View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Technical Disclosure Common

Technical Disclosure Commons

Defensive Publications Series

May 2020

Mechanism for Identifying Export Rules for a Given Subnet from
an Export Rule String

Kyle Seipp
Pure Storage, Inc.

Jesse Salomon
Pure Storage, Inc.

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation

Seipp, Kyle and Salomon, Jesse, "Mechanism for Identifying Export Rules for a Given Subnet from an
Export Rule String", Technical Disclosure Commons, (May 02, 2020)
https://www.tdcommons.org/dpubs_series/3210

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://core.ac.uk/display/327162797?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F3210&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/3210?utm_source=www.tdcommons.org%2Fdpubs_series%2F3210&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Seipp and Salomon: Mechanism for Identifying Export Rules for a Given Subnet from an

0 PURESTORAGE

PURE STORAGE DEFENSIVE PUBLICATION

Mechanism for Identifying Export Rules for a Given Subnet from an
Export Rule String

Kyle Seipp

Jesse Salomon

Published by Technica

Defensive Publications Series, Art. 3210 [2020]

Mechanism for Identifying Export Rules for a
Given Subnet from an Export Rule String

April 20, 2020

1 Background

Customers want to know which IP addresses on which systems have miscon-
figurations. However, it is difficult for them to determine which addresses and
subnets have this issue because the export rules explain what the current rules
are, but not how they apply to a given IP or subnet. We have developed an
algorithm to help determine the rules for their chosen IPs and subnets.

For example, the customer would give us some input rule subject like “1.2.3.4”
or “1.2.3.0/28” as well as a Export Rule String like “1.2.3.4 foo 1.2.3.5 bar
1.2.3.4/30 bat”. And we want to be able to output what the export rules are for
the inputed NetObj and where they come from. In the first example we would
want to output “1.2.3.4” has rule “foo”. In the second example we would want

to output
| Input NetObject String | Breakdown | Inherited From | Rules |
1.2.3.0/28 1.2.3.0/30 - Deny
1.2.3.4 1.2.3.4 foo
1.2.3.5 1.2.3.5 bar
1.2.3.6/31 1.2.3.4/30 bat
1.2.3.8/29 - Deny

1.1 Key Definitions

e A NetworkObject or NetObj is an IP address or subnet. It can be ipv4 or
ipv6 based

e A rule subject is a NetObj in an export rule string that has some rules
associated with it.

2 Brief Summary of NFS Export Rules

An NFS export rule is a list of settings for a given Filesystem and which IPs
and/or subnets these settings should apply to. In general, an export rule is

https://www.tdcommons.org/dpubs_series/3210

Seipp and Salomon: Mechanism for Identifying Export Rules for a Given Subnet from an

made up of alternating a rule subject, and then some set of rules that apply to
it. These rules take precedence in the order of specific IPs from left to right,
then subnets from left to right, and then any global wildcard rules. However,
if any rule subject is repeated, use its rightmost instance. This format is well-
known, public and documented as part of the NFS spec. An example rule string
is described in the background section above.

Typically one parses these rules into a struct of a 3-tuple made up of 2 lists
and a string. The first list represents the IP rule strings. It is a potentially
empty list of 2-tuples that are the IP and the rules associated with that IP. The
second list is the same, but for subnets. The string is the list of rules for the
wildcard subnet. This string is potentially empty if there are no wildcard rules.
An example of this data structure would look something like this

struct ExportRuleDataStruct {

list<tuple<str, str>> ip rule list;

list<tuple<str, str>> subnet rule list;

str rule_string for wildcards;

}

([("ipl1","rule string for ipl"),("ip2","rule string for ip2")],
[("subnetl","subnetl rules"),("subnet2","subnet2 rules")],
"rule string for wildcard subnet"

)

Note that transforming the export rules into such a data structure is well
known and standard via the NFS spec. Thus, we will discuss operating on such a
data structure interchangeably with operating on an explicit export rule string.
Further, note that as part of creating such a data structure, we automatically
collapse repeated subjects to their rightmost instance and preserve the order of
the IPs and subnets from left to right.

3 Naive Approach

Suppose one wished to solve the problem as discussed in the Background section
without using the algorithm that will be discussed below. They would have as
input a NetObj and an export rule string. They can trivially convert that export
rule string into an export rule data structure as described above. If the input
rule subject is an IP and explicitly listed in the data structure, it can be found
in O(number of rules) time by explicitly searching through the data structure.
If is a subnet, then it takes at least O(rules?). The reason for this is that we
must check each IP and subnet to the left to see if it is a subset. We must do this
recursively to ensure that any of *those* sub-subnets have no sub-subnets or
IPs. If the input rule subject is a strict subset of a subnet in the data structure,
we can also find it in O(number of rules) time. However, if the input subject is
a superset, of subnets in the data structure, we must look for every subset. We
must then join them together and check that this makes up the entire breadth
of the input subject. This joining is not entirely trivial because some subnets

Published by Technical Disclosure Commons, 2020

Defensive Publications Series, Art. 3210 [2020]

might be fully covered by explicit IPs. It is the process of joining quickly and
easily that is the main subject of this patent. To naively check that all IPs and
subnets that are part of the input subject are represented, we must explicitly
look at every IP in the region. In the worst case, this can be 232 IPv4 addresses,
which is prohibitively expensive and even worse for IPv6.

4 Algorithm Description

4.1 Converting from Rule String to Data Structure

As mentioned in Section 2 above, we consider this process a given from the NFS
Spec. If the structure is empty, we can short circuit the rest of the algorithm and
respond with a blanket deny. We can convert all of the IPs in the structure into
trivial subnets. For example an ip “1.2.3.4” would be converted into “1.2.3.4/32".
We can also convert any wildcard rules into rules associated with the maximal
subnet — “0.0.0.0/0”. This means that the entire data structure is made up of
subnets. Note that we will preserve ordering. Therefore, the leftmost elements
will be trivial subnets if there are any and the rightmost subnet will be 0.0.0.0/0
if there is a wildcard entry.

4.2 Building a Network Tree
4.2.1 Defining a Network Tree

We are going to build a data structure we call a Network Tree. This structure
is a binary tree made up of nodes. A node of the Network Tree is a struct
made up of five parts, a subnet, a rule source, and pointers to its parent and
both children. The subnet is the name of the node and represents what part
of the NetObj space the node represents. The rule source represents which set
of export rules apply to this node. Note that “None” is a valid value for rule
source. The pointers to parents and children represent how the nodes attach to
one another. Note that a node is either a leaf node or it isn’t. A leaf node has
no children. A non-leaf node must have both of its children. A Tree is defined
by a root node, and its descendants. The parent of the root node is None.

The subnets of nodes and the relationships between nodes is deterministic
and depends entirely on the subnet. We will describe how this works using
IPv4, but this will work in exactly the same manner with IPv6. A given node
has a subnet property. For example, 1.2.3.4/30. This subnet can be partioned
into two halves — 1.2.3.4/31 and 1.2.3.6/31. Thus, those two nodes are the
two children of the 1.2.3.4/30 node. Since 1.2.3.4/30 and 1.2.3.0/30 completely
partition 1.2.3.0/29, they are the children of 1.2.3.0/29. Thus, 1.2.3.0/29 is the
parent of 1.2.3.4/30. Note that a parent will always have a netmask that is one
smaller and that a child will always have a netmask that is one larger. Note
that some subnets are of size 1 and correspond to exactly one IP address, like
1.2.3.0/32. These nodes will never have children. Additionally 0.0.0.0/0 has no
parent because it contains the entire NetObj space.

https://www.tdcommons.org/dpubs_series/3210

Seipp and Salomon: Mechanism for Identifying Export Rules for a Given Subnet from an

Figure 1: Network Tree Node Example

1.2.3.0/29
Parent Node

1.2.3.4/30
"None"

1.2.3.4/31
Left Child

1.2.3.6/31
Right Child

4.2.2 Adding Nodes

Suppose we have an existing Network Tree as in the example from Figure 1.
Note that in the figure, only one node is shown because the parent and children
nodes don’t have a rule source. They are shown to explain what the parent and
child would be. How would we add a child to the 1.2.3.4/30, say 1.2.3.4/31. We
see that the current node has the new node as a direct child. So, we create a
new node with subnet 1.2.3.4/31 and set the child point from the parent and the
parent pointer in the child to point to one another. We can set its rule source.
We also must create the other child node of 1.2.3.6/31. Now we are done.

What if we want to add a descendant that is not a direct child? We create
both children of the current node. Then we determine which of those is an
ancestor of the target node. Then, we create that nodes children. Continue in
this manner until we create the child that we intended as a leaf node. It is fully
connected to the root node that we started with.

What if we want to add an ancestor? We create the parent node of the root
node of the Network Tree and set up the pointers. Then, we set the parent as
the root node of the tree. Then we set up the other direct child of the parent
node. This is the node that is the sibling of the original root node. This keeps
all nodes having either 0 or 2 children.

What if we want to add a node that is not a descendant of the root node, and
is not an ancestor? This means that this node must be “adjacent” in some sense,
though perhaps not a sibling. Create parent nodes (appropriately as described
above) until one of them is an ancestor of the target node. Then, we can follow
the rules for targets that are descendants of the root node as described above.

Published by Technical Disclosure Commons, 2020

Defensive Publications Series, Art. 3210 [2020]

4.2.3 Algorithm Steps

1. We are going to build a NetworkTree from the elements of the Export
Rule Data Struct. To do so, we are going to loop over the NetObjs in the
struct starting with the first subnet.

2. Create the node representing the element and set the rule source to the
element. This is the root of the tree.

3. Consider the next NetObj in the Data Struct. Call it the current element.

4. Start from the root and add the current element to the tree. The new
element must be either a descendant of the root node, an ancestor of the
current node, adjacent to the current node, or must be the current node.
In section 4.2.2 above we have already described how to add nodes to the
tree in all of these cases. If the current element is equal to the root node
and the root node has None as its rule source, set the rule source to the
current element. If the rule source is already set, then we are done with
this element and we can return to step 3.

5. If the current element is not equal to the root node, we want to create
the new node (and the connecting nodes) as discussed above in section
4.2.2. The connecting nodes should have the rule sources left as None.
The new target node should have its rule source set to that of the current
element. As discussed above, we also must create the children of the new
target node if they have not already been created. When you set the rule
source for any node as not None, you then look to see if we’ve already
defined children nodes. If we have, then check those children - each one
which currently has rule source as None will set its rule source recursively
(thus itself also checking for existing children and such). If we haven’t,
then stop and don’t bother creating the children. Notably, if we find a
child with a rule source which is already set, then we don’t have to check
its descendants - any that exist will guaranteed have the correct not-None
rule sources. We are now done with the current element and can return
to step 3 to get a new element.

6. When we have completed every subnet in the Data Structure (including
the wild card entry) we are done building the NetworkTree.

Note that this means that all nodes have either 0 or 2 children and that all
nodes with 0 children (leaves) have a non-empty rule source.

4.3 Using the Network Tree

Now that we have built this Network Tree, we can use it along with the original
Data Structure, and the input NetObj to build the table that the customer
wants. There are a few cases.

https://www.tdcommons.org/dpubs_series/3210

Seipp and Salomon: Mechanism for Identifying Export Rules for a Given Subnet from an

1. If the input NetObj is a specific IP address, treat it as if it were the trivial
subnet.

2. Suppose the input NetObj is a subnet that is a descendant of the root
node. We start at the top of the Network Tree and move from node to
child based on which of the two children will contain the input NetObj.
If we encounter a leaf node or a node with the same subnet as the input
NetObj, consider the entire subtree with this this node as the root. Look
through all this subtree for their rule sources and look up the rule sources
of the leaf nodes and put those into the table.

3. Suppose the input is an ancestor of the root node. Keep track of the
current root node. Much like step 3 in section 4.2, we want to create
parent nodes (and the empty sibling nodes) to the Network Tree’s root
until we reach the specified ancestor. The result will look something like
this. Now, we can mark all of those sibling nodes to the table as having
a rule source of “”. When we put these into the table, they will output
“Deny” to represent the fact that the export rule string should deny these
IPs access. Then we can traverse the current tree to get the existing rules.
Note that we do not want to save these temprorary expansions to the
Network Tree in order to save space. They are trivial to construct, so
they are not valuable for performance. To revert to the original tree, we
can simply use the original root node that we saved at the beginning of
the step. The other nodes have nothing in memory pointing to them, so
they are discarded. This is implicit based on implementation details.

4. Suppose the input is adjacent to the root node. This means that there are
no rules in the export rule string that describe it. Thus, the entire table
should be “Deny”.

5 Advantages Over the Naive Approach

This approach trades a trivial amount of memory in order to make this problem
much faster in the normal use-cases and tractable in the more expensive cases.
Additionally, because we can cache the Network Tree, subsequent runs with the
same set of export rules can be made even more cheaply. However, under worst
case scenarios, this approach will still not perform well.

First, we will compare worst cases for both approaches. The worst case for
the naive approach is an input NetObj of 0.0.0.0/0 and the entire rule string is
made up of explicit IPs. This will take 232 checks of each explicit IP that can be
in the NetObj against a 4096 character export string. How does this case fair
for our improved approach? Each individual rule in the string will take about
10 characters at the shortest, so it will result in about 400 leaf nodes in the
Network Tree. If they are maximally spread out, this means we need to traverse
the entire tree from root to leaf, 400 times with a depth of 32. This works out
to 400 x 32 = 225225 = 2752 < 212

Published by Technical Disclosure Commons, 2020

Defensive Publications Series, Art. 3210 [2020]

The worst case for our improved approach is when we have to build a large
Network Tree. This occurs when we have a large number of explicit rules,
especially with spread out explicit IP addresses because it means we have more
intermediate nodes. Additionally, the worst case is the largest input NetObj
because it requires either having a large tree or temporarily increasing its size
during execution. Note that this is exactly the same as the case above.

The best case scenarios for both algorithms is the case where the customer
provides empty rule strings or trivial input NetObjs. In these cases both algo-
rithms will behave similarly by short circuiting to the right answer.

What happens in the most common medium cases? In the naive approach we
have some input NetObj that is not completely covered by explicit IP addresses
in the export rule string and some of the subnets likely overlap with either each
other or the explicit IPs. I claim that this is common because the use case
for this system is to diagnose poorly set up export rules. Thus, once we have
exhausted the explicit IPs, the rest must be done by exhaustive lookup. This
scales with O(n) where n is the size of the subnet. Note that the size of the
subnet is 2value of the subnet size o qoes this work in the new approach?
Well we build up a sparse NetworkTree and we are able to find a specific leaf
node in O(log(n)) time. The majority of the leaf nodes are not going to be
size-1 subnets. If they are, then the whole process will take O(n) time which is
no faster than the naive approach. But if some of the leaf nodes are caused by
having non-trivial subnets as leaf nodes, then we can run significantly faster.

6 Misc Notes

e This system works regardless of IP version because IPs and subnets always
have the same subsystem properties. The only difference would be the
upper and lower bounds on the number of rules and their sizes.

https://www.tdcommons.org/dpubs_series/3210

Seipp and Salomon: Mechanism for Identifying Export Rules for a Given Subnet from an

Published by Technical Disclosure Commons, 2020

0 PURESTORAGE

Pure Storage, Inc.
Twitter: @purestorage
www.purestorage.com

650 Castro Street, Suite #400
Mountain View, CA 94041

T: 800-379-7873

Sales: sales@purestorage.com
Support: support@purestorage.com
Media: pr@purestorage.com
General: info@purestorage.com

	Mechanism for Identifying Export Rules for a Given Subnet from an Export Rule String
	Recommended Citation

	Microsoft Word - Kyle and Jesse Defensive Pub May 2020.docx

