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Integrating Neuromuscular and Touchscreen Input for Machine Control 

ABSTRACT 

Current touchscreen interfaces are unable to distinguish between individual fingers or to 

determine poses associated with the user’s hand. This limits the use of touchscreens in 

recognizing user input. As discussed herein, a statistical model can be trained using training data 

that includes sensor readings known to be associated with various hand poses and gestures. The 

trained statistical model can be configured to determine arm, hand, and/or figure configurations 

and forces (e.g., handstates) based on sensor readings, e.g., obtained via a wearable device such 

as a wristband with wearable sensors. The statistical model can identify the input from the 

handstate detected by the wearable device. For example, the handstates can include identification 

of a portion of the hand that is interacting with the touchscreen, a user’s finger position relative 

to the touchscreen, an identification of which finger or fingers of the user’s hand are interacting 

with the touchscreen, etc. The handstates can be used to control any aspect(s) of the touchscreen 

or a connected device indirectly through the touchscreen.  
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BACKGROUND  

In some computer touchscreen control applications, it is desirable for the application to 

be able to determine additional information about the touchscreen interaction to further enhance 

the accuracy and/or sophistication of the computer application control via the touchscreen 

interaction by a user. For example, in a computer application that uses a touchscreen as a means 

of control, determining which part of a user’s body (e.g., fingers of a hand) is touching the 

touchscreen cannot be easily determined by the touchscreen itself but would be beneficial for 

enhancing the quality or sophistication of control.  

In some touchscreen interactions, multiple users may collaborate by concurrently 

touching the touchscreen but the touchscreen is generally not able to distinguish two fingers from 

one user from a pair of fingers composed of one finger from each of two users. The limitation of 

a touchscreen to distinguish which user is interacting with it limits the functionality of 

touchscreen control by the collaborating users.  

DESCRIPTION  

All or portions of the human musculoskeletal system can be modeled as a multi-segment 

articulated rigid body system, with joints forming the interfaces between the different segments 

and joint angles defining the spatial relationships between connected segments in the model. 

Constraints on the movement at the joints are governed by the type of joint connecting the 

segments and the biological structures (e.g., muscles, tendons, ligaments) that restrict the range 

of movement at the joint. For example, the shoulder joint connecting the upper arm to the torso 

and the hip joint connecting the upper leg to the torso are ball and socket joints that permit 

extension and flexion movements as well as rotational movements. By contrast, the elbow joint 

connecting the upper arm and the forearm and the knee joint connecting the upper leg and the 
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lower leg allow for a more limited range of motion.  

As described herein, a multi-segment articulated rigid body system is used to model 

portions of the human musculoskeletal system. However, it should be appreciated that some 

segments of the human musculoskeletal system (e.g., the forearm), though approximated as a 

rigid body in the articulated rigid body system, may include multiple rigid structures (e.g., the 

ulna and radius bones of the forearm) that provide for more complex movement within the 

segment that is not explicitly considered by the rigid body model. Accordingly, a model of an 

articulated rigid body system for use with the technology described herein includes segments that 

represent a combination of body parts that are not strictly rigid bodies.  

In kinematics, rigid bodies are objects that exhibit various attributes of motion (e.g., 

position, orientation, angular velocity, acceleration). Knowing the motion attributes of one 

segment of the rigid body enables the motion attributes for other segments of the rigid body to be 

determined based on constraints in how the segments are connected. For example, the hand may 

be modeled as a multi-segment articulated body with the joints in the wrist and each finger 

forming the interfaces between the multiple segments in the model. Movements of the segments 

in the rigid body model can be simulated as an articulated rigid body system in which position 

(e.g., actual position, relative position, or orientation) information of a segment relative to other 

segments in the model are predicted using a trained statistical model, as described in more detail 

below.  

The portion of the human body approximated by a musculoskeletal representation as 

described herein, as an example, is a hand or a combination of a hand with one or more arm 

segments. The information used to describe a current state of the positional relationships between 

segments and force relationships for individual segments or combinations of segments in the 
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musculoskeletal representation is referred to herein as the handstate of the musculoskeletal 

representation. However, that the techniques described herein are also applicable to 

musculoskeletal representations of portions of the body other than the hand such as an arm, a leg, 

a foot, a torso, a neck, or any combination of the foregoing.  

In addition to spatial (e.g., position/orientation) information, the described techniques can 

predict force information associated with one or more segments of the musculoskeletal 

representation. For example, linear forces or rotational (torque) forces exerted by one or more 

segments may be estimated. An example of linear forces is the force of a finger or hand pressing 

on a solid object such as a table, and a force exerted when two segments (e.g., two fingers) are 

pinched together. An example of rotational forces is rotational forces that are created when 

segments in the wrist or fingers are twisted or flexed. Per techniques described herein, the force 

information determined as a portion of a current handstate estimate includes one or more of 

pinching force information, grasping force information, or information about co- contraction 

forces between muscles represented by the musculoskeletal representation.  
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Fig. 1 

FIG. 1 is a schematic diagram of a computer-based system (100) for reconstructing 

handstate information. The system includes a plurality of sensors (102) configured to record 

signals resulting from the movement of portions of a human body. The sensors may include 

autonomous sensors. As used herein, the term “autonomous sensors” refers to sensors configured 

to measure the movement of body segments without requiring the use of external devices. The 

sensors may also include non-autonomous sensors in combination with autonomous sensors. As 

used herein, the term “non-autonomous sensors” refers to sensors configured to measure the 

movement of body segments using external devices. Some examples of external sensors used in 

non-autonomous sensors include wearable (e.g. body-mounted) cameras, global positioning 

systems, or laser scanning systems.  

Autonomous sensors may include a plurality of neuromuscular sensors configured to 

record signals arising from neuromuscular activity in skeletal muscle of a human body. The term 
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“neuromuscular activity” as used herein refers to neural activation of spinal motor neurons that 

innervate a muscle, muscle activation, muscle contraction, or any combination of the neural 

activation, muscle activation, and muscle contraction. Neuromuscular sensors may include one 

or more electromyography (EMG) sensors, one or more mechanomyography (MMG) sensors, 

one or more sonomyography (SMG) sensors, a combination of two or more types of EMG 

sensors, MMG sensors, and SMG sensors, and/or one or more sensors of any suitable type that 

are configured to detect nervous signals, muscular signals, and/or neuromuscular signals. The 

neuromuscular sensors may be used to sense muscular activity related to a movement of the part 

of the body controlled by muscles from which the neuromuscular sensors are arranged to sense 

the muscle activity. Spatial information (e.g., position and/or orientation information) and force 

information describing the movement may be predicted based on the sensed neuromuscular 

signals as the user moves over time.  

Autonomous sensors may include one or more Inertial Measurement Units (IMUs), 

which measure a combination of physical aspects of motion, using, for example, an 

accelerometer, a gyroscope, a magnetometer, or any combination. IMUs may be used to sense 

information about the movement of the part of the body on which the IMU is attached and 

information derived from the sensed data (e.g., position and/or orientation information) may be 

tracked as the user moves over time. For example, IMUs may be used to track movements of 

portions of a user’s body proximal to the user’s torso relative to the sensor (e.g., arms, legs) as 

the user moves over time.  

In configurations that include at least one IMU and multiple other neuromuscular sensors, 

the IMU(s) and neuromuscular sensors may be arranged to detect movement of different parts of 

the human body. For example, the IMU(s) may be arranged to detect movements of one or more 
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body segments proximal to the torso (e.g., an upper arm), whereas the neuromuscular sensors 

may be arranged to detect movements of one or more body segments distal to the torso (e.g., a 

forearm or wrist).  

The techniques described herein are not limited based on the particular sensor 

arrangement. In an example configuration, at least one IMU and multiple neuromuscular sensors 

may be co-located on a body segment to track movements of body segment using different types 

of measurements. In one implementation described in more detail below, an IMU sensor and a 

plurality of neuromuscular sensors are arranged on a wearable device configured to be worn 

around the lower arm or wrist of a user. In such an arrangement, the IMU sensor is configured to 

track movement information (e.g., positioning and/or orientation over time) associated with one 

or more arm segments, to determine, for example whether the user has raised or lowered their 

arm, whereas the neuromuscular sensors are configured to determine movement information 

associated with wrist or hand segments to determine, for example, whether the user has an open 

or closed hand configuration.  

Each of the autonomous sensors includes sensing components configured to sense 

information about a user. In the case of IMUs, the sensing components include one or more 

accelerometers, gyroscopes, magnetometers, or a combination. The sensing components are 

configured to measure characteristics of body motion, e.g., acceleration, angular velocity, and 

sensed magnetic field around the body. In the case of neuromuscular sensors, the sensing 

components include, e.g., electrodes configured to detect electric potentials on the surface of the 

body (e.g., for EMG sensors) vibration sensors configured to measure skin surface vibrations 

(e.g., for MMG sensors), and acoustic sensing components configured to measure ultrasound 

signals (e.g., for SMG sensors) arising from muscle activity.  
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The output of one or more of the sensing components is processed using hardware signal 

processing circuitry (e.g., to perform amplification, filtering, and/or rectification). In some 

configurations, a portion of signal processing of the output of the sensing components is 

performed in software. In general, signal processing of autonomous signals recorded by the 

autonomous sensors can be performed in hardware and/or software.  

The recorded sensor data are processed to compute additional derived measurements that 

are then provided as input to a statistical model, as described in more detail below. For example, 

recorded signals from an IMU sensor can be processed to derive an orientation signal that 

specifies the orientation of a rigid body segment over time. Autonomous sensors can implement 

signal processing using components integrated with the sensing components. Alternatively, a 

portion of the signal processing can be performed by components in communication with, but 

not directly integrated with the sensing components of the autonomous sensors.  

In some configurations, a subset of autonomous sensors are arranged as a portion of a 

wearable device configured to be worn on or around part of a user’s body. In an example, an 

IMU sensor and a plurality of neuromuscular sensors are arranged circumferentially around an 

adjustable and/or elastic band such as a wristband or armband configured to be worn around a 

user’s wrist or arm. Alternatively, some of the autonomous sensors can be arranged on a 

wearable patch configured to be affixed to a portion of the user’s body. In another example, 

multiple wearable devices, each having one or more IMUs and/or neuromuscular sensors 

included thereon can be used to predict musculoskeletal position information for movements that 

involve multiple parts of the body.  

In different configurations, the sensors cam include neuromuscular sensors (e.g., EMG 

sensors) only, or neuromuscular sensors and at least one “auxiliary” sensor configured to 
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continuously record a plurality of auxiliary signals. Examples of auxiliary sensors include other 

autonomous sensors such as IMU sensors, and non-autonomous sensors such as an imaging 

device (e.g., a camera), a radiation-based sensor for use with a radiation-generation device (e.g., 

a laser-scanning device), or other types of sensors such as a heart-rate monitor.  

The system also includes one or more computer processors (not shown in FIG. 1) 

programmed to communicate with sensors 102. For example, signals recorded by one or more of 

the sensors may be provided to the processor(s), which is programmed to execute machine 

learning algorithms that process signals output by the sensors to train statistical models (104), 

and the trained (or retrained) statistical model(s) 104 may be stored for later use in generating a 

musculoskeletal representation (106). Some examples of statistical models that may be used to 

predict handstate information based on recorded signals from sensors 102 are discussed in detail 

below.  

The system also optionally includes a display controller configured to display a visual 

representation (108), e.g., of a hand. As discussed in more detail below, computer processors are 

used to implement trained statistical model(s) configured to predict handstate information based 

on signals recorded by the sensors. The predicted handstate information is used to update the 

musculoskeletal representation, which is then optionally used to render a visual representation 

based on the updated musculoskeletal representation incorporating the current handstate 

information. Real-time reconstruction of the current handstate and subsequent rendering of the 

visual representation reflecting the current handstate information in the musculoskeletal model 

provides visual feedback to the user about the effectiveness of the trained statistical model to 

accurately represent an intended handstate. In another example, a metric associated with a 

musculoskeletal representation (e.g., a likelihood metric for one or more hand gestures or a 
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quality metric that represents a confidence level of estimating a position, movement, or force of a 

segment of a multi-segment articulated rigid body system such as a hand) can be provided to the 

user or other third-party.  

A statistical model is used for predicting musculoskeletal information based on signals 

recorded from wearable autonomous sensors. The statistical model may be used to predict the 

musculoskeletal position information without having to place sensors on each segment of the 

rigid body that is to be represented in the computer-generated musculoskeletal representation. 

The types of joints between segments in a multi-segment articulated rigid body model constrain 

movement of the rigid body. Additionally, different individuals tend to move in characteristic 

ways when performing a task that can be captured in statistical patterns of individual user 

behavior.  

Some of these constraints on human body movement can be explicitly incorporated into 

statistical models used for prediction. Additionally, or alternatively, the constraints can be 

learned by the statistical model though training based on recorded sensor data. Constraints 

imposed in the construction of the statistical model are those set by anatomy and the physics of a 

user’s body, while constraints derived from statistical patterns are those set by human behavior 

for one or more users from which sensor measurements are measured. The constraints may 

comprise part of the statistical model itself being represented by information (e.g., connection 

weights between nodes) in the model.  

A statistical model can also be used for predicting handstate information to enable the 

generation and/or real-time update of a computer-based musculoskeletal representation. The 

statistical model may be used to predict the handstate information based on IMU signals, 

neuromuscular signals (e.g., EMG, MMG, and SMG signals), external device signals (e.g., 
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camera or laser-scanning signals), or a combination signals that are detected as a user performs 

one or more movements. 

 

Fig. 2 

FIG. 2 is a flowchart of an example process (200) for generating (also referred to as 

training) a statistical model for predicting musculoskeletal position information using signals 

recorded from sensors. The training process can be executed by any suitable computing 

device(s). For example, process 200 can be executed by computer processors described with 

reference to FIGS. 1, 6A and 6B. As another example, one or more acts of process 200 can be 

executed using one or more servers (e.g., servers included as a part of a cloud computing 
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environment). For example, at least a portion of act 210 relating to training of a statistical model 

(e.g., a neural network) can be performed using a cloud computing environment.  

The training process begins at act 202, where sensor signals are obtained for user(s) 

performing one or more movements (e.g., typing on a keyboard). The sensor signals may be 

recorded as part of the training process 200, or may be recorded prior to the process and accessed 

at act 202. 

The sensor signals may include sensor signals recorded for a single user performing a 

single movement or multiple movements. The user may be instructed to perform a sequence of 

movements for a particular task (e.g., opening a door) and sensor signals corresponding to the 

user’s movements may be recorded as the user performs the task he/she was instructed to 

perform. The sensor signals can be recorded by any suitable number of sensors located in any 

suitable location(s) to detect the user’s movements that are relevant to the task performed.  

For example, after a user is instructed to perform a task with the fingers of his/her right 

hand, the sensor signals may be recorded by multiple neuromuscular sensors circumferentially 

(or otherwise) arranged around the user’s lower right arm to detect muscle activity in the lower 

right arm that give rise to the right hand movements and IMU sensors arranged to predict the 

joint angle of the user’s arm relative to the user’s torso. As another example, after a user is 

instructed to perform a task with his/her leg (e.g., to kick an object), sensor signals may be 

recorded by multiple neuromuscular sensors circumferentially (or otherwise) arranged around the 

user’s leg to detect muscle activity in the leg that give rise to the movements of the foot and IMU 

sensors arranged to predict the joint angle of the user’s leg relative to the user’s torso.  

The sensor signals obtained in act 202 correspond to signals from one type of sensor 

(e.g., IMU sensors or neuromuscular sensors). A statistical model may be trained based on the 
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sensor signals recorded using the particular type of sensor, resulting in a sensor-type specific 

trained statistical model. For example, the obtained sensor signals may include neuromuscular 

sensor signals arranged around the lower arm or wrist of a user and the statistical model may be 

trained to predict musculoskeletal position information for movements of the wrist and/or hand 

during performance of a task such as grasping and twisting an object such as a doorknob. 

In configurations that provide predictions based on multiple types of sensors (e.g., IMU 

sensors, EMG sensors, MMG sensors, SMG sensors), a separate statistical model is trained for 

each of the types of sensors and the outputs of the sensor-type specific models are combined to 

generate a musculoskeletal representation of the user’s body. In some configurations, the sensor 

signals obtained in act 202 from two or more different types of sensors are provided to a single 

statistical model that is trained based on the signals recorded from the different types of sensors. 

In an example, an IMU sensor and a plurality of neuromuscular sensors are arranged on a 

wearable device configured to be worn around the forearm of a user, and signals recorded by the 

IMU and neuromuscular sensors are collectively provided as inputs to a statistical model, as 

discussed in more detail below.  

The sensor signals obtained in act 202 are recorded at multiple time points as a user 

performs one or multiple movements. As a result, the recorded signal for each sensor may 

include data obtained at each of multiple time points. Assuming that n sensors are arranged to 

simultaneously measure the user’s movement information during performance of a task, the 

recorded sensor signals for the user includes a time series of K n-dimensional vectors {xk | 1 ≤ k 

≤ K} at time points t1, t2, ..., tK during performance of the movements.  

A user may be instructed to perform a task multiple times and the sensor signals and 

position information may be recorded for each of multiple repetitions of the task by the user. The 
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sensor signals may include signals recorded for multiple users, each of the multiple users 

performing the same task one or more times. Each of the multiple users may be instructed to 

perform the task and sensor signals and position information corresponding to that user’s 

movements may be recorded as the user performs (once or repeatedly) the task he/she was 

instructed to perform. When sensor signals collected from multiple users are combined to 

generate a statistical model, an assumption is that different users employ similar musculoskeletal 

positions to perform the same movements. Collecting sensor signals and position information 

from a single user performing the same task repeatedly and/or from multiple users performing 

the same task one or multiple times facilitates the collection of sufficient training data to 

generate a statistical model that can accurately predict musculoskeletal position information 

associated with performance of the task.  

A user-independent statistical model may be generated based on training data 

corresponding to the recorded signals from multiple users, and as the system is used by a user, 

the statistical model is trained based on recorded sensor data such that the statistical model learns 

the user-dependent characteristics to refine the prediction capabilities of the system for the 

particular user. 

The sensor signals may include signals recorded for a user (or each of multiple users) 

performing each of multiple tasks one or multiple times. For example, a user may be instructed 

to perform each of multiple tasks (e.g., grasping an object, pushing an object, and pulling open a 

door) and signals corresponding to the user’s movements may be recorded as the user performs 

each of the multiple tasks he/she was instructed to perform. Collecting such data facilitates 

developing a statistical model for predicting musculoskeletal position information associated 

with multiple different actions that may be taken by the user. For example, training data that 
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incorporates musculoskeletal position information for multiple actions may facilitate generating 

a statistical model for predicting which of multiple possible movements a user may be 

performing. 

As discussed above, the sensor data may be obtained by recording sensor signals as each 

of one or multiple users performs each of one or more tasks one or more multiple times. As the 

user(s) perform the task(s), position information describing the spatial position of different body 

segments during performance of the task(s) is obtained in act 204. In some configurations, the 

position information is obtained using one or more external devices or systems that track the 

position of different points on the body during performance of a task.  

For example, a motion capture system, a laser scanner, a device to measure mutual 

magnetic induction, or some other system configured to capture position information may be 

used. In an example, position sensors may be placed on segments of the fingers of the right hand 

and a motion capture system may be used to determine the spatial location of each of the position 

sensors as the user performs a task such as grasping an object. The sensor data obtained may be 

recorded simultaneously with recording of the position information. In this example, position 

information indicating the position of each finger segment over time as the grasping motion is 

performed is obtained. 

Next, process 200 proceeds to act 206 (optional), where the sensor signals and/or the 

position information obtained are processed. For example, the sensor signals or the position 

information signals may be processed using amplification, filtering, rectification, or other types 

of signal processing. 

Next, process 200 proceeds to act 208, where musculoskeletal position characteristics are 

determined based on the position information. In some configurations, rather than using recorded 
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spatial (e.g., x, y, z) coordinates corresponding to the position sensors as training data to train the 

statistical model, a set of derived musculoskeletal position characteristic values are determined 

based on the recorded position information, and the derived values are used as training data for 

training the statistical model.  

For example, using information about the constraints between connected pairs of rigid 

segments in the articulated rigid body model, the position information may be used to determine 

joint angles that define angles between each connected pair of rigid segments at each of multiple 

time points during performance of a task. Accordingly, the position information may be 

represented by a vector of n joint angles at each of a plurality of time points, where n is the 

number of joints or connections between segments in the articulated rigid body model.  

Next, process 200 proceeds to act 210, where the time series information obtained (at acts 

202 and 208) is combined to create training data used for training a statistical model. The 

obtained data may be combined in any suitable way. For example, each of the sensor signals may 

be associated with a task or movement within a task corresponding to the musculoskeletal 

position characteristics (e.g., joint angles) determined based on the positional information 

recorded as the user performed the task or movement. In this way, the sensor signals may be 

associated with musculoskeletal position characteristics (e.g., joint angles) and the statistical 

model may be trained to predict that the musculoskeletal representation will be characterized by 

particular musculoskeletal position characteristics between different body segments when 

particular sensor signals are recorded during performance of a particular task. 

Next, process 200 proceeds to act 212, where a statistical model for predicting 

musculoskeletal position information is trained using the generated training data. The statistical 

model being trained takes as input a sequence of data sets each of the data sets in the sequence 
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comprising an n-dimensional vector of sensor data. The statistical model provides output that 

indicates, for each of one or more tasks or movements performed by a user, the likelihood that 

the musculoskeletal representation of the user’s body will be characterized by a set of 

musculoskeletal position characteristics (e.g., a set of joint angles between segments in an 

articulated multi-segment body model).  

For example, the statistical model may take as input a sequence of vectors {xk | 1 ≤ k ≤ 

K} generated using measurements obtained at time points t1, t2, ..., tK, where the ith component 

of vector xj is a value measured by the ith sensor at time tj and/or derived from the value 

measured by the ith sensor at time tj. In another example, a derived value provided as input to the 

statistical model may comprise features extracted from the data from all or a subset of the 

sensors at and/or prior to time tj. Based on such input, the statistical model may provide output 

indicating, a probability that a musculoskeletal representation of the user’s body will be 

characterized by a set of musculoskeletal position characteristics. For example, the statistical 

model may be trained to predict a set of joint angles for segments in the fingers in the hand over 

time as a user grasps an object. In this example, the trained statistical model may output, a set of 

predicted joint angles for joints in the hand corresponding to the sensor input.  

In implementations, the statistical model may be a neural network, e.g. a recurrent neural 

network. The recurrent neural network may be a long short-term memory (LSTM) neural 

network or any other suitable architecture. For example, the recurrent neural network may be a 

fully recurrent neural network, a recursive neural network, a variational autoencoder, a Hopfield 

neural network, an associative memory neural network, an Elman neural network, a Jordan 

neural network, an echo state neural network, a second order recurrent neural network, and/or 

any other suitable type of recurrent neural network. Neural networks that are not recurrent neural 
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networks can also be used. For example, deep neural networks, convolutional neural networks, 

and/or feedforward neural networks, may be used.  

When the statistical model is a neural network, the output layer of the neural network 

may provide a set of output values corresponding to a respective set of possible musculoskeletal 

position characteristics (e.g., joint angles). In this way, the neural network operates as a non-

linear regression model configured to predict musculoskeletal position characteristics from raw 

or pre-processed sensor measurements. Any other suitable non-linear regression model can be 

used instead of a neural network. 

The neural network can be implemented based on a variety of topologies and/or 

architectures including deep neural networks with fully connected (dense) layers, Long Short-

Term Memory (LSTM) layers, convolutional layers, Temporal Convolutional Layers (TCL), or 

other suitable type of deep neural network topology and/or architecture. The neural network can 

have different types of output layers including output layers with logistic sigmoid activation 

functions, hyperbolic tangent activation functions, linear units, rectified linear units, or other 

suitable type of nonlinear unit. Likewise, the neural network can be configured to represent the 

probability distribution over n different classes via, for example, a softmax function or include an 

output layer that provides a parameterized distribution e.g., mean and variance of a Gaussian 

distribution.  

Other types of statistical models such as a hidden Markov model, a Markov switching 

model with the switching allowing for toggling among different dynamic systems, dynamic 

Bayesian networks, and/or any other suitable graphical model having a temporal component can 

be used. Such statistical models may be trained using the sensor data.  

Values for parameters of the statistical model may be estimated from the training data 
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generated at act 210. For example, when the statistical model is a neural network, parameters of 

the neural network (e.g., weights) may be estimated from the training data. For example, 

parameters of the statistical model may be estimated using gradient descent, stochastic gradient 

descent, and/or any other suitable iterative optimization technique. When the statistical model is 

a recurrent neural network (e.g., an LSTM), the statistical model may be trained using stochastic 

gradient descent and backpropagation through time. The training may employ a cross-entropy 

loss function and/or any other suitable loss function.  

Next, process 200 proceeds to act 214, where the trained statistical model is stored. The 

trained statistical model may be stored using any suitable. In this way, the statistical model 

generated during execution of process 200 may be used at a later time, for example, to predict 

musculoskeletal position information (e.g., joint angles) for a given set of input sensor data, as 

described below. 

Sensor signals may be recorded from sensors (e.g., arranged on or near the surface of a 

user’s body) that record activity associated with movements of the body during performance of a 

task. The recorded signals may be optionally processed and provided as input to a statistical 

model trained using techniques described above in connection with FIG. 2. In configurations that 

continuously record autonomous signals, the continuously recorded signals (raw or processed) 

may be continuously or periodically provided as input to the trained statistical model for 

prediction of musculoskeletal position information (e.g., joint angles) for the given set of input 

sensor data. As discussed above, the trained statistical model is a user-independent model trained 

based on autonomous sensor and position information measurements from a plurality of users. In 

some configurations, the trained model is a user-dependent model that is trained on data recorded 

from the individual user from which the data associated with the sensor signals is also acquired.  
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After the trained statistical model receives the sensor data as a set of input parameters, the 

predicted musculoskeletal position information is output from the trained statistical model. The 

predicted musculoskeletal position information includes a set of musculoskeletal position 

information values (e.g., a set of joint angles) for a multi-segment articulated rigid body model 

representing at least a portion of the user’s body. In some examples, the musculoskeletal position 

information includes a set of probabilities that the user is performing one or more movements 

from a set of possible movements.  

After musculoskeletal position information is predicted, a computer-based 

musculoskeletal representation of the user’s body is generated based on the musculoskeletal 

position information output. The computer-based musculoskeletal representation may be 

generated in any suitable way. For example, a computer-based musculoskeletal model of the 

human body may include multiple rigid body segments, each of which corresponds to one or 

more skeletal structures in the body. For example, the upper arm may be represented by a first 

rigid body segment, the lower arm may be represented by a second rigid body segment the palm 

of the hand may be represented by a third rigid body segment, and each of the fingers on the 

hand may be represented by at least one rigid body segment (e.g., at least fourth- eighth rigid 

body segments).  

A set of joint angles between connected rigid body segments in the musculoskeletal 

model may define the orientation of each of the connected rigid body segments relative to each 

other and a reference frame, such as the torso of the body. As new sensor data is measured and 

processed by the statistical model to provide new predictions of the musculoskeletal position 

information (e.g., an updated set of joint angles), the computer-based musculoskeletal 

representation of the user’s body is updated based on the updated set of joint angles determined 
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based on the output of the statistical model. In this way, the computer-based musculoskeletal 

representation is dynamically updated, e.g., in real-time, as sensor data is continuously recorded.  

The computer-based musculoskeletal representation may be represented and stored in any 

suitable way. Additionally, although referred to herein as a “musculoskeletal” representation, to 

reflect that muscle activity may be associated with the representation, as discussed in more detail 

below, some musculoskeletal representations may correspond to skeletal structures, muscular 

structures, or a combination of skeletal and muscular structures in the body.  

Direct measurement of neuromuscular activity and/or muscle activity underlying the 

user’s movements may be combined with the generated musculoskeletal representation. 

Measurements from sensors placed at locations on a user's body may be used to create a unified 

representation of muscle recruitment by superimposing the measurements onto a dynamically-

posed skeleton. Muscle activity sensed by neuromuscular sensors and/or information derived 

from the muscle activity (e.g., force information) can be combined with the computer-generated 

musculoskeletal representation in real time. 

 
Fig. 3 
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FIG. 3 is a flowchart of an example process for determining handstate information . In act 

302, sensor data recorded by the sensors is provided as input to one or more trained statistical 

models used to generate estimates of handstate information, as described briefly above. The 

sensors can include a plurality of neuromuscular sensors (e.g., EMG sensors) arranged on a 

wearable device worn by a user. For example, one or more types of neuromuscular sensors may 

be arranged on an elastic band configured to be worn around a wrist or forearm of the user to 

record neuromuscular signals from the user as the user performs various movements or gestures.  

As used herein, the term “gestures” refers to a static or dynamic configuration of one or 

more body parts including the position of the one or more body parts and forces associated with 

the configuration. For example, gestures include discrete gestures, such as pressing the palm of a 

hand down on a solid surface or grasping a ball, continuous gestures, such as a waving a finger 

back and forth or throwing a ball, or a combination of static and continuous gestures. Gestures 

may be defined by an application configured to prompt a user to perform the gestures or, 

alternatively, gestures may be arbitrarily defined by a user. In some cases, hand and arm gestures 

may be symbolic and used to communicate according to cultural standards. 

In addition to neuromuscular sensors, some configurations include one or more auxiliary 

sensors configured to continuously record auxiliary signals that may also be provided as input to 

the one or more trained statistical models. Examples of auxiliary sensors include IMU sensors, 

imaging devices, radiation detection devices (e.g., laser scanning devices), heart rate monitors, or 

any other type of biosensors configured to continuously record biophysical information from the 

user during performance of one or more movements or gestures.  

Process 300 then proceeds to act 304, where derived signal data is optionally determined 

based on the signals recorded by the sensors. For example, accelerometer data recorded by one 
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or more IMU sensors is integrated and/or filtered to determine derived signal data associated 

with one or more muscles during performance of a gesture. The derived signal data may be 

provided as input to the trained statistical model(s) in addition to or as an alternative to raw 

signal data or otherwise processed raw signal data recorded by the sensors.  

Process 300 then proceeds to act 306, where handstate information is determined based 

on the output of the trained statistical model(s). The gestures performed by the user include 

discrete gestures, such as placing the hand palm down on a table, and continuous gestures, such 

as waving a finger back and forth. The neuromuscular signals are recorded continuously during 

user movements including during performance of the gesture and are provided continuously as 

input to the trained statistical model, resulting in real-time estimation of the positions and/or 

forces of the user’s hand (i.e., handstate information) as output of the trained statistical model(s). 

Process 300 then proceeds to act 308, where the real-time handstate estimates output 

from the trained statistical model(s) are used to update a musculoskeletal representation 

associated with a hand. The musculoskeletal representation may represent rigid segments within 

a hand and the joints connecting the rigid segments. The musculoskeletal representation may 

include at least some rigid segments corresponding to an arm connected to the hand. 

Accordingly, the phrase “musculoskeletal representation associated with hand” is to be 

understood to include both musculoskeletal representations of the hand and musculoskeletal 

representations that include a representation of the hand and at least a portion of an arm 

connected to the hand. 

Existing touchscreen interfaces are able to recognize when a portion of a user’s body 

touches it – such as when a finger makes contact with the sensor, as well as the finger's position 

and some other basic information such as the force applied onto the touchscreen by the finger. 
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However, human hands and fingers (for example) exhibit much higher degrees of freedom. For 

example, a user may use a specific finger (e.g., index, middle, ring, pinky, thumb) to contact the 

touchscreen, all of which are generally recognized as the same touch interaction by the 

touchscreen sensor and associated software. Moreover, a user may, for example, form a fist and 

use the side of the hand to interact with the screen (i.e. by ‘wiping’ something via the 

touchscreen). Furthermore, current touchscreen sensors and associated software are generally 

unable to determine the orientation of the hand or finger as the user approaches or touches the 

device. 

Fusing touchscreen systems with neuromuscular data from a user’s arm or wrist (along 

with statistical models and/or other data processing routines that determine the posture, gestures, 

forces, and/or handstate of the user) can address at least some of the limitations of touchscreen 

systems described above. Techniques that fuse touchscreen systems with neuromuscular data 

(obtained via statistical models as described herein) can improve touchscreen sensor systems for 

machine control. Such techniques enable identification of which finger or fingers are interacting 

with the touchscreen permitting the use of finger-specific interaction frameworks that 

significantly extend the capabilities of current touchscreen systems.  

For example, fusion of neuromuscular and touchscreen data may enable a user to draw in 

one color with her index finger and draw in another color with her middle finger. The 

conventional touchscreen recognizes a finger interaction with the touchscreen in both cases but is 

not able to distinguish them. By fusing neuromuscular data with the touchscreen data, and further 

incorporating statistical models for inferring handstate based on neuromuscular data (as 

described herein), the described techniques enable expanded functionality of interactions that are 

natural and simple to learn. In another example, the handstate of the user may be determined to 
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be in a fist such that any interaction with the touchscreen enables an erasing function. The fusion 

of touchscreen and neuromuscular data (including estimating handstate, poses, or forces) enables 

a deeper set of interactions for various computer applications.  

Fusion of neuromuscular and touchscreen data may be configured to recognize the pose 

of a hand of the user at the time the user makes contact with the touchscreen. For example, is the 

user pointing with one or more fingers, in an open palm posture, making a fist, etc. Each 

different hand position, posture, force, or handstate can be used to control a distinct form of 

interaction once the user touches the touchscreen, thereby significantly extending the control 

schemes possible via a touchscreen. Further, fusion of neuromuscular and touchscreen data may 

be used to recognize the yaw, pitch, and roll of a finger as it makes contact with the touchscreen 

and thereby use the finger position relative to the touchscreen to affect the machine control 

effected by touchscreen interaction. Currently, some styluses make use of this type of orientation 

information to modulate a drawing tool; however, doing so purely with a finger is not possible 

with a conventional touchscreen alone.  

A device that fuses neuromuscular and touchscreen data may be configured to more 

accurately estimate the force with which a user is interacting with a touchscreen, permitting 

machine control schemes based on this force information. Although some touch sensors make a 

rough estimate about how hard a user is pressing against the screen (commonly "force" or 

"pressure"), this information can be made more accurate by incorporating neuromuscular data 

and statistical models derived from neuromuscular data that are configured to estimate force.  

The fusion of neuromuscular and touchscreen data may be utilized to inform palm 

rejection (determine which touchscreen interactions to ignore/cancel). Conventional touch sensor 

drivers often look for touches that start small and then become big blobs, then classify these 
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interactions as ‘palms’, then cancel the input. The rationale of such touchscreen systems is that 

the user is resting their hand on the screen and thus, didn’t intend to supply input. This feature of 

touchscreens leads to both false positive and false negatives. By fusing touchscreen and 

neuromuscular data, the described techniques can supply enough "hand resting" information in 

order to determine if a particular touch is a palm or not.  

Moreover, many touchscreen systems enable ‘multitouch’ interactions where two fingers 

touching the touchscreen cause a different control input than a single finger. In such computer 

applications, collaborative touchscreen interaction is difficult because the touchscreen cannot 

readily distinguish between two fingers from one user and a pair of fingers from two users.  

Any suitable number of neuromuscular sensors may be used on a wearable device. The 

number and arrangement of neuromuscular sensors may depend on the particular application for 

which the wearable device is used. For example, a wearable armband or wristband can be used to 

generate control information for controlling a touch screen or a device connected to the touch 

screen.  

In some configurations, sensors include a set of neuromuscular sensors (e.g., EMG 

sensors). In some configurations, sensors can include a set of neuromuscular sensors and at least 

one “auxiliary” sensor configured to continuously record auxiliary signals. Some examples of 

auxiliary sensors include other sensors such as IMU sensors, microphones, imaging sensors (e.g., 

a camera), radiation based sensors for use with a radiation-generation device (e.g., a laser-

scanning device), or other types of sensors such as a heart-rate monitor. The sensors may be 

coupled together using flexible electronics incorporated into the wearable device.  
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CONCLUSION 

This disclosure describes techniques to determine handstate by the use of a wearable 

device with built-in sensors. A statistical model is trained using training data that includes sensor 

readings known to be associated with various hand poses and gestures. The trained statistical 

model is configured to determine handstates based on sensor readings. In implementation, a 

distributed system includes a touchscreen interface adapted to receive one or more touchscreen 

inputs and a component coupled to the touchscreen interface that receives neuromuscular data 

from a user. The component provides control signals to the touchscreen interface based on the 

received neuromuscular data.. For example, the handstates can include identification of a portion 

of the hand that is interacting with the touchscreen, a user’s finger position relative to the 

touchscreen, an identification of which finger or fingers of the user’s hand are interacting with 

the touchscreen, etc. The determined handstate can be used to control the touchscreen or a device 

connected to the touchscreen.  
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