
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

May 2020

Mechanism for Identifying Export Rules for a Given Subnet from Mechanism for Identifying Export Rules for a Given Subnet from

an Export Rule String an Export Rule String

Kyle Seipp
Pure Storage, Inc.

Jesse Salomon
Pure Storage, Inc.

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Seipp, Kyle and Salomon, Jesse, "Mechanism for Identifying Export Rules for a Given Subnet from an
Export Rule String", Technical Disclosure Commons, (May 02, 2020)
https://www.tdcommons.org/dpubs_series/3210

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technical Disclosure Common

https://core.ac.uk/display/327162797?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F3210&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/3210?utm_source=www.tdcommons.org%2Fdpubs_series%2F3210&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

PURE STORAGE DEFENSIVE PUBLICATION
Mechanism for Identifying Export Rules for a Given Subnet from an
Export Rule String

Kyle Seipp

Jesse Salomon

2

Seipp and Salomon: Mechanism for Identifying Export Rules for a Given Subnet from an

Published by Technical Disclosure Commons, 2020

Me
hanism for Identifying Export Rules for a

Given Subnet from an Export Rule String

April 20, 2020

1 Ba
kground

Customers want to know whi
h IP addresses on whi
h systems have mis
on-

�gurations. However, it is di�
ult for them to determine whi
h addresses and

subnets have this issue be
ause the export rules explain what the
urrent rules

are, but not how they apply to a given IP or subnet. We have developed an

algorithm to help determine the rules for their
hosen IPs and subnets.

For example, the
ustomer would give us some input rule subje
t like �1.2.3.4�

or �1.2.3.0/28� as well as a Export Rule String like �1.2.3.4 foo 1.2.3.5 bar

1.2.3.4/30 bat�. And we want to be able to output what the export rules are for

the inputed NetObj and where they
ome from. In the �rst example we would

want to output �1.2.3.4� has rule �foo�. In the se
ond example we would want

to output

Input NetObje
t String Breakdown Inherited From Rules

1.2.3.0/28 1.2.3.0/30 - Deny

1.2.3.4 1.2.3.4 foo

1.2.3.5 1.2.3.5 bar

1.2.3.6/31 1.2.3.4/30 bat

1.2.3.8/29 - Deny

1.1 Key De�nitions

• A NetworkObje
t or NetObj is an IP address or subnet. It
an be ipv4 or

ipv6 based

• A rule subje
t is a NetObj in an export rule string that has some rules

asso
iated with it.

2 Brief Summary of NFS Export Rules

An NFS export rule is a list of settings for a given Filesystem and whi
h IPs

and/or subnets these settings should apply to. In general, an export rule is

1

3

Defensive Publications Series, Art. 3210 [2020]

https://www.tdcommons.org/dpubs_series/3210

made up of alternating a rule subje
t, and then some set of rules that apply to

it. These rules take pre
eden
e in the order of spe
i�
 IPs from left to right,

then subnets from left to right, and then any global wild
ard rules. However,

if any rule subje
t is repeated, use its rightmost instan
e. This format is well-

known, publi
 and do
umented as part of the NFS spe
. An example rule string

is des
ribed in the ba
kground se
tion above.

Typi
ally one parses these rules into a stru
t of a 3-tuple made up of 2 lists

and a string. The �rst list represents the IP rule strings. It is a potentially

empty list of 2-tuples that are the IP and the rules asso
iated with that IP. The

se
ond list is the same, but for subnets. The string is the list of rules for the

wild
ard subnet. This string is potentially empty if there are no wild
ard rules.

An example of this data stru
ture would look something like this

stru
t ExportRuleDataStru
t {

list<tuple<str, str>�> ip_rule_list;

list<tuple<str, str>�> subnet_rule_list;

str rule_string_for_wild
ards;

}

([(" ip1 " ," ru l e s t r i n g f o r ip1 ") , (" ip2 " ," ru l e s t r i n g f o r ip2 ") ℄ ,

[(" subnet1 " ," subnet1 r u l e s ") , (" subnet2 " ," subnet2 r u l e s ") ℄ ,

" r u l e s t r i n g f o r wi ld
ard subnet "

)

Note that transforming the export rules into su
h a data stru
ture is well

known and standard via the NFS spe
. Thus, we will dis
uss operating on su
h a

data stru
ture inter
hangeably with operating on an expli
it export rule string.

Further, note that as part of
reating su
h a data stru
ture, we automati
ally

ollapse repeated subje
ts to their rightmost instan
e and preserve the order of

the IPs and subnets from left to right.

3 Naive Approa
h

Suppose one wished to solve the problem as dis
ussed in the Ba
kground se
tion

without using the algorithm that will be dis
ussed below. They would have as

input a NetObj and an export rule string. They
an trivially
onvert that export

rule string into an export rule data stru
ture as des
ribed above. If the input

rule subje
t is an IP and expli
itly listed in the data stru
ture, it
an be found

in O(number of rules) time by expli
itly sear
hing through the data stru
ture.

If is a subnet, then it takes at least O(rules2). The reason for this is that we

must
he
k ea
h IP and subnet to the left to see if it is a subset. We must do this

re
ursively to ensure that any of *those* sub-subnets have no sub-subnets or

IPs. If the input rule subje
t is a stri
t subset of a subnet in the data stru
ture,

we
an also �nd it in O(number of rules) time. However, if the input subje
t is

a superset of subnets in the data stru
ture, we must look for every subset. We

must then join them together and
he
k that this makes up the entire breadth

of the input subje
t. This joining is not entirely trivial be
ause some subnets

2

4

Seipp and Salomon: Mechanism for Identifying Export Rules for a Given Subnet from an

Published by Technical Disclosure Commons, 2020

might be fully
overed by expli
it IPs. It is the pro
ess of joining qui
kly and

easily that is the main subje
t of this patent. To naively
he
k that all IPs and

subnets that are part of the input subje
t are represented, we must expli
itly

look at every IP in the region. In the worst
ase, this
an be 232 IPv4 addresses,
whi
h is prohibitively expensive and even worse for IPv6.

4 Algorithm Des
ription

4.1 Converting from Rule String to Data Stru
ture

As mentioned in Se
tion 2 above, we
onsider this pro
ess a given from the NFS

Spe
. If the stru
ture is empty, we
an short
ir
uit the rest of the algorithm and

respond with a blanket deny. We
an
onvert all of the IPs in the stru
ture into

trivial subnets. For example an ip �1.2.3.4� would be
onverted into �1.2.3.4/32�.

We
an also
onvert any wild
ard rules into rules asso
iated with the maximal

subnet � �0.0.0.0/0�. This means that the entire data stru
ture is made up of

subnets. Note that we will preserve ordering. Therefore, the leftmost elements

will be trivial subnets if there are any and the rightmost subnet will be 0.0.0.0/0

if there is a wild
ard entry.

4.2 Building a Network Tree

4.2.1 De�ning a Network Tree

We are going to build a data stru
ture we
all a Network Tree. This stru
ture

is a binary tree made up of nodes. A node of the Network Tree is a stru
t

made up of �ve parts, a subnet, a rule sour
e, and pointers to its parent and

both
hildren. The subnet is the name of the node and represents what part

of the NetObj spa
e the node represents. The rule sour
e represents whi
h set

of export rules apply to this node. Note that �None� is a valid value for rule

sour
e. The pointers to parents and
hildren represent how the nodes atta
h to

one another. Note that a node is either a leaf node or it isn't. A leaf node has

no
hildren. A non-leaf node must have both of its
hildren. A Tree is de�ned

by a root node, and its des
endants. The parent of the root node is None.

The subnets of nodes and the relationships between nodes is deterministi

and depends entirely on the subnet. We will des
ribe how this works using

IPv4, but this will work in exa
tly the same manner with IPv6. A given node

has a subnet property. For example, 1.2.3.4/30. This subnet
an be partioned

into two halves � 1.2.3.4/31 and 1.2.3.6/31. Thus, those two nodes are the

two
hildren of the 1.2.3.4/30 node. Sin
e 1.2.3.4/30 and 1.2.3.0/30
ompletely

partition 1.2.3.0/29, they are the
hildren of 1.2.3.0/29. Thus, 1.2.3.0/29 is the

parent of 1.2.3.4/30. Note that a parent will always have a netmask that is one

smaller and that a
hild will always have a netmask that is one larger. Note

that some subnets are of size 1 and
orrespond to exa
tly one IP address, like

1.2.3.0/32. These nodes will never have
hildren. Additionally 0.0.0.0/0 has no

parent be
ause it
ontains the entire NetObj spa
e.

3

5

Defensive Publications Series, Art. 3210 [2020]

https://www.tdcommons.org/dpubs_series/3210

Figure 1: Network Tree Node Example

1.2.3.4/30

"None"

1.2.3.0/29

Parent Node

1.2.3.4/31

Left Child

1.2.3.6/31

Right Child

4.2.2 Adding Nodes

Suppose we have an existing Network Tree as in the example from Figure 1.

Note that in the �gure, only one node is shown be
ause the parent and
hildren

nodes don't have a rule sour
e. They are shown to explain what the parent and

hild would be. How would we add a
hild to the 1.2.3.4/30, say 1.2.3.4/31. We

see that the
urrent node has the new node as a dire
t
hild. So, we
reate a

new node with subnet 1.2.3.4/31 and set the
hild point from the parent and the

parent pointer in the
hild to point to one another. We
an set its rule sour
e.

We also must
reate the other
hild node of 1.2.3.6/31. Now we are done.

What if we want to add a des
endant that is not a dire
t
hild? We
reate

both
hildren of the
urrent node. Then we determine whi
h of those is an

an
estor of the target node. Then, we
reate that nodes
hildren. Continue in

this manner until we
reate the
hild that we intended as a leaf node. It is fully

onne
ted to the root node that we started with.

What if we want to add an an
estor? We
reate the parent node of the root

node of the Network Tree and set up the pointers. Then, we set the parent as

the root node of the tree. Then we set up the other dire
t
hild of the parent

node. This is the node that is the sibling of the original root node. This keeps

all nodes having either 0 or 2
hildren.

What if we want to add a node that is not a des
endant of the root node, and

is not an an
estor? This means that this node must be �adja
ent� in some sense,

though perhaps not a sibling. Create parent nodes (appropriately as des
ribed

above) until one of them is an an
estor of the target node. Then, we
an follow

the rules for targets that are des
endants of the root node as des
ribed above.

4

6

Seipp and Salomon: Mechanism for Identifying Export Rules for a Given Subnet from an

Published by Technical Disclosure Commons, 2020

4.2.3 Algorithm Steps

1. We are going to build a NetworkTree from the elements of the Export

Rule Data Stru
t. To do so, we are going to loop over the NetObjs in the

stru
t starting with the �rst subnet.

2. Create the node representing the element and set the rule sour
e to the

element. This is the root of the tree.

3. Consider the next NetObj in the Data Stru
t. Call it the
urrent element.

4. Start from the root and add the
urrent element to the tree. The new

element must be either a des
endant of the root node, an an
estor of the

urrent node, adja
ent to the
urrent node, or must be the
urrent node.

In se
tion 4.2.2 above we have already des
ribed how to add nodes to the

tree in all of these
ases. If the
urrent element is equal to the root node

and the root node has None as its rule sour
e, set the rule sour
e to the

urrent element. If the rule sour
e is already set, then we are done with

this element and we
an return to step 3.

5. If the
urrent element is not equal to the root node, we want to
reate

the new node (and the
onne
ting nodes) as dis
ussed above in se
tion

4.2.2. The
onne
ting nodes should have the rule sour
es left as None.

The new target node should have its rule sour
e set to that of the
urrent

element. As dis
ussed above, we also must
reate the
hildren of the new

target node if they have not already been
reated. When you set the rule

sour
e for any node as not None, you then look to see if we've already

de�ned
hildren nodes. If we have, then
he
k those
hildren - ea
h one

whi
h
urrently has rule sour
e as None will set its rule sour
e re
ursively

(thus itself also
he
king for existing
hildren and su
h). If we haven't,

then stop and don't bother
reating the
hildren. Notably, if we �nd a

hild with a rule sour
e whi
h is already set, then we don't have to
he
k

its des
endants - any that exist will guaranteed have the
orre
t not-None

rule sour
es. We are now done with the
urrent element and
an return

to step 3 to get a new element.

6. When we have
ompleted every subnet in the Data Stru
ture (in
luding

the wild
ard entry) we are done building the NetworkTree.

Note that this means that all nodes have either 0 or 2
hildren and that all

nodes with 0
hildren (leaves) have a non-empty rule sour
e.

4.3 Using the Network Tree

Now that we have built this Network Tree, we
an use it along with the original

Data Stru
ture, and the input NetObj to build the table that the
ustomer

wants. There are a few
ases.

5

7

Defensive Publications Series, Art. 3210 [2020]

https://www.tdcommons.org/dpubs_series/3210

1. If the input NetObj is a spe
i�
 IP address, treat it as if it were the trivial

subnet.

2. Suppose the input NetObj is a subnet that is a des
endant of the root

node. We start at the top of the Network Tree and move from node to

hild based on whi
h of the two
hildren will
ontain the input NetObj.

If we en
ounter a leaf node or a node with the same subnet as the input

NetObj,
onsider the entire subtree with this this node as the root. Look

through all this subtree for their rule sour
es and look up the rule sour
es

of the leaf nodes and put those into the table.

3. Suppose the input is an an
estor of the root node. Keep tra
k of the

urrent root node. Mu
h like step 3 in se
tion 4.2, we want to
reate

parent nodes (and the empty sibling nodes) to the Network Tree's root

until we rea
h the spe
i�ed an
estor. The result will look something like

this. Now, we
an mark all of those sibling nodes to the table as having

a rule sour
e of �-�. When we put these into the table, they will output

�Deny� to represent the fa
t that the export rule string should deny these

IPs a

ess. Then we
an traverse the
urrent tree to get the existing rules.

Note that we do not want to save these temprorary expansions to the

Network Tree in order to save spa
e. They are trivial to
onstru
t, so

they are not valuable for performan
e. To revert to the original tree, we

an simply use the original root node that we saved at the beginning of

the step. The other nodes have nothing in memory pointing to them, so

they are dis
arded. This is impli
it based on implementation details.

4. Suppose the input is adja
ent to the root node. This means that there are

no rules in the export rule string that des
ribe it. Thus, the entire table

should be �Deny�.

5 Advantages Over the Naive Approa
h

This approa
h trades a trivial amount of memory in order to make this problem

mu
h faster in the normal use-
ases and tra
table in the more expensive
ases.

Additionally, be
ause we
an
a
he the Network Tree, subsequent runs with the

same set of export rules
an be made even more
heaply. However, under worst

ase s
enarios, this approa
h will still not perform well.

First, we will
ompare worst
ases for both approa
hes. The worst
ase for

the naive approa
h is an input NetObj of 0.0.0.0/0 and the entire rule string is

made up of expli
it IPs. This will take 232
he
ks of ea
h expli
it IP that
an be

in the NetObj against a 4096
hara
ter export string. How does this
ase fair

for our improved approa
h? Ea
h individual rule in the string will take about

10
hara
ters at the shortest, so it will result in about 400 leaf nodes in the

Network Tree. If they are maximally spread out, this means we need to traverse

the entire tree from root to leaf, 400 times with a depth of 32. This works out

to 400 ∗ 32 = 225225 = 2752 < 212

6

8

Seipp and Salomon: Mechanism for Identifying Export Rules for a Given Subnet from an

Published by Technical Disclosure Commons, 2020

The worst
ase for our improved approa
h is when we have to build a large

Network Tree. This o

urs when we have a large number of expli
it rules,

espe
ially with spread out expli
it IP addresses be
ause it means we have more

intermediate nodes. Additionally, the worst
ase is the largest input NetObj

be
ause it requires either having a large tree or temporarily in
reasing its size

during exe
ution. Note that this is exa
tly the same as the
ase above.

The best
ase s
enarios for both algorithms is the
ase where the
ustomer

provides empty rule strings or trivial input NetObjs. In these
ases both algo-

rithms will behave similarly by short
ir
uiting to the right answer.

What happens in the most
ommon medium
ases? In the naive approa
h we

have some input NetObj that is not
ompletely
overed by expli
it IP addresses

in the export rule string and some of the subnets likely overlap with either ea
h

other or the expli
it IPs. I
laim that this is
ommon be
ause the use
ase

for this system is to diagnose poorly set up export rules. Thus, on
e we have

exhausted the expli
it IPs, the rest must be done by exhaustive lookup. This

s
ales with O(n) where n is the size of the subnet. Note that the size of the

subnet is 2value of the subnet size. How does this work in the new approa
h?

Well we build up a sparse NetworkTree and we are able to �nd a spe
i�
 leaf

node in O(log(n)) time. The majority of the leaf nodes are not going to be

size-1 subnets. If they are, then the whole pro
ess will take O(n) time whi
h is

no faster than the naive approa
h. But if some of the leaf nodes are
aused by

having non-trivial subnets as leaf nodes, then we
an run signi�
antly faster.

6 Mis
 Notes

• This system works regardless of IP version be
ause IPs and subnets always

have the same subsystem properties. The only di�eren
e would be the

upper and lower bounds on the number of rules and their sizes.

7

9

Defensive Publications Series, Art. 3210 [2020]

https://www.tdcommons.org/dpubs_series/3210

© Pure Storage 2017 | 2

Pure Storage, Inc.
Twitter: @purestorage

 www.purestorage.com

650 Castro Street, Suite #400

Mountain View, CA 94041

T: 800-379-7873

Sales: sales@purestorage.com
Support: support@purestorage.com

Media: pr@purestorage.com
General: info@purestorage.com

10

Seipp and Salomon: Mechanism for Identifying Export Rules for a Given Subnet from an

Published by Technical Disclosure Commons, 2020

	Mechanism for Identifying Export Rules for a Given Subnet from an Export Rule String
	Recommended Citation

	Microsoft Word - Kyle and Jesse Defensive Pub May 2020.docx

