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APP-CENTRIC DISTRIBUTED MESSAGING BUS FOR PERFORMANCE 
MONITORING 

 
AUTHOR:   
Ted Hulick 

 
ABSTRACT 

A novel messaging system simplifies integration of dissimilar devices and 

instrumentation to enable a "distributed" application performance intelligence. 

 

DETAILED DESCRIPTION 

There are numerous viewpoints for instrumentation and monitoring of application 

flow and performance.  Some current examples include: 

 Application: application level - code level instrumentation, e.g., Application 

Performance Management (APM); 

 Endpoint: OS level - mainly kernel level instrumentation, e.g., Machine Agent; 

 Network: wire level - mainly layers 1-7 of the protocol stack, e.g., Network 

Performance Management (NPM); 

 Container: specific to container/mainly peer to peer communication, e.g., 

Docker/Kubernetes; and 

 Browser: user level - mainly javascript instrumentation, e.g., EUM/BRUM. 

Further, there are many Network Infrastructure Modules (NIMs) involved in the 

application flow that have different levels of visibility into performance and availability.  

Vendors have long tried to find ways to leverage all of these instrumentation points by 

integrating them together.  In most cases, the correlation is done on a backend processing 

system versus in real time.  However, accomplishing this integration has proven to be more 

difficult than originally imagined due to: 

 the instrumentation points being used by different groups (e.g., application 

stakeholders, network engineers, IT administrators, etc.); 

 the instrumentation points not sharing or correlating information; 

 the instrumentation points not being aware of each other; and 

 the instrumentation points coming from different vendors. 
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For all of these reasons, no standard communication system exists that is convenient 

to all of these different viewpoints. 

The described messaging system ties together these two distinct area in a "full 

duplex" membership fashion.  The information can be used by other infrastructure 

networking modules such as SD-WAN, SDN, load balancers, routers, and switches either 

to display correlated information or makes decisions related to Quality of Service (QOS).  

 

APM and NPM  

APM (Application Performance Management) has been around for over 30 years, 

with top APM vendors including AppDynamics, New Relic, and Dynatrace. NPM 

(Network Performance Management) has been around for even longer and recently has 

evolved in many ways such as adding QOS control, analyzing traffic patterns, assessing 

transaction time, etc.  Generally, NPM tools are "passive monitors" that plug into the 

"SPAN or Mirror ports" switches/routers/load balancers. 

Each technology has a different "viewpoint (instrumentation)" in terms of how it 

measures performance.  For the most part, APM instrumentation is embedded into the 

Application itself using runtime APIs and dynamic interception of key "points" in the 

transaction and taking measurements at those points.  In the case of NPM, it is done at 

much lower level and based on a "packet by packet" basis.  In the case of lower network 

layers, this would be the IP/TCP level looking at things like transmission and ack deltas, 

DNS requests/responses, network resets (TCP RST flag). Some NPM tools will measure 

higher in the stack at the HTTP level and even decoding Simple Object Access Protocol 

(SOAP) XML messages (although Representational State Transfer (REST) has replaced 

SOAP in most application stacks). 

 

Network Infrastructure Module (NIM) Types 

Todays networks are very diverse and contain many different types of Network 

Infrastructure modules, which are generally virtual or physical in nature.  All of these 

modules can benefit by having access to APM metrics, alerts, and snapshots. 

These modules include: 
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 SD-WAN – an acronym for software-defined networking in a wide area 

network (WAN). SD-WAN simplifies the management and operation of a 

WAN by decoupling the networking hardware from its control mechanism. 

This concept is similar to how software-defined networking implements 

virtualization technology to improve data center management and operation.  A 

key application of SD-WAN is to allow companies to build higher-performance 

WANs using lower-cost and commercially available Internet access, enabling 

businesses to partially or wholly replace more expensive private WAN 

connection technologies such as Multiprotocol Label Switching (MPLS). 

 SDN – Software Defined Networking (SDN) architectures decouple network 

control and forwarding functions, enabling the network control to become 

directly programmable and the underlying infrastructure to be abstracted from 

applications and network services.  SDN Applications are programs that 

explicitly, directly, and programmatically communicate their network 

requirements and desired network behavior to the SDN Controller via a 

northbound interface (NBI). 

 Router – a networking device that forwards data packets between computer 

networks.  Routers perform the traffic directing functions on the Internet. 

 Load Balancer – a device that acts as a reverse proxy and distributes network 

or application traffic across a number of servers.  Load balancers are used to 

increase capacity (concurrent users) and reliability of applications. 

 Switch – a multiport network bridge that uses MAC addresses to forward data 

at the data link layer (layer 2) of the OSI model.  Some switches can also 

forward data at the network layer (layer 3) by additionally incorporating routing 

functionality.  Such switches are commonly known as layer-3 switches or 

multilayer switches. 

 

Motivation for Implementation  

Consider the five main component types: 

 Application:  application level - code level instrumentation; 

 Endpoint:  OS level - mainly kernel level instrumentation; 
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 Network:  Wire level - mainly layers 1-7 of the protocol stack; 

 Container:  specific to container/mainly peer to peer communication; and 

 Browser:  user level - mainly javascript instrumentation. 

The Application and Network components are very good at collecting metrics that 

indicate how well things are performing.  Further, the APM sits inside the application and 

is able to expose critical information such as the user involved, whether errors occurred, 

etc. that can be shared with the network infrastructure and NPM tools so that the network 

team has visibility into the application stack to correlate it to what is seen on the network. 

In addition, many of the metrics/metadata can be used to make important QOS decisions 

by NIMs that have the ability to optimize traffic.  The ability to share information across 

all of these component types in real time would be extremely valuable and make correlation 

much easier than just shipping four different sets of metrics to a backend to figure out how 

they will be correlated. 

 

Central Nervous System 

A Central Nervous System (CNS) is a concept of a system that brings these 

components together.  The "visibility" label in the CNS shown below closely describes the 

five instrumentation viewpoints. 

 

The described messaging system can be used as part of a CNS to provide the 

technology to tie together the Visibility components to provide the Insights and Actions. 

This provides a path for direct correlation of transactions for the Visibility components 
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versus having to correlate in a centralized backend.  More specifically, the described 

messaging system has the ability to "share" the "Insight" between the components before 

being sent to the "Insight" backend and in fact can act as a "peer" to "peer" shared system 

to create a richer set of metrics or alerts, etc. than simply pushing metrics into an "Insight" 

engine.  The "Action" function can also be achieved in a "peer" to "peer" manner based on 

a CNS Policy stored in the members.  The messaging system easily plugs into the CNS 

model and actually extends it such that the feedback loop is "distributed" versus solely 

"centralized." 

 

Operation of Communication 

Unlike normal communications that are client/server based, the communication 

described herein is tailored around "indirect" transmissions seen by all enabled components 

versus something like a standard REST request and response.  It is more of a "distributed" 

communication that is focused on "networked inline" members and/or multicast, similar to 

broadcast.  This form of communication reduces the amount of transmissions and 

eliminates the need to know IP addresses or even where the information is being sent. 

Essentially, the communications are designed around either/or the following 

transmission mechanisms: 

 Injecting Headers: insertion of the messaging as HTTP Headers into either the 

request or response of the transaction; and 

 Multicast Beacon: multicast UDP Transmission of the messaging as a "beacon" 

which can be seen by anything. 

For Injecting Headers, the advantages over direct communications are: 

 eliminating the need for a separate transmission; 

 automatic transaction correlation (the injected response is the correlated 

transaction); and 

 eliminating the need for transmissions to all other members, since this is a 

broadcast for any member "in line" to the transaction path. 

For Multicast Beacon, the advantages over direct communications are: 

 eliminating the need for transmissions to all other members, since this is a 

broadcast; 
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 automatically sent to all members on the network; and 

 is UDP so no connection necessary. 

The messaging is built around a Key Value Pair (KVP) concept.  Basically, the 

KVPs correlate to the message sections and follow the following format: 

Every message contains the following: 

name_DeviceName = name 

name_MessageType = message 

Each message contains a set of key/values depending on the Message Type.  The 

Unique Name prefixes all keys, which allows for multiple members to add their own 

messages to a transaction response. 

However, there are advantages and disadvantages as to which of these methods to 

use: 

 Insertion of HTTP Headers: great if not encrypted and if the other ACICP(s) 

one wants to see the messaging is "in band (inline)," as it piggybacks an existing 

transaction making it easier to correlate. 

 Multicast UDP Transmission:  great to be seen by "out of band (not inline)" and 

is clear text, but is a separate transmission. 

 

Message Types 

Basically, although the messaging is very flexible and extensible, currently there 

are five message types involved: 

1.  Service Announcement 

A service announcement is a multicast UDP message sent every x seconds 

announcing that a service is available that understands the ACICP.  All information is 

basically built around Key Value Pair (key = value). 

 DeviceName = name 

 MessageType = Announce 

 ACICP Component 

o Type = APM|NPM|LB, RTR|SDWAN|SDN|Container 

o Vendor = vendor 

o Version = version 
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 OS Runtime Info 

o OS = os 

o Version = version 

o Memory = memory 

o CPUs = cpus 

 Application Runtime Information (Optional) 

o Platform = JVM|.NET|PHP|Python|Node.js| Go 

o Version = version 

o Vendor = vendor 

o Memory = memory 

o Type = Tomcat|Websphere|ASP|etc. 

o Addresses = address, address, etc. 

 Container (Optional) 

o Type = Docker|Kubernetes|ServiceMesh 

o Version = version 

o Vendor = vendor 

o ManagementIP = mgmtIP 

o InternalAddresses = address, address, etc. 

o ExternalAddresses = address, address, etc. 

 Custom (Optional) 

o name = value 

 

2. Event Message Type  

The event message type may be sent out in real time and may be grouped/batched 

by transaction. 

 DeviceName = name 

 MessageType = Event 

Status Event 

 Type = StatusChange 

 SubType = Online|Offline 

Error Alert 
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 Type = Error 

 Component = Cache|Wire|Database|etc. 

 Description = blah...blah...blah 

 Impact = blah...blah...blah 

 ErrorCode = code 

 User or IP = user or ip 

 Code Trace = stack trace 

Performance Alert 

 Type = Performance 

 Component = TransactionLatency|NetworkResets|etc 

 Description = blah...blah...blah 

 Impact = blah...blah...blah 

 MetricName = metric 

 MetricId = metricId 

 MetricValue = value 

 MetricThreshold = threshold 

 User or IP = user or ip 

 Code Trace = stack trace 

 

3.  Collaboration (Request/Response - sent in real-time) 

 DeviceName = name 

Request (for transaction context information must be on inbound transaction) 

 MessageType = Request 

 FromDeviceName = name 

 Request = user|role|topology|metric|etc 

 Id = requestid 

Response (to the Request) 

 MessageType = Response 

 FromDeviceName = name 

 Response = response 
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 Id = requested 

 

4.  Metrics (broadcast every x minutes) 

 

DeviceName=name 

MessageType=Metrics 

Recurring (for each metric) - Metrics are "Deltas" over the reporting interval 

MetricName_1 = name 

MetricMin_1 = min 

MetricMax_1 = max 

MetricAvg_1 = avg 

MetricStdDev_1 = stddev 

........... recurring ........... 

MetricName_n = name 

MetricMin_n = min 

MetricMax_n = max 

MetricAvg_n = avg 

MetricStdDev_n = stddev 

 

5.  Application "Inline" Response for HTTP (injected in real Time) 

DeviceName = name 

MessageType = AppResponse 

Latency = latency 

ResponseType = BT|Proxy|etc 

Errors = error, error, etc. 

Priority = 1-10 

Custom (Optional - example is for AppDynamics) 

BTName = name 

Application = appName 

Tier = tier 

Node = node 
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Id = "singularityHeader" (a correlation header) 

 

Differentiation from Existing Messaging Technologies 

The idea of putting information into an HTTP Header or Parameter is known, but 

mostly as a proprietary method for a vendor, generally passing a very limited number of 

parameters, and to a single known device from the same vendor which would process that 

data.  All other devices would simply ignore the information. 

The described technology is different from other device-to-device messaging in the 

following ways: 

 it is full duplex (send and receive); 

 it can co-exist with encryption: using the UDP multicast messages can be 

"broadcast" in clear text; 

 it is one to many (multicast) messaging ("beacon"); 

 it connects all vendors and device types (it is intended to be a standard); 

 it can be used to set QOS downstream by any devices capable; 

 it does not require the need to know a destination; and 

 it is "connectionless." 
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