several obstacles (medium room 4) 

Enjoy playing the game with 
medium difficulty 

2 

player play a moderately complicated room that 
incorporates several obstacles (medium room 5) 

Enjoy playing the game with 
medium difficulty 

2 



40 

player push heavy blocks forward to an adjacent empty 
space once 

I can clear a path towards the 
end of the room 

3 

player push heavy blocks forward to an adjacent empty 
space once 

the blocks align in a special 
pattern to unlock a mystery 

3 

player push light blocks forward to an adjacent empty 
space indefinitely 

I can clear a path towards the 
end of the room 

3 

player push light blocks forward to an adjacent empty 
space indefinitely 

the blocks align in a special 
pattern to unlock a mystery 

3 

player play a more complicated room that spans beyond 
my immediate sight on the screen and 
incorporates many obstacles (hard room 1) 

Enjoy playing with high 
difficulty 

3 

player play a more complicated room that spans beyond 
my immediate sight on the screen and 
incorporates many obstacles (hard room 4) 

Enjoy playing with high 
difficulty 

3 

player play a more complicated room that spans beyond 
my immediate sight on the screen and 
incorporates many obstacles (hard room 5) 

Enjoy playing with high 
difficulty 

3 

player choose a room from the room picker that is sorted 
by difficulty based on previous player experiences 

I can intuitively choose a 
difficulty level that's 
appropriate for me 

3 

player submit a trouble ticket in case the game has some 
sort of glitch or crashes 

I can help alleviate the issue in 
the future 

3 

player play a more complicated room that spans beyond 
my immediate sight on the screen and 
incorporates many obstacles (hard room 2) 

Enjoy playing with high 
difficulty 

3 

player play a more complicated room that spans beyond 
my immediate sight on the screen and 
incorporates many obstacles (hard room 3) 

Enjoy playing with high 
difficulty 

3 

scheduled 
task 

update the RoomDifficulty table on a regular basis 
based on data from the Events table 

rooms are sorted by difficulty 
based on actual player 
experiences 

2 

scheduled 
task 

periodically delete old and irrelevant database 
records 

the system is less expensive 
and clogged 

2 

scheduled 
task 

periodically purge logs the system is less expensive 
and clogged 

2 

scheduled 
task 

connect to a TLS certificate authority and update a 
soon-to-expire TLS certificate 

the site certificate stays 
current and all connectivity is 
secure 

5 

telemetry record every time a player attempts to move the 
player's character into the Events table 

appropriate data points are 
logged to feed reporting needs 

1 

telemetry record every time a player decides to exit a room 
and return to the room picker menu option into 
the Events table 

appropriate data points are 
logged to feed reporting needs 

1 

telemetry record every time a player decides to restart a 
room into the Events table 

appropriate data points are 
logged to feed reporting needs 

1 

telemetry record every time a player receives a key into the 
Events table 

appropriate data points are 
logged to feed reporting needs 

1 



41 

telemetry record every time a player starts a room into the 
Events table 

appropriate data points are 
logged to feed reporting needs 

1 

telemetry record every time a player successfully completes 
a room into the Events table 

appropriate data points are 
logged to feed reporting needs 

1 

telemetry record every time a player decides to log off while 
in a room into the Events table 

appropriate data points are 
logged to feed reporting needs 

1 

telemetry record every time a player receives a lantern into 
the Events table 

appropriate data points are 
logged to feed reporting needs 

1 

telemetry record every time a player uncovers and receives a 
gem into the Events table 

appropriate data points are 
logged to feed reporting needs 

1 

telemetry record every time a player uses a lantern into the 
Events table 

appropriate data points are 
logged to feed reporting needs 

1 

Table 3. User Story List 

 

 



42 

CHAPTER 5 

CONCLUSIONS 

Ultimate outcome 

Ultimately, the project was a success.  All of the deliverables were created.  The 

design was implemented and it adequately matched the initial vision.  The end-result is a 

product that will entertain and gauge and help develop memory and exercise cognitive skills.  

It is a fully-functional video game that relies on client/server architecture using industry 

standards and popular programming paradigms.  It also has built-in methods to gather data 

and accumulate end-user activity.  This will be used for further analytics to refine and 

improve future product enhancements.  It could also serve as a foundation for additional 

research. 

 

What was learned 

We learned a substantial number of topics through this project.  This entire project was 

practically an exploratory project with new technologies.  Generally speaking, we learned 

how to manage a creative technical project in an iterative fashion.  While much of the 

development was agile in nature, the artistic side of the project was fleshed out completely 

ahead of time.  The tasks required to contribute an artistic component were fundamentally 

different than the tasks required to create the technical system design. 

This project introduced us to Microsoft Azure as a hosting provider.  Microsoft Azure 

provides a plethora of services, but the entire process was a bit overwhelming at first.  We 

ended up choosing an app service to host the MVC and class library projects.  We also created 

a separate SQL server resource.  Both the app service and server resource exist within a single 

created resource group.   

Prior to this project, we had no first-hand experience with the Unity game engine.  

This project inspired us to research several game engines.  Ultimately, Unity was selected for 

this project.  It provided a rich toolset for game development.  Unity provided a point-and-

click integrated development environment for easily creating a game layout.  It also allowed 



43 

for powerful scripting using C#.  That being said, the IDE was not completely intuitive and 

the C# target platform was Mono, distinct from ASP.Net Core.  The API was also unique to 

Unity.  This gave Unity a learning curve that required studying.  A few months to learning 

Unity was necessary in order to be productive. 

Obstacles 

Creative aspects of game 

One obstacle faced was simply how to apply creativity to project management.  

Creating a time estimate for tasks that required subjectivity seemed more difficult.  For 

example, each room created was represented by one user story.  Each user story had an 

estimate time cost.  However, we had no experience with accurately estimating the time 

required to make something difficult and fun. 

Additionally, we struggled to find a method to objectively gauge the entertainment 

dimension associated with Escape Puzzler.  How does one create a technical specification and 

measurement of “fun”? 

We also faced difficulty mixing and matching all of the game assets to make a united 

coherent finished product.  If this project had to start over again, recruiting an art major to 

assist with custom graphics instead of stock graphics would be advisable. 

 

Mixing Unity with ASP.Net Core MVC 

Mixing Unity and ASP.NET Core MVC posed a few extra challenges.  For example, 

one preferred method of networking within the Unity does not work if HTML/WebGL is the 

target platform.  For now, the application resorts to implementing XHR requests.  In the 

future, WebSockets might be considered.  Another issue faced was the MIME types of the 

Unity compiled output.  In order to generate output to the HTML/WebGL platform, Unity 

first transpiles the C# code into C++ using a program called, “IL2CPP”.  From there, it turns 

the C++ code into WebAssembly.  For some unknown reason, the output extension that it 

uses is .UNITYWEB instead of something more standard (such as .WASM).  In order for the 

web server to properly serve the outputted files, the following was added to the MVC Startup 

Configure method: 

 



44 

// Unity-specific web assemblies. 
            var provider = new FileExtensionContentTypeProvider(); 
            provider.Mappings[".unityweb"] = "application/octet-stream"; 
            app.UseStaticFiles(new StaticFileOptions 
            { 
                FileProvider = new PhysicalFileProvider( 
                    Path.Combine(Directory.GetCurrentDirectory(), "wwwroot","Build")), 
                RequestPath = "/Build", 
                ContentTypeProvider = provider 

            }); 

 

Azure SQL not having SSRS 

During the design phase, Azure SQL was selected as a technology for the RDBMS.  

We were under the false assumption that it functioned similar to its on-premise counterpart, 

Microsoft SQL Server.  It was expected to have a component called, “SQL Server Reporting 

Services”.  Several user stories were written taking that into consideration.  During the 

implementation phase we discovered that Azure SQL did not have SQL Server Reporting 

Services, nor did it offer any equivalent service.  Due to limited time constraints and the fact 

that the reports were fairly inconsequential to the core goals of the project, we decided to 

abandon the user stories related to reports for the moment. 

Different Plane Geometry 

Through trial and error, we discovered that Unity uses the standard two-dimensional 

Cartesian coordinate system.  However, we expected the system to align with a two-

dimensional array instead.  We expected the origin (0, 0) to be in the top-right of the screen 

and the bottom-right of the screen to be the highest possible number.  All of the multi-

dimensional arrays on the server relied on the element index numbers to dictate their 

geographic location.  To accommodate this difference, a simple conversion on the client 

converts the element index number into something visually similar to quadrant IV.  All that 

was required was to multiple the Y-coordinate array index by -1 on the client. 

 



45 

 

Figure 14. Negate y-coord to align multidimensional array to quadrant IV 

 

 

 

AJAX latency 

The XHR requests between the client and the server are carefully serialized.  When the 

client sends a request and the server returns the updated game state, further communication is 

disabled until the updated game state has been completely rendered.  For example, the player 

character might walk to the new destination.  Once complete, the communication can resume.  

Once the app deployed on to Azure, a small (but noticeable) amount of latency surfaces on 

occasion between the client and the server.  For example, when the player presses a 

directional key, a few milliseconds pass prior to any movement.  Furthermore, sometimes the 

player character might stop walking between movements from tile to tile.  This issue might be 

trivial, but it might also become annoying to a player.  To resolve the issue, we are 

considering promoting the AJAX controller methods to WebSocket connections.  This might 

help with a tighter synchronization.   

Next Steps 

This project may just be the beginning.  With this project’s completion, many doors 

are now open for new opportunities.  First, this project is essentially a game made for 

enjoyment.  As such, end-user testing and feedback is essential for improvement.  The first 

steps for an additional phase should take end-user feedback into consideration. 



46 

Secondly, this project may act as a stepping stone for further end-user analysis.  Now 

that the foundation is laid, there exists a possibility to adapt this solution into a mechanism for 

acquiring data for additional research.  Such research might include psychometrics, such as 

correlating an individual’s intelligence quotient with their ability to solve puzzles or providing 

quantitative data for testing the multiple intelligence theory versus the general intelligence 

theory. 

Plan for ADA compliance 

This web app has not been thoroughly tested for extended use for individuals with 

disabilities.  Like any web-based technology, Escape Puzzler should strive for a higher level 

of ADA compliance.  Multiple forms of player input can be accepted.  Alternative colors can 

be used for the tile set.  The rendered output should be resizable.  These things provide several 

advantages.  They potentially increase the target audience.  They also improve SEO efforts.  

Additionally, they may help with overall website usability and make the game more adaptable 

for a general audience. 

Add more rooms 

Escape Puzzler is currently in a completed state, but many of the levels merely 

showcase the mechanical elements of the game.  More rooms can be added to for replay value 

and allow the player to further immerse in the game. 

  



47 

REFERENCES 

(n.d.). Retrieved April 2019, from Unity Learn Premium: https://learn.unity.com 

Armstrong, T., & . (2018). Multiple Intelligences in the Classroom. Alexandria: ASCD. 

Avgustova, A. (n.d.). Loot icons. Retrieved April 2019, from GameDev Marketplace: 

https://www.gamedevmarket.net/asset/loot-icons-8786/ 

Cohen, D. (2016, August 19). Facebook Developing New PC Gaming Platform; Teams Up 

With Unity Technologies. Retrieved from Adweek: 

https://www.adweek.com/digital/facebook-developing-pc-gaming-platform-unity-

technologies/ 

Edvardsen, F., & Kulle, H. (2010). Educational Games: Design, Learning and Applications. 

New York: Nova Science Publishers, Inc. 

Elliott, J. L. (2013). HTML5 Game Development with GameMaker. Birmingham: Packt 

Publishing. 

Fisher, C. (2015). Designing Games for Children: Developmental, Usability, and Design 

Considerations for Making Games for Kids. New York: Focal Press. 

Freeman, A. (2017). Pro ASP.Net Core MVC 2. New York: Apress. 

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design Patterns: Elements of 

Reusable Object-Oriented Software. Boston: Addison-Wesley. 

Hodges, J. (2012, November). HTTP Strict Transport Security (HSTS). Retrieved from IEFT 

RFC: https://tools.ietf.org/html/rfc6797 

Jeffrey, C. (2017, May 18). Microsoft and Unity team up to offer $100,000 to the best AR 

design idea. Retrieved from Tech Spot: https://www.techspot.com/news/69380-

microsoft-unity-team-up-offer-100000-best-ar.html 

Lander, R. (2019, May 6). Introducing .NET 5. Retrieved from Microsoft DevBlogs: 

https://devblogs.microsoft.com/dotnet/introducing-net-5/ 

Martin, R. C. (2008). Clean Code: A Handbook of Agile Software Craftsmanship. Upper 

Saddle River: Prentice Hall. 

National Research Council. (2011). Learning Science Through Computer Games and 

Simulations. (M. A. Honey, & M. L. Hilton, Eds.) Washington: National Academies 

Press. 



48 

Rogers, S. (2014). Level Up! The Guide to Great Video Game Design. West Sussex: Wiley. 

Scolastici, C., & Nolte, D. (2013). Mobile Game Design Essentials. Birmingham: Packt 

Publishing. 

Somasegar, S. (2015, April 17). Visual Studio for Game Development: New Partnerships with 

Unity, Unreal Engine and Cocos2d. Retrieved from Microsoft DevBlogs: 

https://devblogs.microsoft.com/somasegar/visual-studio-for-game-development-new-

partnerships-with-unity-unreal-engine-and-cocos2d/ 

Thomas, D. (n.d.). Daniel Thomas Asset Store. Retrieved May 2019, from Unity Asset Store: 

https://assetstore.unity.com/publishers/15413 

User Story Template. (n.d.). Retrieved from Agile Alliance: 

https://www.agilealliance.org/glossary/user-story-template/ 

WebGL Browser Compatibility. (2018, September 14). Retrieved from Unity Documentation: 

https://docs.unity3d.com/Manual/webgl-browsercompatibility.html 

 

 

 

 



49 

APPENDICES 

APPENDIX A: BROWSER COMPATIBILITY 

The following is a list of compatible browsers with the Escape Puzzler.  Other 

browsers might also work, but these are the one’s that have been confirmed to work with 

Unity’s WebGL output. (WebGL Browser Compatibility, 2018): 

Browser Version 

Mozilla Firefox 67 

Google Chrome 75 

Apple Safari 12.1 

MS Edge 18 

Table 4. Browser Compatibility 

 

 

 

  



50 

APPENDIX B: USER MANUAL 

 

Many of the user-specific components that would be inserted in a user manual are 

already covered in the game design section of the system design chapter.  For brevity, that 

information is not duplicated here.  The content includes playable objects, tiles, the scoring 

system, and obstacles.  However, there were a few components applicable to a user manual 

not previously covered.  They are covered in this appendix. 

 

In a compatible browser, navigate to the Escape Puzzler website: 

 

 

 

The main menu exists in the top-left of the web site: 

 

 

Click on “Play Game” to begin play: 

 

 

If you’re not already logged in, then the website will prompt you to log in.  Use your 

email address and password.  If you would prefer to use your Facebook credentials to log in, 

you can click on the “Facebook” button on the right side. 

 



51 

 

To create a new account, simply select the “Register as a new user” option. 

 

Once logged in, gameplay will begin.  The game starts with a start screen.  Press the 

“Start” button to get to the room list. 

 

This brings up the room list.  You can now choose a room to play. 



52 

 

During gameplay, the user menu is located in the bottom-right of the game screen: 

 

Menu Option Usage 

Toggle Sound Effects Turns sound effects on or off 

Toggle Music Turns the background music on or off 

Room List Abandons the current room and goes back to 

the room list 

Reset Level Starts the room over back in its initial state 

Use Lantern If the player has acquired a lantern in a dark 

room, this option allows the player to use 

the lantern and lighten up the room 

Table 5. Menu Options 

 

Beyond these instructions, all of the end-user information should be contained in the 

game design section. 

  



53 

 

APPENDIX C: LICENSE AGREEMENTS 

All of the purchased game assets for the Escape Puzzler project use the standard 

GameDev market license, with one exception.  The exception is the sprite sheet for the main 

player character.  Those graphics fall under the license from Toke Game Art. 

Toke Game Art 

(http://tokegameart.net/licenses/)  

License for Paid Art 

Purchasing art from this site grants you a non-exclusive, non-transferrable license to 

use the art. 

You can NOT resell the art source files (PNG, JPG, EPS, Adobe Illustrator, etc) or 

slightly modified version of the art. You can not redistribute the art or modified version of the 

art in a manner that would make some or all of the art files useable to another end user via the 

app. For example, an app that uses the art as part of the play of the game is fine. An app that 

allows the user to save or export a modified version of the artwork itself is not fine. 

You may use the art in a template of any nature for distribution or sale to third parties. 

You may use the art for single game/app title for each platform. 

You may not upload the original art files on a website in a complete or archived 

downloadable format that would make them accessible to others. Backing up to your personal 

Dropbox,  Google Drive, etc is fine. 

The license is valid for entities with annual revenue of less than $500,000 USD or 

equivalent foreign currency. If annual revenues exceed this amount at any time, the license is 

no longer valid and you will have to contact us for an Extended License or all use of the art 

and distribution must cease. 

There are no refunds on digital products once you have downloaded them on your 

system. 

http://tokegameart.net/licenses/


54 

Our paid licenses are specifically intended for use in digital media, such as an online 

game, mobile app, PC game, etc. Using the art in promotional materials for the app or game is 

allowed, for example, as part of the App Icon or Featured Images of the app. If you intend to 

use the work in vastly different way, please get in touch with tokegameart. For example, if 

you are writing a programming book and need graphics for print, that would require a 

different licensing agreement. If you aren’t sure of something that is not addressed explicitly 

in this license, assume it is not allowed and please contact us via support for clarification and 

permission. 

Regarding ownership of the art: the artist (licensor) owns all proprietary rights in and 

to all copyrightable works and has the exclusive right to license others to produce, copy, 

make, or sell their art. Plainly speaking, the artist is the copyright holder, but you are granted 

a license to use the art in your app or game based on the terms above. 

Your app does not require attribution or credit to the Tokegameart. But feel free if 

you’d like to. 

Standard GameDev Market License 

(https://static.gamedevmarket.net/terms-conditions/#pro-licence) 

LICENCE (A) – For purchases made after 00:00 (GMT) on 15th January 2019 

4.1. A “Licence” means that the Seller grants to GDN (purely for the purpose of sub-

licensing to the Purchaser) and GDN grants (by way of sub-licence thereof) to the Purchaser a 

non-exclusive perpetual licence to; 

(a) use the Licensed Asset to create Derivative Works; and 

(b) use the Licensed Asset and any Derivative Works as part of both Non-Monetized 

Media Products and Monetized Media Products, with no restriction on the number of projects 

the Licensed Asset may be used in. In either case, the Licensed Assets can be used in Media 

Products that are either: 

i) used for the Purchaser’s own personal use; and/or 

ii) used for the Purchaser’s commercial use in which case it may be distributed, sold 

and supplied by the Purchaser for any fee that the Purchaser may determine. 

4.2. A Licence does not allow the Purchaser to: 

(a) Use the Licensed Asset or Derivative Works in a logo, trademark or service mark; 

https://static.gamedevmarket.net/terms-conditions/#pro-licence


55 

(b) Use, sell, share, transfer, give away, sublicense or redistribute the Licensed Asset 

or Derivate Works other than as part of the relevant Media Product; or 

(c) Allow the user of the Media Product to extract the Licensed Asset or Derivative 

Works and use them outside of the relevant Media Product. 


	Escape Puzzler
	<PROJECT TITLE>

