
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

June 2020

SECURITY AND OTHER VULNERABILITY PREDICTION USING SECURITY AND OTHER VULNERABILITY PREDICTION USING

NOVEL DEEP REPRESENTATION OF SOURCE CODE WITH ACTIVE NOVEL DEEP REPRESENTATION OF SOURCE CODE WITH ACTIVE

FEEDBACK LOOP FEEDBACK LOOP

Krishna Sundaresan

Anshul Tanwar

Prasanna Ganesan

Sriram Ravi

Sathish Kumar Chandrasekaran

See next page for additional authors

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Sundaresan, Krishna; Tanwar, Anshul; Ganesan, Prasanna; Ravi, Sriram; Chandrasekaran, Sathish Kumar;
and A., Parmesh, "SECURITY AND OTHER VULNERABILITY PREDICTION USING NOVEL DEEP
REPRESENTATION OF SOURCE CODE WITH ACTIVE FEEDBACK LOOP", Technical Disclosure Commons,
(June 17, 2020)
https://www.tdcommons.org/dpubs_series/3341

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F3341&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/3341?utm_source=www.tdcommons.org%2Fdpubs_series%2F3341&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Inventor(s) Inventor(s)
Krishna Sundaresan, Anshul Tanwar, Prasanna Ganesan, Sriram Ravi, Sathish Kumar Chandrasekaran, and
Parmesh A.

This article is available at Technical Disclosure Commons: https://www.tdcommons.org/dpubs_series/3341

https://www.tdcommons.org/dpubs_series/3341

 1 6504X

SECURITY AND OTHER VULNERABILITY PREDICTION USING NOVEL DEEP
REPRESENTATION OF SOURCE CODE WITH ACTIVE FEEDBACK LOOP

AUTHORS:

Krishna Sundaresan
Anshul Tanwar

Prasanna Ganesan
Sriram Ravi

Sathish Kumar Chandrasekaran
Parmesh A.

ABSTRACT

Since the cost of fixing vulnerabilities can be thirty times greater after an

application has been deployed, it is recognized that properly-written code can yield

potentially large savings. Accordingly, approaches presented herein apply machine

learning and Artificial Intelligence (AI) techniques to improve developer experience by

enabling developers to avoid introducing potential bugs and/or vulnerabilities while

coding. Billions of lines of source code, which have already been written, are utilized as

examples of how to write functional and secure code that is easy to read and to debug. By

leveraging this wealth of available data, which is complemented with state-of-art machine

learning models, enterprise-level software solutions can be developed that have a high

standard of coding and are potentially bug-free.

DETAILED DESCRIPTION

Traditionally, the discovery of security and other vulnerabilities is performed at the

end of a development cycle. Thus, vulnerabilities are typically found during the testing

phase, the deployment phase, or even after an application is deployed. However, finding a

security vulnerability in these stages incurs more cost and can be damaging to the

credibility for a product. The techniques discussed herein employ shift-left error and

vulnerability detection strategies to identify potential vulnerabilities as early as possible in

the software development life cycle (i.e., during code development).

2

Sundaresan et al.: SECURITY AND OTHER VULNERABILITY PREDICTION USING NOVEL DEEP REPR

Published by Technical Disclosure Commons, 2020

 2 6504X

When software engineers write code for various features, various types of errors

(e.g., coding, logic, semantic, etc.) can be introduced that may not be caught by compilation

tools. Companies may thus be required to allocate a lot of resources in terms of both money

and time in finding and fixing bugs that could have been avoided if coding was properly

performed. In some cases, same or similar bugs that were fixed in past (although in

different modules) can nevertheless be introduced in production code.

Undetected flaws in software can lead to security vulnerabilities that potentially

allow attackers to compromise systems and applications. Many traditional approaches

include static and dynamic analyzers that utilize rule-based approaches to error detection;

thus, these approaches are limited to the employed rules. These tools can further introduce

false positives, causing critical findings to be buried in a sea of warnings. Moreover,

conventional approaches fail to take application-specific field errors into account during

future analyses. For example, when a possible issue is identified, no further insights on the

issue’s impact are provided to the developer, nor are potential fixes.

There is no AI-based system to that uses a deep representation of code to aid

developers in identifying potential bugs and other issues that might exist in newly-

developed code based on the history of issues seen. Thus, information such as a list of

similar functions and any references to bugs found on those functions could provide helpful

insights to developers.

Presented herein is a novel AI-based system that identifies potential bugs that are

introduced at the time of development itself. For example, as a developer writes new code,

the tool can integrate with the integrated development environment (IDE) as a plugin that

works in the background, listing already-available similar functions or code-segments and

any associated bugs in those functions. This feedback enables developers to incorporate

suggestions immediately at the time of development, rather than waiting for a quality

assurance technician or a customer to identify a defect. Also included herein is a novel

approach of data cleaning, data preparation, and a feedback loop that utilizes as input two

discrete data sources.

To prepare the data, source code from a codebase is converted to an Abstract Syntax

Tree (AST) representation. Using the AST, each method is represented with the set of

encoded path context. The number of path context representations for a given function are

3

Defensive Publications Series, Art. 3341 [2020]

https://www.tdcommons.org/dpubs_series/3341

 3 6504X

then computed. Initially, all path context representation from the AST are considered, and

a ranking model is applied to eliminate some of the representations that occur commonly

across the functions, as well as path contexts that are found in very few functions. Thus,

overfitting of the model is avoided by increasing the nodes in the first layer of the model

to account for the input dimensionality later. The minimum number of the occurrences of

a path context is one of the hyper-parameters of this model. This method is found to work

very effectively compared to considering all of the path context representations.

Let P represents the set of path contexts in an AST. Each path context (p) will be

of format {ni - pij - nj }, where ni and nj represent the encoded node values and p represents

the encoded path values. Node encodings are numerical representations of each node in an

AST. Similarly, path encodings are the numerical representation of each path in an AST.

These numerical encodings enable conversion of the text to a number which can be then

be used as input for the model being trained.

Each path context that is obtained will then be filtered to remove the path contexts

that occur very frequently (as those contexts do not aid in uniquely distinguishing the AST

or the function of interest), along with the path contexts that occur very rarely (to avoid

higher-dimensionality encodings). Equation 1 indicates how path contexts are filtered:

Equation 1

4

Sundaresan et al.: SECURITY AND OTHER VULNERABILITY PREDICTION USING NOVEL DEEP REPR

Published by Technical Disclosure Commons, 2020

 4 6504X

Figure 1

Figure 1 depicts a process for processing source code to select path contexts. A

single vector representation (also referred to as code embedding or a code vector for a

function) is obtained from the set of path contexts. A path context- and attention-based

model is trained to learn the code vectors, which are the weighted average of the path

embedding concatenated with the weighted average of the node embedding. Node

embeddings and path embeddings are learned from the encodings during model training.

The attention weights are learned from training the model itself. Thus, unlike conventional

techniques, this approach uses both path embeddings and node embeddings to obtain path

contexts, and selects them using an attention model.

5

Defensive Publications Series, Art. 3341 [2020]

https://www.tdcommons.org/dpubs_series/3341

 5 6504X

Figure 2

Figure 2 depicts a method of obtaining code embeddings, applying weights, and

applying a trained model. For each p in P, the path context embedding, c, is learned during

model training for each path according to the relation:

The weighted average of all embeddings c is computed to obtain a single embedding

representation for a given function. The weights are learned from the attention layers

according to Equation 2.

Equation 2

As depicted in Equation 2, a denotes the global attention vector which is initialized

randomly and learned simultaneously with the network.

6

Sundaresan et al.: SECURITY AND OTHER VULNERABILITY PREDICTION USING NOVEL DEEP REPR

Published by Technical Disclosure Commons, 2020

 6 6504X

Thus, a vectorized representation for the code embeddings of each function present

in the codebase is obtained. This representation is further enhanced by the addition of

function names followed by their corresponding code vectors. As mentioned previously,

both node and path embeddings are considered in order to arrive at the final vector

representation. In one example, the node and path embeddings have been configured to

each be 128-dimension vectors, and the final code vector is a 384-dimension vector.

The code embeddings obtained above are at the function level of granularity and

do not include the information about any enclosed function calls within them. To

incorporate the complete functionality of a function, the embeddings of the functions that

are being invoked from the main function of interest must also be considered. To achieve

this, a combination property of code embeddings is used, and a call graph is formed to add

the embeddings of the invoked functions as well. The function call stack depth is limited

to three. The value of this limit can act as a hyper-parameter; expanding the value to three

levels in the stack gives good results while not becoming too complex.

Figure 3

In the example code depicted in Figure 3, the code embeddings for each individual

functions are initially obtained:

sample_composite_function = E1,

app_logic_function_helper1 = E2

app_logic_function_helper2 = E3

7

Defensive Publications Series, Art. 3341 [2020]

https://www.tdcommons.org/dpubs_series/3341

 7 6504X

Assuming that there are no other functions being invoked from

app_logic_function_helper1 and app_logic_function_helper3, the new embedding for

“sample_composite_function” can be defined as:

sample_composite_function r = E1 + E2 + E3

with the addition operator indicating vector addition.

Next, the dataset is extended to include historic bugs associated with each function.

For this, the Cisco Defect Tracking System (CDETS) data source is utilized to fetch the

fixes associated with each bug, which are parsed to find all the functions that were modified

(i.e. fixed) in the dataset. Open-source datasets may also complement the dataset that is

used to represent the historic bugs. For example, the publicly available Draper

Vulnerability Detection in Source Code (VDISC) Dataset can be used, which consists of

the source code of 1.27 million functions mined from open source software, and labelled

by static analysis for vulnerabilities. The dataset is analyzed and cleaned to remove any

incorrect markings of common weakness enumeration (CWE) labels. Thus, the code

embeddings are obtained for each function, along with and the number of bugs associated

with them.

Figure 4

Figure 4 depicts an example table of functions, embeddings, and associated bugs.

Using the above trained “code2vec” model, the code vectors for every function

present inside a dataset, such as the Draper VDISC dataset, are extracted. This acts as the

initial labelled dataset, and consists of code vectors as independent variables and the

marked CWE labels as dependent variables.

Two sets of three-layer neural networks can be used to train the vectors: one set is

trained with “vanilla” code embeddings and another is trained with composite code

embeddings obtained by adding the embeddings of the functions invoked within them. The

8

Sundaresan et al.: SECURITY AND OTHER VULNERABILITY PREDICTION USING NOVEL DEEP REPR

Published by Technical Disclosure Commons, 2020

 8 6504X

composite embeddings can include the complete functionality of each module, which helps

to identify errors that are spread across multiple functions. The other neural network helps

to identify semantic and other errors within the block of code of a function. Next, a simple

logistic regression model is used to combine the results of both models. The models are

trained for a classification task using their input data.

Figure 5

Figure 5 depicts an example of how two neural network models are trained for a

classification task. Historical vulnerability data is considered to evaluate the performance

of the trained model and to further fine-tune the model. For each function obtained, the

model is applied to predict the probability that the function has any CWEs or bugs in

general.

9

Defensive Publications Series, Art. 3341 [2020]

https://www.tdcommons.org/dpubs_series/3341

 9 6504X

Figure 6

Figure 6 is a flow diagram depicting a training and prediction phase.

The results obtained by the models can be validated using two approaches: manual

evaluation, and evaluation using an automated tool. When manual validation is performed

on each predicted result, developers can also provide an additional label indicating whether

the code contains issues such as application logic error other than CWEs. Additionally or

alternatively, a set of security tools, such as Flawfinder, CPPCheck, Coverity, Clang, and

the like, can be applied to determine whether the tools can identify the predicted CWEs.

Using the feedback from either of these approaches, tune the model’s parameters are fine-

tuned to result in a finalized model that will be used for CWE prediction.

10

Sundaresan et al.: SECURITY AND OTHER VULNERABILITY PREDICTION USING NOVEL DEEP REPR

Published by Technical Disclosure Commons, 2020

 10 6504X

Finally, the model is retrained using a dataset containing historical vulnerability

data. During retraining, application logic errors are included as another dependent variable.

Figure 7

Figure 7 is a flow diagram depicting a fine-tuning of a trained model. This fine-tuning

eliminates many false positives and also enables application logic errors to be included in

the findings of the model.

After fine-tuning, the model can be deployed. The model can be deployed into

production using a batch mode approach or a real-time approach. In the batch mode

approach, the predictive model is run for every function in a codebase, and the results and

insights are shared with a developer. In a real-time approach, the model is integrated as a

plugin in an IDE so that whenever a developer writes a new block of code, details can be

provided regarding the probability of the code being buggy, and probable fixes can be

suggested when possible. Suggested corrective actions can be selected by looking for the

similarity of the given function to a function in the historical vulnerability database and

then applying the fix that was done to close the bug. The similarity check can be performed

in the n-dimensional space model using the code2vec representation.

11

Defensive Publications Series, Art. 3341 [2020]

https://www.tdcommons.org/dpubs_series/3341

 11 6504X

Figure 8

Figure 8 is a flow diagram depicting the processing of a block of code to identify similar

functions and corresponding bugs and fixes.

Figure 9

Figure 9 depicts a user interface of a model being applied to identify vulnerabilities

and other errors in code. In an example use case, a developer can use an editor to type in

the code as usual. While the developer is coding and/or once a function block is completed,

details like potential bug count and similar functions and its associated bugs in the past.

The model can also include a feedback loop for active learning. The developer may

be presented with an option to provide direct feedback to the model about potential bugs

that are being discovered by the tool to ensure that the system’s results do not stagnate over

time. Advantageously, this data can be used to train new versions of the model.

12

Sundaresan et al.: SECURITY AND OTHER VULNERABILITY PREDICTION USING NOVEL DEEP REPR

Published by Technical Disclosure Commons, 2020

 12 6504X

If F represents a new function block that a developer is coding and L is defined as

its label or the function name, code embeddings (E) can be extracted for the function of

interest from the trained model according to the relation:

To extract the embeddings, an AST representation is obtained, and each path context is

encoded using the vocabulary set of training data. Based on the embedding E, functions

are identified in a database that include embeddings (eD) closer to EL. The distance between

the two embeddings should be less than the predefined threshold (t) for selection, as

represented by the relation:

To incorporate the feedback, the code embedding that the model estimated for a

given function is modified based on user feedback. For positive feedback from a user, the

code embedding of the new function being developed is moved closer to the function

tagged with the predicted vulnerabilities by a certain distance in n-dimensional space. The

distance moved can be proportional to the logarithm of the number of positive votes of

users. For negative feedback, the code embedding of the new function is moved farther

away from the embedding associated with the function tagged with the predicted

vulnerability. Again, the distance moved may be proportional to the logarithm of the

number of negative user votes.

If the model predicts that a function with label L and embedding EL is similar to

one of the functions in the database having embedding as eD, and p is defined as the number

of positive votes and n is defined as the number of negative votes received for this

13

Defensive Publications Series, Art. 3341 [2020]

https://www.tdcommons.org/dpubs_series/3341

 13 6504X

prediction, then the new embedding for the function with label L is defined according to

equation 3:

Equation 3

In addition, the model can be retrained from scratch by using the current embeddings as

the initial weights for every function in the database that includes the embedding for the

recently added functions to maintain the model using the up-to-date codebase. The

frequency of training can be decided by the domain experts and may be, for example,

retrained on a monthly basis.

One unique aspect of this model is the taking the composite code embeddings of

each method for computation and prediction in addition to just the vanilla code embeddings

of the function. To proceed using the composite vectors, it must first be demonstrated that

the vectors are additive in nature, a hypothesis represented by Equation 4:

If vector(funcA) + vector(funcB) = vector(funcC), this implies that C is doing the

functionality of both A and B.

Equation 4

Approximately 250 subject functions were selected to serve as positive and negative use

cases for this hypothesis. As a result, the cosine similarities were found to be greater than

0.9 for positive cases, thus confirming the hypothesis.

For the task of identifying similarity between two functions, a threshold distance

of less than 0.4 was selected for two functions to be similar; this threshold provided an

accuracy of 95%.

14

Sundaresan et al.: SECURITY AND OTHER VULNERABILITY PREDICTION USING NOVEL DEEP REPR

Published by Technical Disclosure Commons, 2020

 14 6504X

Figure 10

Figure 10 depicts the trending of observed accuracy values at various threshold values.

Values less than 0.4 resulted in higher false negatives, and values higher than 0.4 produced

more false positives. Thus, a threshold value of 0.4 was selected as an optimum threshold

to achieve the desired results.

The model’s ability to identify vulnerabilities was tested in two iterations. In the

first iteration, composite code embeddings were not considered, and the additional logistic

regression was not performed. The results for the Bug Prediction task were obtained using

historical bugs to see if the model predicts them beforehand on the functions associated

with them, resulting in an accuracy of around 70%, a precision value of 0.74 and a recall

of 0.77.

15

Defensive Publications Series, Art. 3341 [2020]

https://www.tdcommons.org/dpubs_series/3341

 15 6504X

Figure 11

Figure 11 depicts example results of the second iteration, which included composite code

embeddings. This iteration resulted in a significant boost in the performance of the same

bug prediction task described above, with an accuracy of around 78%. The new precision

value was 0.81 with a recall of 0.82.

 In summary, techniques are presented herein that apply machine learning and AI

techniques to improve developer experience by enabling developers to avoid introducing

potential bugs and/or vulnerabilities while coding. Billions of lines of source code, which

have already been written, are utilized as examples of how to write functional and secure

code that is functional, secure, and contains fewer vulnerabilities. By leveraging this wealth

of available data, which is complemented with state-of-art machine learning models,

enterprise-level software solutions can be developed that have a high standard of coding

that contains fewer bugs or is potentially bug-free.

16

Sundaresan et al.: SECURITY AND OTHER VULNERABILITY PREDICTION USING NOVEL DEEP REPR

Published by Technical Disclosure Commons, 2020

	SECURITY AND OTHER VULNERABILITY PREDICTION USING NOVEL DEEP REPRESENTATION OF SOURCE CODE WITH ACTIVE FEEDBACK LOOP
	Recommended Citation
	Inventor(s)

	Microsoft Word - 1216684_1

