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SCALABLE AND EFFICIENT REAL-TIME CLOCK MAINTENANCE IN A 
DISTRIBUTED NETWORK 

 
AUTHOR:   

Venkat Reddy Ennu 

 
ABSTRACT 

Techniques are described herein for maintaining real-time software clocks in a 

distributed network.  Generally, the techniques may approximate a synchronized 

timestamp for a delay request sent by a slave node based on a timestamp of a sync request 

received at the slave node.  Then, a time stamping unit associated with the slave node may 

update the correction factor of the timestamp to adjust the synchronized timestamp 

appropriately.  Notably, this avoids the need to read timestamps from first in, first out 

buffers of time stamping units and/or from field programmable gate arrays (FGPAs) and, 

thus, may significantly improve the scale of 1588 sessions while preserving slave node 

resources. 

 

 

DETAILED DESCRIPTION 

Institute of Electrical and Electronics Engineers (IEEE) 1588 is a protocol designed 

to synchronize real-time clocks in the nodes of a distributed network.  Typically, nodes are 

organized into a master-slave hierarchy and slave nodes are synchronized to master nodes 

using delay request-response or peer delay mechanisms.  With delay request-response, a 

time stamping unit (TSU) of a slave node may store a synchronized timestamp (“T3”) that 

is synchronized to a timestamp of a master node (“T1”) based on a determined delay 

between a timestamp of a sync request received at the slave node (“T2”) and timestamp 

T1.  The TSUs associated with slave nodes often store T3 timestamps in first in, first out 

(FIFO) data structures, such as a FIFO buffer.  Then, software executing on the slave node 

has to periodically read the FIFO data structure to match T3 timestamps with metadata 

from the TSU with a delayed response timestamp (“T4”).  However, these periodic T3 

FIFO reads limit the scale of 1588 sessions at least because FIFO data structures can be 
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small and FIFO reads can be slow.  Among other issues, this can cause process context 

switches. 

In some instances, a transparent clock (TC) functionality of TSUs can be leveraged 

to avoid reading T3 FIFO from the TSU.  However, in TC mode, a central processing unit 

(CPU) of a slave node needs to timestamp packets and a TSU needs to update the correction 

factor (CF) field of a precision time protocol (PTP) packet with "time taken for packet to 

reach from CPU to egress of TSU."  This requires the CPU to maintain its own time of day 

(TOD) counter in synchronization with the TSU’s TOD counter (e.g., via a mechanism that 

performs periodic synchronizations) with software executing timers to maintain full 80 bit 

1588 counters.  Alternatively, a TOD counter can be maintained in a field programmable 

gate array (FPGA) of a slave CPU that is synchronized with the TSU's TOD counter.  Then, 

software can read the TOD from the FGPA every time a timestamped PTP packet needs to 

be sent out from the slave CPU.  However, both of these approaches limit the scale of a 

1588 session (especially if a TSU only provides Management Data Input/Output (MDIO) 

access).  In fact, the latter approach might reduce the scale of 1588 sessions more 

drastically than the former approach because the FPGA will be read to get the TOD  for 

every 1588 event packet.  The latter approach also unwantedly uses FGPA resources. 

The techniques presented herein resolve these issues and increase 1588 session 

scale.  The techniques are illustrated in Figure 1 below.  Overall, the techniques 

approximate a T3 timestamp (i.e., a synchronized timestamp for a delay request sent by a 

slave node) based on a T2 timestamp (i.e., a timestamp of a sync request received at the 

slave node) and use CF data from a TSU to adjust the T3 timestamp appropriately.  This 

avoids the needs for T3 FIFO and FGPA reads that limit scaling.   

More specifically, and as can be seen in FIG. 1 below, when a master TSU 

associated with a master CPU (i.e., a master node) generates a sync packet, the packet is 

timestamped with time T1 and sent to a slave TSU associated with a slave CPU (i.e., a 

slave node).  The slave CPU saves the T2 timestamp (timestamp of received sync packet) 

received from its TSU in its 1588 protocol stack, and continues overwriting the same value, 

referred to herein  as variable "X,” every time new a new T2 timestamp is received.   
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The "X" value (e.g., T3a) is used to timestamp packets sent out from this 1588 

protocol stack.  Thus, all event packets, including delay request packets, sent from the slave 

CPU between updates of "X" will have the same timestamp.  For example, if the slave 

session is run at 16 packets per second (pps), "X" value will be updated approximately 

every 62.5 milliseconds (ms) and the CPU TOD may lag the TSU's TOD by approximately 

62.5 ms in a worst case scenario (and, if more than one slave session is running, X gets 

updated more frequently and will reduce the maximum lag time).  However, with the 

techniques presented herein, the slave CPU’s TOD need not be very accurate (e.g., need 

not be as accurate as the slave TSU's TOD) because the slave TSU will update the CF of 

PTP packet based on the TSU TOD.  For example, if the TOD difference between the slave 

TSU and "X + time taken for packet to reach egress of TSU after its timestamped in CPU" 

Figure 1 
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is less than 500ms, the slave TSU can update the CF with proper handling of wrap around 

conditions. 

Since delay request packets can be timestamped based on CPU TOD at the slave 

CPU 1588 protocol stack (e.g., timestamped T3a instead of T3) the slave CPU need not 

read a timestamp from the FIFO of the slave TSU.  Instead, per IEEE 1588, the master 

node will copy CFs of delay request packets, which allows the slave CPU to receive the 

accurate timestamp T3 in a delay request response (along with a timestamp T4 of the time 

the delay request was received at the master TSU).  Specifically, the slave CPU can 

determine T3 by combining timestamp T3a with the CF (e.g. delta of timestamp T3 and 

T3a) received in a delay response  (e.g., T3 = T3a + CF = T3a + (T3-T3a)).   

If, at some point, the distributed network experiences a TOD update, a clock 

servomechanism (servo) running on the slave node detects it and updates TSUs.  Then, the 

CPU TOD will be stale until the next sync packet arrives, since the CPU will continue to 

use the TOD of the last received sync packet’s T2 (before TOD is updated by servo).  This 

may cause the slave CPU's X (e.g., timestamp T3a) and the slave TSU's TOD to differ by 

more than one second.  This can cause boundary condition detection issues, render the CF 

improper.  However, the techniques presented herein avoid these issues by programming 

the servo to avoid timestamps after TOD change for few seconds. Consequently, packets 

with improper timestamps will be ignored by servo. 

Overall, with these techniques avoid reading the TOD of timestamp T3 (the 

timestamp of a delay request packet) at  TSU FIFO data structures.  Likewise, the 

techniques negate the need for timestamps to be read from FPGA, which helps save FPGA 

resources while also ensuring the techniques are operable when an FPGA is not connected 

with required 1588 clocks, operating at 1pps, etc.  Additionally, the techniques may reduce 

the load on a slave CPU at least because the slave CPU does not need to synchronize its 

TOD counter the TOD counter of the slave TSU.  Collectively, these advantages 

significantly improve 1588 session scale. 

In summary, the techniques presented herein maintain real-time software clocks in 

a distributed network by approximating a synchronized timestamp for a delay request sent 

by a slave node based on a timestamp of a sync request received at the slave node.  Then, 

a TSU associated with the slave node may update the correction factor of the timestamp to 
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adjust the synchronized timestamp appropriately.  Notably, this avoids the need to read 

timestamps from FIFO data structures and/or FGPAs and, thus, may significantly improve 

the scale of 1588 sessions while preserving slave node resources. 
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