
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

May 2020

Mechanism for Identifying Export Rules for a Given Subnet from Mechanism for Identifying Export Rules for a Given Subnet from

an Export Rule String an Export Rule String

Kyle Seipp
Pure Storage, Inc.

Jesse Salomon
Pure Storage, Inc.

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Seipp, Kyle and Salomon, Jesse, "Mechanism for Identifying Export Rules for a Given Subnet from an
Export Rule String", Technical Disclosure Commons, (May 02, 2020)
https://www.tdcommons.org/dpubs_series/3210

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technical Disclosure Common

https://core.ac.uk/display/327162797?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F3210&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/3210?utm_source=www.tdcommons.org%2Fdpubs_series%2F3210&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

PURE STORAGE DEFENSIVE PUBLICATION
Mechanism for Identifying Export Rules for a Given Subnet from an
Export Rule String

Kyle Seipp

Jesse Salomon

2

Seipp and Salomon: Mechanism for Identifying Export Rules for a Given Subnet from an

Published by Technical Disclosure Commons, 2020

Mehanism for Identifying Export Rules for a

Given Subnet from an Export Rule String

April 20, 2020

1 Bakground

Customers want to know whih IP addresses on whih systems have mison-

�gurations. However, it is di�ult for them to determine whih addresses and

subnets have this issue beause the export rules explain what the urrent rules

are, but not how they apply to a given IP or subnet. We have developed an

algorithm to help determine the rules for their hosen IPs and subnets.

For example, the ustomer would give us some input rule subjet like �1.2.3.4�

or �1.2.3.0/28� as well as a Export Rule String like �1.2.3.4 foo 1.2.3.5 bar

1.2.3.4/30 bat�. And we want to be able to output what the export rules are for

the inputed NetObj and where they ome from. In the �rst example we would

want to output �1.2.3.4� has rule �foo�. In the seond example we would want

to output

Input NetObjet String Breakdown Inherited From Rules

1.2.3.0/28 1.2.3.0/30 - Deny

1.2.3.4 1.2.3.4 foo

1.2.3.5 1.2.3.5 bar

1.2.3.6/31 1.2.3.4/30 bat

1.2.3.8/29 - Deny

1.1 Key De�nitions

• A NetworkObjet or NetObj is an IP address or subnet. It an be ipv4 or

ipv6 based

• A rule subjet is a NetObj in an export rule string that has some rules

assoiated with it.

2 Brief Summary of NFS Export Rules

An NFS export rule is a list of settings for a given Filesystem and whih IPs

and/or subnets these settings should apply to. In general, an export rule is

1

3

Defensive Publications Series, Art. 3210 [2020]

https://www.tdcommons.org/dpubs_series/3210

made up of alternating a rule subjet, and then some set of rules that apply to

it. These rules take preedene in the order of spei� IPs from left to right,

then subnets from left to right, and then any global wildard rules. However,

if any rule subjet is repeated, use its rightmost instane. This format is well-

known, publi and doumented as part of the NFS spe. An example rule string

is desribed in the bakground setion above.

Typially one parses these rules into a strut of a 3-tuple made up of 2 lists

and a string. The �rst list represents the IP rule strings. It is a potentially

empty list of 2-tuples that are the IP and the rules assoiated with that IP. The

seond list is the same, but for subnets. The string is the list of rules for the

wildard subnet. This string is potentially empty if there are no wildard rules.

An example of this data struture would look something like this

strut ExportRuleDataStrut {

list<tuple<str, str>�> ip_rule_list;

list<tuple<str, str>�> subnet_rule_list;

str rule_string_for_wildards;

}

([(" ip1 " ," ru l e s t r i n g f o r ip1 ") , (" ip2 " ," ru l e s t r i n g f o r ip2 ") ℄ ,

[(" subnet1 " ," subnet1 r u l e s ") , (" subnet2 " ," subnet2 r u l e s ") ℄ ,

" r u l e s t r i n g f o r wi ldard subnet "

)

Note that transforming the export rules into suh a data struture is well

known and standard via the NFS spe. Thus, we will disuss operating on suh a

data struture interhangeably with operating on an expliit export rule string.

Further, note that as part of reating suh a data struture, we automatially

ollapse repeated subjets to their rightmost instane and preserve the order of

the IPs and subnets from left to right.

3 Naive Approah

Suppose one wished to solve the problem as disussed in the Bakground setion

without using the algorithm that will be disussed below. They would have as

input a NetObj and an export rule string. They an trivially onvert that export

rule string into an export rule data struture as desribed above. If the input

rule subjet is an IP and expliitly listed in the data struture, it an be found

in O(number of rules) time by expliitly searhing through the data struture.

If is a subnet, then it takes at least O(rules2). The reason for this is that we

must hek eah IP and subnet to the left to see if it is a subset. We must do this

reursively to ensure that any of *those* sub-subnets have no sub-subnets or

IPs. If the input rule subjet is a strit subset of a subnet in the data struture,

we an also �nd it in O(number of rules) time. However, if the input subjet is

a superset of subnets in the data struture, we must look for every subset. We

must then join them together and hek that this makes up the entire breadth

of the input subjet. This joining is not entirely trivial beause some subnets

2

4

Seipp and Salomon: Mechanism for Identifying Export Rules for a Given Subnet from an

Published by Technical Disclosure Commons, 2020

might be fully overed by expliit IPs. It is the proess of joining quikly and

easily that is the main subjet of this patent. To naively hek that all IPs and

subnets that are part of the input subjet are represented, we must expliitly

look at every IP in the region. In the worst ase, this an be 232 IPv4 addresses,
whih is prohibitively expensive and even worse for IPv6.

4 Algorithm Desription

4.1 Converting from Rule String to Data Struture

As mentioned in Setion 2 above, we onsider this proess a given from the NFS

Spe. If the struture is empty, we an short iruit the rest of the algorithm and

respond with a blanket deny. We an onvert all of the IPs in the struture into

trivial subnets. For example an ip �1.2.3.4� would be onverted into �1.2.3.4/32�.

We an also onvert any wildard rules into rules assoiated with the maximal

subnet � �0.0.0.0/0�. This means that the entire data struture is made up of

subnets. Note that we will preserve ordering. Therefore, the leftmost elements

will be trivial subnets if there are any and the rightmost subnet will be 0.0.0.0/0

if there is a wildard entry.

4.2 Building a Network Tree

4.2.1 De�ning a Network Tree

We are going to build a data struture we all a Network Tree. This struture

is a binary tree made up of nodes. A node of the Network Tree is a strut

made up of �ve parts, a subnet, a rule soure, and pointers to its parent and

both hildren. The subnet is the name of the node and represents what part

of the NetObj spae the node represents. The rule soure represents whih set

of export rules apply to this node. Note that �None� is a valid value for rule

soure. The pointers to parents and hildren represent how the nodes attah to

one another. Note that a node is either a leaf node or it isn't. A leaf node has

no hildren. A non-leaf node must have both of its hildren. A Tree is de�ned

by a root node, and its desendants. The parent of the root node is None.

The subnets of nodes and the relationships between nodes is deterministi

and depends entirely on the subnet. We will desribe how this works using

IPv4, but this will work in exatly the same manner with IPv6. A given node

has a subnet property. For example, 1.2.3.4/30. This subnet an be partioned

into two halves � 1.2.3.4/31 and 1.2.3.6/31. Thus, those two nodes are the

two hildren of the 1.2.3.4/30 node. Sine 1.2.3.4/30 and 1.2.3.0/30 ompletely

partition 1.2.3.0/29, they are the hildren of 1.2.3.0/29. Thus, 1.2.3.0/29 is the

parent of 1.2.3.4/30. Note that a parent will always have a netmask that is one

smaller and that a hild will always have a netmask that is one larger. Note

that some subnets are of size 1 and orrespond to exatly one IP address, like

1.2.3.0/32. These nodes will never have hildren. Additionally 0.0.0.0/0 has no

parent beause it ontains the entire NetObj spae.

3

5

Defensive Publications Series, Art. 3210 [2020]

https://www.tdcommons.org/dpubs_series/3210

Figure 1: Network Tree Node Example

1.2.3.4/30

"None"

1.2.3.0/29

Parent Node

1.2.3.4/31

Left Child

1.2.3.6/31

Right Child

4.2.2 Adding Nodes

Suppose we have an existing Network Tree as in the example from Figure 1.

Note that in the �gure, only one node is shown beause the parent and hildren

nodes don't have a rule soure. They are shown to explain what the parent and

hild would be. How would we add a hild to the 1.2.3.4/30, say 1.2.3.4/31. We

see that the urrent node has the new node as a diret hild. So, we reate a

new node with subnet 1.2.3.4/31 and set the hild point from the parent and the

parent pointer in the hild to point to one another. We an set its rule soure.

We also must reate the other hild node of 1.2.3.6/31. Now we are done.

What if we want to add a desendant that is not a diret hild? We reate

both hildren of the urrent node. Then we determine whih of those is an

anestor of the target node. Then, we reate that nodes hildren. Continue in

this manner until we reate the hild that we intended as a leaf node. It is fully

onneted to the root node that we started with.

What if we want to add an anestor? We reate the parent node of the root

node of the Network Tree and set up the pointers. Then, we set the parent as

the root node of the tree. Then we set up the other diret hild of the parent

node. This is the node that is the sibling of the original root node. This keeps

all nodes having either 0 or 2 hildren.

What if we want to add a node that is not a desendant of the root node, and

is not an anestor? This means that this node must be �adjaent� in some sense,

though perhaps not a sibling. Create parent nodes (appropriately as desribed

above) until one of them is an anestor of the target node. Then, we an follow

the rules for targets that are desendants of the root node as desribed above.

4

6

Seipp and Salomon: Mechanism for Identifying Export Rules for a Given Subnet from an

Published by Technical Disclosure Commons, 2020

4.2.3 Algorithm Steps

1. We are going to build a NetworkTree from the elements of the Export

Rule Data Strut. To do so, we are going to loop over the NetObjs in the

strut starting with the �rst subnet.

2. Create the node representing the element and set the rule soure to the

element. This is the root of the tree.

3. Consider the next NetObj in the Data Strut. Call it the urrent element.

4. Start from the root and add the urrent element to the tree. The new

element must be either a desendant of the root node, an anestor of the

urrent node, adjaent to the urrent node, or must be the urrent node.

In setion 4.2.2 above we have already desribed how to add nodes to the

tree in all of these ases. If the urrent element is equal to the root node

and the root node has None as its rule soure, set the rule soure to the

urrent element. If the rule soure is already set, then we are done with

this element and we an return to step 3.

5. If the urrent element is not equal to the root node, we want to reate

the new node (and the onneting nodes) as disussed above in setion

4.2.2. The onneting nodes should have the rule soures left as None.

The new target node should have its rule soure set to that of the urrent

element. As disussed above, we also must reate the hildren of the new

target node if they have not already been reated. When you set the rule

soure for any node as not None, you then look to see if we've already

de�ned hildren nodes. If we have, then hek those hildren - eah one

whih urrently has rule soure as None will set its rule soure reursively

(thus itself also heking for existing hildren and suh). If we haven't,

then stop and don't bother reating the hildren. Notably, if we �nd a

hild with a rule soure whih is already set, then we don't have to hek

its desendants - any that exist will guaranteed have the orret not-None

rule soures. We are now done with the urrent element and an return

to step 3 to get a new element.

6. When we have ompleted every subnet in the Data Struture (inluding

the wild ard entry) we are done building the NetworkTree.

Note that this means that all nodes have either 0 or 2 hildren and that all

nodes with 0 hildren (leaves) have a non-empty rule soure.

4.3 Using the Network Tree

Now that we have built this Network Tree, we an use it along with the original

Data Struture, and the input NetObj to build the table that the ustomer

wants. There are a few ases.

5

7

Defensive Publications Series, Art. 3210 [2020]

https://www.tdcommons.org/dpubs_series/3210

1. If the input NetObj is a spei� IP address, treat it as if it were the trivial

subnet.

2. Suppose the input NetObj is a subnet that is a desendant of the root

node. We start at the top of the Network Tree and move from node to

hild based on whih of the two hildren will ontain the input NetObj.

If we enounter a leaf node or a node with the same subnet as the input

NetObj, onsider the entire subtree with this this node as the root. Look

through all this subtree for their rule soures and look up the rule soures

of the leaf nodes and put those into the table.

3. Suppose the input is an anestor of the root node. Keep trak of the

urrent root node. Muh like step 3 in setion 4.2, we want to reate

parent nodes (and the empty sibling nodes) to the Network Tree's root

until we reah the spei�ed anestor. The result will look something like

this. Now, we an mark all of those sibling nodes to the table as having

a rule soure of �-�. When we put these into the table, they will output

�Deny� to represent the fat that the export rule string should deny these

IPs aess. Then we an traverse the urrent tree to get the existing rules.

Note that we do not want to save these temprorary expansions to the

Network Tree in order to save spae. They are trivial to onstrut, so

they are not valuable for performane. To revert to the original tree, we

an simply use the original root node that we saved at the beginning of

the step. The other nodes have nothing in memory pointing to them, so

they are disarded. This is impliit based on implementation details.

4. Suppose the input is adjaent to the root node. This means that there are

no rules in the export rule string that desribe it. Thus, the entire table

should be �Deny�.

5 Advantages Over the Naive Approah

This approah trades a trivial amount of memory in order to make this problem

muh faster in the normal use-ases and tratable in the more expensive ases.

Additionally, beause we an ahe the Network Tree, subsequent runs with the

same set of export rules an be made even more heaply. However, under worst

ase senarios, this approah will still not perform well.

First, we will ompare worst ases for both approahes. The worst ase for

the naive approah is an input NetObj of 0.0.0.0/0 and the entire rule string is

made up of expliit IPs. This will take 232 heks of eah expliit IP that an be

in the NetObj against a 4096 harater export string. How does this ase fair

for our improved approah? Eah individual rule in the string will take about

10 haraters at the shortest, so it will result in about 400 leaf nodes in the

Network Tree. If they are maximally spread out, this means we need to traverse

the entire tree from root to leaf, 400 times with a depth of 32. This works out

to 400 ∗ 32 = 225225 = 2752 < 212

6

8

Seipp and Salomon: Mechanism for Identifying Export Rules for a Given Subnet from an

Published by Technical Disclosure Commons, 2020

The worst ase for our improved approah is when we have to build a large

Network Tree. This ours when we have a large number of expliit rules,

espeially with spread out expliit IP addresses beause it means we have more

intermediate nodes. Additionally, the worst ase is the largest input NetObj

beause it requires either having a large tree or temporarily inreasing its size

during exeution. Note that this is exatly the same as the ase above.

The best ase senarios for both algorithms is the ase where the ustomer

provides empty rule strings or trivial input NetObjs. In these ases both algo-

rithms will behave similarly by short iruiting to the right answer.

What happens in the most ommon medium ases? In the naive approah we

have some input NetObj that is not ompletely overed by expliit IP addresses

in the export rule string and some of the subnets likely overlap with either eah

other or the expliit IPs. I laim that this is ommon beause the use ase

for this system is to diagnose poorly set up export rules. Thus, one we have

exhausted the expliit IPs, the rest must be done by exhaustive lookup. This

sales with O(n) where n is the size of the subnet. Note that the size of the

subnet is 2value of the subnet size. How does this work in the new approah?

Well we build up a sparse NetworkTree and we are able to �nd a spei� leaf

node in O(log(n)) time. The majority of the leaf nodes are not going to be

size-1 subnets. If they are, then the whole proess will take O(n) time whih is

no faster than the naive approah. But if some of the leaf nodes are aused by

having non-trivial subnets as leaf nodes, then we an run signi�antly faster.

6 Mis Notes

• This system works regardless of IP version beause IPs and subnets always

have the same subsystem properties. The only di�erene would be the

upper and lower bounds on the number of rules and their sizes.

7

9

Defensive Publications Series, Art. 3210 [2020]

https://www.tdcommons.org/dpubs_series/3210

© Pure Storage 2017 | 2

Pure Storage, Inc.
Twitter: @purestorage

 www.purestorage.com

650 Castro Street, Suite #400

Mountain View, CA 94041

T: 800-379-7873

Sales: sales@purestorage.com
Support: support@purestorage.com

Media: pr@purestorage.com
General: info@purestorage.com

10

Seipp and Salomon: Mechanism for Identifying Export Rules for a Given Subnet from an

Published by Technical Disclosure Commons, 2020

	Mechanism for Identifying Export Rules for a Given Subnet from an Export Rule String
	Recommended Citation

	Microsoft Word - Kyle and Jesse Defensive Pub May 2020.docx

