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Numerical Study of Body Shape and Wing Flexibility in Fluid Structure Interaction

Abstract
We discuss the equilibrium configurations of fibers clamped to an ellipsoidal body and 
immersed in a flow ranging between 0-50 cm/s. Experimental and numerical results are 
presented and the effects of flow speed, body shape, and orientation of the fibers upon the 
equilibrium configuration are investigated. Our investigations reveal that the orientation 
of the fibers, the length of the length fibers, as well as, the shape of the body has a 
significant impact upon the bending and drag experienced by the ellipsoid-fiber system. 
We note that (i) less eccentric bodies experience greater drag forces and increased 
bending of the attached fibers, (ii) the fibers oriented with the flow experienced less drag 
and bending than the fibers oriented perpendicular to the flow, (iii) the longer fibers bend 
significantly more than the shorter ones, and (iv) the longer fibers display oscillatory or 
flapping motion at much lower flow speeds than their shorter counterparts. The 
simulations also reveal that the drag on the fiber is noticeably affected by the size of the 
basal body. Drag exponents (or Vogel exponents) are also computed and seen to deviate 
slightly from previous results.
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Chapter 1

Introduction

In this work we focus on the problem of equilibrium (re)configuration of deformable 

fibers in a fluid flow. Other than the well known engineering applications of this problem, 

flexible fluid-structure interactions are ubiquitous in nature and their biological applica

tions are particularly interesting. The problem of snoring, for instance, has its roots in 

a fluid-structure interaction, where the fluid is air and the structure corresponds to the 

soft-palette in the pharynx whose oscillations induce snoring.15 A second widely studied 

application is the dynamics of ciliary hairs which line much of the human body and whose 

motion helps propel bodily fluids.22 The breakdown of the ciliary mechanism is the 

cause of several human pathologies and constitutes an important medical question. Fluid 

structure problems are also essential to our understanding of the mechanics of flying and 

swimming.6 The investigation of the positioning and orientation of wings, their length 

and equilibrium configurations, flapping modes, can all assist in optimal flight design. In 

the context of plant biology, the pioneering work by Vogel28-30 has lead to considerable 

attention to issues of forces experienced by plants in high winds.14,18 The flexibility of 

plants and aquatic vegetation can provide important clues of their health.
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The fundamental phenomenon of the terminal state, including velocity and orienta

tion, of a rigid body in a fluid flow is a well studied problem for over a century. Despite 

the overabundance of attention to this problem, several significant fundamental questions 

remain unanswered. In the past few decades, some effort has been spent on explaining the 

terminal orientation of rigid symmetric bodies in a flow (where the structure is freefalling 

or hinged with one degree of rotational freedom).5,9-11,16,17,21,27,31 Previous studies on 

hinged cylinders reveal that when the flow speed (or Reynolds number) is very low, the 

cylinder maintains its initial orientation. However as the Reynolds number exceeds a 

certain threshold, determined by the inertia in the system, the cylinder aligns its longest 

axis perpendicular to the direction of the flow which is a new stable equilibrium. Beyond 

a second threshold for the Reynolds number, the particle begins to display complex 

unsteady behavior such as periodic oscillations and autorotation.5,19,21 These varying 

orientations of a rigid body have a lot to do with the structure of the vortex shedding 

around the body. When the suspended body has the additional characteristic of being 

flexible, the physics becomes even more complicated.

The current thesis is a part of our ongoing contribution to the broader subject of 

terminal orientations and configurations in fluid-solid interaction and aims on extending 

our previous work to flexible systems. In a series of fundamental experimental and 

theoretical papers on similar subjects1,12,25,30,32 and others, it has been pointed out that 

deformable bodies in a flow bend in order to reduce drag.

Drag is "a force acting on a moving body, opposite in direction to the movement of 

the body, caused by the interaction of the body and the medium it moves through."8 In this 

case the medium is a fluid and instead of the body moving through the fluid, the fluid is
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moving across the body. Mathematically, drag is defined as

Js ( 1. 1)

where Fj is the drag force, U|| is the unit vector in the direction of the fluid flow, S is the 

surface of the body, T is the Newtonian stress tensor, n is the normal unit vector pointing 

into the body. Typically drag is calculated using the formula

where p is the density of the fluid, u is the speed of the fluid flow, Q  is the drag coefficient 

of the body, and L is the length of the body. However, this formula was developed based 

on rigid bodies. In flexible bodies drag is

where a  is the drag or Vogel, exponent and varies between 1 < a  < 2 depending on the 

stiffness of the body.28-30

tex shedding. Zhu was interested in how different values of the parameters influence 

vortex shedding simulations at Reynolds numbers between 30 and 800. In particular 

Zhu investigated the Reynolds number, the dimensionless fibre flexure modulus, and 

the dimensionless fibre length. The effects of each of these parameters is investigated 

individually. Zhu’s investigations were performed using numerical simulations.

From his simulations Zhu concluded that "the Reynolds number has a significant 

influence on vortex shedding and fibre vibration."32 The higher the Reynolds number,

Pd =  ^ P ^ d 1 ( 1.2)

Pd =  -pwaQL (1.3)

Luoding Zhu32 investigated how dimensionless flow parameters influence vor
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the more vortex shedding and fibre vibration occurred. Zhu also found that "the fibre 

dimensionless flexure modulus has a significant influence on vortex shedding, [and] fibre 

vibration..."32 The lower the flexure modulus, the less vortex shedding and fibre vibration 

occurred. Furthermore, "the dimensionless fibre length has a significant influence on 

vortex shedding, [and] fibre vibration..."32 The longer the fiber length the more vortex 

shedding and fibre vibration occurred.

Silas Alben, Michael Shelly, and Jun Zhang1 investigated the reduction of drag on a 

flexible fiber as it is bent by a fluid flow. They performed experimental work which they 

then compare to theoretical computations.1 Their primary interest concerns values of rj, 

which is defined as the ratio of "fluid kinetic energy to elastic potential energy, or the ratio 

of fibre length to an intrinsic ’bending length’..."1

Alben et al.1 found that for values of ?] significantly smaller than one the fiber 

remains straight. However, as Tj approaches (9(1), a transition to bending occurs and there 

emerges a self-similarity in the fiber’s shape. As 77 grows significantly larger than one 

the "large curvature becomes confined to an ever-smaller region near the tip..."1 Alben et 

al.1 concluded that the theoretical and experimental models give similar drag results for 

objects with similar shapes and that bending and fluid pressure are sufficient to describe 

the observed reduction of drag.

Michael J. Shelley and Jun Zhang25 reviewed previous experimental studies on the 

flapping of flexible bodies in flow, most notably studies by Taneda in the 1960s. Building 

off of this review the paper then briefly discusses an experiment performed by Zhang. 

The paper then goes on to review theoretical studies in fiber flapping, most notably 

some of Zhang’s work on variants of fiber flapping. Afterwards, the paper discusses the

4



flapping of flexible sheets. Zhang et al.25 conclude their paper with a discussion of the 

outlook of the study of flapping bodies. The authors note that, because most of the current 

theoretical analysis has been in two dimensions, it will be challenge to move to three 

dimensional theoretical analyses. Furthermore, analyses based on numerical simulations 

will be particularly challenging.25

L. A. Miller, A. Santhanakrishnan, S. Jones, C. Hamlet, K. Mertens, and L. Zhu20 

investigated how the reconfiguration of a leaf in a fluid flow contributes to the reduction 

of vortex induced vibrations. Because plants can reconfigure their shape, they are able to 

withstand the mechanical stresses that result from fluid forces. This is of great interest 

in to those in the fields of comparative biomechanics, fluid dynamics and biologically 

inspired design. The reconfiguration of plants, and the effects that reconfiguration has 

on vortex induced vibrations were studied both experimentally and by the use of two 

dimensional numerical simulations.

Miller et al.20 found that the wild violet and wild ginger leaves reconfigured into 

cones under the pressure of a fluid flow. This reconfiguration led to the creation of "a 

relatively stable pair of alternately spinning vortices"20 in the wake of the leaves. Circular 

man made models also reconfigured into cones and developed vortices similar to those 

formed in the wake of the wild violet and wild ginger leaves. Square man made models 

were found to reconfigure into a U shape. This reconfiguration led to "strong oscillations 

and vortex shedding."20 Furthermore, in the two dimensional simulations it was found 

that by adding the flexible tether to the flexible beam of the leaf, the drag force, the 

vortex shedding, and the oscillations were all magnified compared with similar numerical 

simulations. The authors concluded that more than just flexibility is needed for the 

reduction of drag forces, and that the shape of an object’s reconfiguration under pressure
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is important as well.

Thomas Barois and Emmanuel de Langre3 investigated whether or not it is possible 

for an object in a fluid flow to deform in such a way that the drag forces on that object 

are independent of the velocity of the fluid flow. Furthermore if this deformation is 

possible, does the independence of the drag force hold over a range of varying conditions. 

Specifically the case of membranes was considered, with an emphasis "on the cancellation 

of velocity dependence rather than on the minimizations of the drag at a given velocity."3 

The authors noted that such behavior has been observed at low Reynolds numbers within 

the DNA molecule.

Barois and Langre found that, using a membrane, it was possible to create an object 

that would deform in such a way that the drag forces on that object are independent of the 

velocity of the fluid flow.3 Furthermore, the independence of the drag force was observed 

to hold for a range of velocities. The authors explain that this is because membranes only 

transmit tangential forces and the pressure of the fluid flow modifies the orientation of the 

membrane’s in-plane tension, while not altering the magnitude of the in-plane tension.3 

Though the authors do not explicitly state it, it appears that the drag force applied to the 

membrane becomes converted into a lift force thereby reducing the drag forces on the 

body and creating a body whose drag is independent of the velocity.

Steven Vogel30 explained, among other topics, how leaves and leaf clusters deform 

in high velocity winds in order to reduce drag. Whereas previous studies into the effects of 

windiness on leave configurations where focused on time averaged air flows, Vogel’s work 

focused on how leaves reconfigured during brief gusts of wind. Vogel restricted his work 

to leaves and leaf clusters because "...on a fully leafed tree the drag of its leaves should
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be the largest force."30 Vogel notes that this information is even more important than the 

time averaged studies, since even a short period of intense drag can be a significant risk to 

a plant.

Vogel explains how leaves and leaf clusters reduce their drag by reconfiguration.30 

He observes that simple leaves curl up into cones as wind speed increases. When there 

is a cluster of simple leaves, this cluster can curl up into a conical shape. Vogel notes 

that while a cluster of leaves that can individually curl into cones will curl into a conical 

shape, just because a cluster of leaves curls into a conical shape does not guarantee that the 

individual leaves will curl into cones. Vogel also observed that pinnately compound leaves 

may curl up into cylinders. Meanwhile, clusters of leaves pinnately arranged on a branch 

might bend back on top of each other and stack up, thereby reducing their drag. Vogel 

also pointed out that all of the simple leaves which curl into cones share two features. 

First they have petioles which are longer than 2 cm. Second they have blades which have 

basal lobing. This lobing typically curls upward enabling the formation of cones as wind 

velocity increases.

In this thesis we investigate flexible fibers attached to a basal body. This is a triply 

difficult problem to investigate. This problem has a flexible solid attached to a rigid 

solid, all interacting with a fluid flow. This is a new and unexplored area in the field of 

flexible fluid-structure interaction. Prior to this all investigations of flexible fluid-structure 

interactions have looked at either stand alone, or tethered flexible structures. Both Alben 

et al. and Zhu looked at a stand alone flexible fiber in their investigations.1,32 Barois and 

Langre investigated a stand alone flexible membrane.3 Miller et al. looked at stand alone, 

as well as, tethered flexible structures.20 Vogel investigated both stand alone leaves and 

clusters of leaves.30 However, none have looked at a flexible structure attached to a basal 

body. A basal body is naturally present in all physical examples and therefore accounting

7



for it is essential.

Specifically, this thesis investigates flexible fibers attached to a basal body and 

submerged in a water tank with speeds 0-50cm/s. This investigation is performed both 

experimentally and through two dimensional numerical simulations. This thesis also looks 

into some other as yet unexplored aspects of the problem. The effects of fiber length, 

fiber orientation(0o)» and the eccentricity of the basal body are all looked at. In particular 

this thesis looks at the effects these parameters have on drag, lift, and fiber deformation. 

Vogel, or drag exponents are also calculated.

The rest of this thesis is organized as follows. Chapter 2 describes the experimental 

investigations which were performed, including the procedure and outcomes. Chapter 3 

details the equations which govern the numerical simulations. Chapters 4 and 5 explain 

the numerical studies performed using the software COMSOL Multiphysics. The details 

of the numerical scheme, convergence study and comparisons with experiments are 

presented. Detailed tables and images related to the numerical simulations can be found 

in the appendices.

8



Chapter 2

Experiments

Detailed experiments were conducted on the interaction of a suspended, clamped 

fiber in a flow as a function of the fiber length, initial orientation(0o) and flow speed 

(£/). The experiments were performed in a flow tank with recirculating water with flow 

velocities ranging between 0-50cm/s (0 < Re — ^ r — < 30,000 where p / is the density 

of the fiber, U is the free stream velocity measured at the center of the tank in the absence 

of an obstacle and L is the fiber length). Fibers chosen for our study were made of 

nylon and polyester and were extracted from paint brushes. The exposed portion of the 

fibers were of lengths 2cm, 4cm and 6cm. These were inserted into a styrofoam ball 

of diameter 3cm in such a way as to prevent any motion with respect to the ball (figure 

2.2). The styrofoam ball with the fiber was held in place by means of a copper wire of 

thickness 1mm passing through the ball which was placed at the center of the tank ap

propriately to prevent any transverse or rotational motion. Panels (a) and (b) in figure 2.2 

show a side and back view of the fiber with the spherical basal body to which it is attached.

The dynamics of the fiber in the flow were recorded using a digital camera (Sony 

a), placed orthogonal to the flow. The orientation of the fiber with respect to the flow

9



Figure 2.1: Picture of the flow tank that was used for these experiments. The flow goes 
from left to right.

were changed by appropriately rotating the styrofoam ball upon the copper wire before 

clamping it. In the present study three different angles were considered (where angles are 

measured using the standard convention with respect to the horizontal axis, counterclock

wise.), namely1 225°, 270° and 315°.

The results of this experimental study are shown in figure 2.3. The primary experi

mental observation relates the bending of the various fibers as a function of the Cauchy 

number (Ca), which defines the ratio of inertial to elastic forces in the system. The Cauchy 

number was chosen over the Reynolds number because the Cauchy number takes into

'in our numerical simulations for the problem, presented in the following section, the fibers were placed 
at the antipodal end of the spheres, i.e. at angles 135°, 90° and 45°. Due to the symmetry of the problem 
and absence of any gravitational effects on the fiber, these angles are similar to those used in experiments. 
However, henceforth in this text we will use the experimental angles when referring to the fiber orientation.
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(a) (b)
Figure 2.2: Experimental setup: panel (a) shows a side view of the fiber attached to the 
spherical body, (b) shows a rear view of the same object and panel (c) shows the nylon 
fiber inserted into the styrofoam ball which serves as a basal body. The flow direction in 
the experiments occures from left to right in panel (a) or out of the plane of the paper in 
panel (b).

account the stiffness properties of the solid, whereas the Reynolds number only accounts 

for the properties of the fluid. The Cauchy number has been defined as Ca = where 

p is the density of the fluid, U is the characteristic velocity and K  is the bulk modulus 

of the fiber which is taken to be 4GPa in these experiments, corresponding to Nylon. 

Gosselin et a l.12 note that the drag on a flexible rectangular plate can be seen to depend on 

an appropriate scaling of Ca, defined by Ca — Co • Ca (where Co is the drag coefficient) 

such that for 1 < Ca < 10 the flexible plate transitions to a reconfigured state. Due to 

the difficulty in obtaining drag coefficients and flexural rigidity in this study, a simple 

rescaling of the Cauchy number, Ca = 10“ 12 x Ca is used to bring it to the same scale as 

in previous studies.
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Figure 2.3 shows the average bending of the fibers as a function of Ca for various 

dimensions of the fiber and different initial configurations. The average bending is 

estimated by the angle of the straight line connecting the points P and Q where P is the 

point on the fiber in contact with the ball and Q is the free end of the fiber. The bending 

is shown for the three fibers of different lengths as well as the initial orientation angle of 

the fiber(0o)- Increasing Ca has the effect of greater bending force upon the fiber. Our 

observations reveal that beyond a certain critical value of Ca, which depends upon the 

material of the fiber and its physical dimensions such as length and thickness, the fiber 

begins to bend and continues to do so until it reaches a second critical Ca, which we shall 

refer to as C a f \  when it starts to display time dependent motion. Since the focus of this 

paper is the equilibrium configuration of the fiber, the Ca was restricted to the range below 

C a f \  The longer fibers display greater propensity to bending, and eventually flapping or 

random motion, than the shorter ones and start to bend for smaller values of Ca as seen 

from the slopes of the tangents to these curves; the 2cm fiber shows a minimal change 

with respect to its initial configuration.

The average bending is seen to be highest when the fiber protrudes more into the 

incoming flow (Go — 225°) and least for the case of 0 = 315° where the fiber is closer to 

the wake region making the body more streamlined. We can use the changes in concavity 

of the deformation angle data to identify the values of Cac. The value of Cac is seen to 

depend on the fiber length as well as the orientation. For the case Go = 225°, Cac is of 

0(1) for the 6cm fiber and shifts to 0(10) for the 2cm and 4cm cases. For the remaining 

angles the 6cm fiber displays no yield stress while Cac for the 4cm and 2cm fibers show 

an order of magnitude reduction. The shorter fibers in the experiments, namely 2cm and 

4cm, display time dependent fluttering at the highest velocity considered here but the 

6cm fiber achieves the time dependent flapping at much lower values of Cac than the 

other cases. It must be however noted that unsteady motion referred to here was not the
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(a) (b) (c)

Figure 2.3: These graphs show the average bending of the fibers between their suspension 
point and free end based on experimental investigations. Variations of the bending with 
Ca, fiber length and initial orientation are examined. Panel (a) corresponds to Oo = 225°, 
(b) to 0o =  270°, (c) to 0O =  315°.

consistent large periodic oscillation of the type observed by.24

Visualizations of the flow structure past the body indicates a complex wake vortex 

pattern even at fairly low velocities(figure 2.6). The resulting pressure differences be

tween the fore and aft regions of the fiber eventually cause the bending of the fiber as the 

pressure force exceeds the tension in the fiber. To allow for the visualization past the fiber, 

we repeated the aforementioned experiments with a thicker fiber. The flow was seeded 

with microscopic hollow glass spheres of average diameter 13 fim and illuminated using a 

laser sheet (532nm, 1W laser from Opto Engine LLC). The resulting images of the flow 

structure via scattering from the seeded particles are shown in figures 2.4 and 2.6.

Visualization of the flow structure along the YZ plane was also conducted in order 

to discern any significant three dimensional effects. The spherical basal body generates 

a noticeable dimensional wake; the fiber is however, far too thin to do so. Figure 2.6
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Figure 2.4: Visualization of the wake vortex behind the fiber. Panel (a) shows the vortex 
structure for a 4 cm fiber at approximately U- 5 cm/s while panel (b) shows the structure 
for a 6 cm fiber at a higher velocity of t/=15 cm/s.

depicts the three dimensional flow structure in the plane Z and is shot from an oblique 

angle to allow for visual identification of the flow structure. The fiber used for purposes 

of visualization are thicker (3mm width) than the nylon fibers referred to earlier since the 

flow past the nylon fibers are practically impossible to visualize due to their slenderness. 

The red box in figure 2.6 highlights the three dimensional structure which can be seen to be 

obvious behind the sphere but not as prominent behind the fiber and remains sufficiently 

small for the flow speeds examined in this study.

X Axis

Figure 2.5: An artistic representation of the flow tank showing the x, y, and z axes, along 
with the direction of the flow, and how 6 was measured.
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Also, it is reasonable to assume that the symmetry of the flow around the fiber cancels 

any bending forces along the YZ plane; the flow asymmetry in the XY  plane, along which 

the fiber lies is the only cause of the bending which occurs in the same plane. As a con

sequence of these observations our following analysis are conducted in two dimensions. 

Also, while we were unable to measure the drag and lift forces experimentally, they have 

been studied numerically and discussed in the following section. Close comparisons with 

experimentally observable parameters are also made to estimate deviations of theoretical 

results from experiments.

While, the three dimensional computation remains a considerable challenge at this 

stage in terms of its computational cost and time, large strides have been made. We 

are currently starting to look at the problem in three dimensions. These preliminary 

computations appear to confirm our assumptions about the validity of the two dimensional 

simulations. However, due to the difficulty and computational cost, three dimensional 

simulations are still impractical for investigations on this scale.
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Figure 2.6: The image shows the wake vortex behind the obstacle in the Z direction. The 
fiber used here is 6 cm in length and the corresponding flow velocity is nearly 15 cm/s. 
The picture in the red box shows the three dimensionality of the wake flow field. The 
fuzzy circular region behind the sphere corresponds to the 3d wake structure behind the 
sphere; the fiber however does not generate any noticeable wake in the third dimension.
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Chapter 3

Governing Equations

The numerical simulations were performed using the computer program COMSOL 

Multi-physics. The simulations were set up using the Fluid Structure Interaction (FSI) 

module within COMSOL Multi-physics.

The overall attempt was to simulate the bending of an elastic fiber attached to an el

lipsoidal basal body. The resolution of this fluid-structure problem followed from solving 

the following coupled equations:

p( S +u-vu) -  pV • (Vu +  Vr u) +  Vp = F (3.1)

V u =  0 (3.2)

-  Fv (3.3)

where u is the incompressible fluid velocity field, us is the displacement of the solid fiber, t 

is time, p  is the dynamic viscosity, F is the body force on the fluid, in this case gravitational 

acceleration times p, and Fv is the force per unit volume on the fiber. The Cauchy stress
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tensor for the solid material, <7, is given by26

<7
1

det(¥s)
FsS F / (3.4)

where Fs = (I +  Vu5), S =  So +  C : (e -  £o) and e = 5 (Vu* +  V uJ). Here C, S, So, £ and 

£0 stand for the stiffness tensor, stress tensor, initial stress tensor, strain tensor and initial 

strain tensor, respectively. In the special case of a homogeneous isotropic media, like that 

considered in our study, cr reduces to the simple form

K8[ j£kk ~b 2 f ls (3.5)

where K is the bulk modulus and fis is the shear modulus of the material.

On the solid boundaries of the channel, no-slip conditions are imposed. On the de

formable body, the flow velocities are taken to be equal to the rate of deformation of the 

fiber (i.e. the time rate of change of the displacement).

The FSI module solves the Navier-Stokes equations for the flow in a continuously 

deforming geometry using the arbitrary Lagrangian-Eulerian (ALE) technique. The de

formation of the mesh relative to the initial shape of the domain was computed using 

hyperelastic smoothing. Inside the fiber, the moving mesh follows the deformations of the 

fiber and at the exterior boundaries of the flow domain the deformation was set to zero 

in all directions. We solved for the time dependent variables using the PARDISO solver 

(included in Comsol) which was run for 5 seconds. Once the flow field was computed, the 

net drag and lift forces on the fibers as a function of the flow velocity was evaluated:

Fd = fi|| • y  T • n dS , (3.6)

Fl = u± - j ) T - n d S , (3.7)
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where Ûn is the unit vector in the direction of the fluid flow, is the unit vector in the 

direction perpendicular to the fluid flow, S is the surface of the obstacle, T is the Newtonian 

stress tensor, and n is the normal unit vector pointing into the body. Parameters used for 

the studies are shown in appendices A and B.
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Chapter 4

Numerics: Single Fiber Equilibrium 

Configuration

At the conclusion of the experimental section above, figure 2.6 indicated negligible 

three dimensional flow around the fiber. This is not to say that there is no three dimen

sional flow behind the fiber or that the fiber remains unaffected by the flow induced by 

the basal body. These observations were used to restrict the computational investigations 

to two dimensions. The three dimensional simulation is extremely challenging and is still 

in the early stages of testing. This section discusses the relative merit of the numerical 

method employed to simulate and qualitatively replicate the experimental results. This is 

done by comparing the numerical estimates of the average bending versus Ca with those 

obtained from experiments (see figure 2.3).
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4.1 Set Up

These simulations were conducted inside a two dimensional channel that was 50 cm 

long and 18 cm high. The front wall was set to be the channel inlet and the back wall was 

set to be the channel outlet. At the channel inlet the flow is taken to be fully developed 

and parabolic, while at the channel outlet zero pressure conditions are imposed. The top 

and bottom walls of the channel were set to have a no slip boundary condition.

The ellipsoidal body inside the channel was centered at the point x=9 cm, y=9 cm. 

The semi-major axis was parallel to the direction of the flow, and the semi-minor axis was 

perpendicular to the direction of the flow. Only the 0.00 eccentricity ellipsoid was studied 

in the single fiber investigations. The radius of the ellipsoid was 1.25 cm.

The fibers were attached to the ellipsoidal body in three different ways. In the first 

case, the fiber was oriented at an angle of 90° (270°). In the second case, the fiber was 

oriented at an angle of 45° (315°). In the third case, the fiber was oriented at an angel 

of 135° (225°). All angles are with respect to the direction of the flow. In all the cases 

the fibers were attached to the center of the ellipsoid. Three different fiber lengths were 

investigated. In the first case the fiber was 2 cm long. In the second case the fiber was 4 

cm long. In the third case the fiber was 6 cm long.

A fine user controlled mesh was chosen specifically to be calibrated for fluid dynam

ics problems (see figure 4.1).
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Figure 4.1: The two-dimensional user controlled mesh generated for the fluid structure 
problem under investigation

4.2 Convergence tests

Several tests were performed to confirm the validity of the computational results. 

In particular, the effect of mesh density was investigated by computing the steady state 

drag and lift forces for various mesh density options, as shown in figure 4.2. The x 

axis denotes the various mesh configurations, where 1 is defined as a ’user controlled 

mesh’(11381 elements) , 2 as ’coarser’(2212 elements), 3 as ’coarse’(3590 elements), 4
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as ’normal’(5241 elements), 5 as ’fine’(8609 elements), 6 as ’finer’(16768 elements), 7 

as ’extra fine’(37456 elements) and 8 as ’extremely fine’(66682 elements). Numerical 

convergence was achieved (figure 4.2) and the result seem stable beyond the choice of 

normal mesh. Mesh 1 was the user controlled while meshes 2-8 were automatically 

generated by Comsol. Based on these estimates the ’fine mesh’ or higher was chosen to 

run all our cases, with grid points ranging between about 9000-12000.

Figure 4.2: The values for drag and lift are computed for a 4 cm fiber of thickness 0.05 cm 
with an initial orientation of Oo = 270° relative to the flow as a function of different mesh 
densities. Here the x-axis denotes the various mesh configurations, where 1 is defined as a 
user controlled mesh, 2 as ’coarser’, 3 as ’coarse’, 4 as ’normal’, 5 as ’fine’, 6 as ’finer’, 7 
as ’extra fine’, and 8 as ’extremely fine’.

The computational domain was chosen to match with experimental configuration, 

apart from the restriction in dimensionality. For this reason the majority of the com

putational results reported here correspond to the case of h = 18cm. Variations in the 

values of terminal drag and lift forces for increasing channel heights (in centimeters) were 

computed and are depicted in figure 4.3 for the sample case of a 4cm fiber at initial angle 

6 = 270°. Increasing channel heights naturally changes the drag and lift forces which 

appear to converge to a fixed value. There is a change of nearly 20% in the drag force 

and about 25% in the lift force as one moves from h = 18cm to the final channel height 

of h = 75cm considered here. It needs to be kept in mind that the convergence of the 

computed quantities with respect to h is not in question here; the choice of h is dictated by 

experimental considerations.
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Figure 4.3: The values for drag and lift are computed for a 4 cm fiber with initial an 
orientation of 0o =  270° relative to the flow, as a function of different channel widths.

4.3 Results: comparison with experiments

A time sequence of the results of our simulations are shown in figure 4.4 for the 

same cases explored in experiments. The simulations permit us to visualize the evolution 

of the two dimensional vortex structures and its interaction with the bending of the fiber. 

As anticipated, the wake structure and resulting pressure differential in the fore and aft 

regions of the fiber appears to be the driving factor causing the fiber to reconfigure. While 

the fiber orients into the flow, the primary cause of the first vortex is the fiber. In the 

streamlined position, it is the sphere which affects the primary vortex (see also figure 2.6) 

the most while with the fiber in the vertical orientation, the ball and fiber, both contribute 

equally to the primary vortex.

Figure 4.5 examines the average bending behavior versus Ca where the same range 

in Ca has been maintained as in experiments. The numerical results are in good qualitative 

agreement with experiments and show the same overall profiles observed in figure 2.3. 

Specifically, we note that the average deformation angle increases sharply with the length 

of the fiber, i.e. longer fibers are more prone to bending than the shorter ones. The 2cm 

fiber displays little propensity to bend, much like in experiments. In terms of orientation, 

the deformation angle is largest when the fiber protrudes into the flow direction and least 

when the fiber is in a more streamlined configuration (see also figure 4.6(d)). This is not
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so obvious for the 6cm fiber which shows a drop in the average bending past Ca & 40 

which is caused by the free tip of the fiber dropping below its maximum height in this 

orientation. While the 4cm and 6cm fibers show no critical behavior (i.e. absence of 

Cac), the 2cm fiber exhibits critical behavior at 0(10) for the streamlined case and at 

0(1) for the remaining two orientations. In these cases, the deviations from experimental 

observations can be attributed primarily to the mismatch of material properties of the 

fibers which had to be approximated in experiments. We also considered the case when 

the diameter of the basal body is reduced from 2.5cm to 0.06cm (note the triangular points 

in figure 4.5), in order to understand the impact of the body size on the fiber deformation. 

Our preliminary calculations revealed that the diameter of the basal body does indeed 

make a noticeable difference when the fiber protrudes into the flow but is less so when the 

fiber is in a streamlined position.

The x:-axis in figure 4.5 was chosen to conform with the experimental range. In 

this range, no time dependent motion was observed for any of the fibers. However, we 

extended our study to explore values of Cac for the 2cm and 4cm fibers(the 6cm fibers 

broke down in the unsteady regime), each oriented at three different configurations. These 

simulations also display sensitivity to the orientation of the fiber. At certain critical 

flow speeds the fibers transition from steady state to periodic oscillations, which are not 

actually observed in our experiments, in the range of flow speeds considered. Table 1 

denotes the critical speeds which triggers the onset of oscillations. As in experiments, the 

larger fibers transition out of equilibrium more easily than the smaller ones. However, 

unlike in experiments, the simulations indicate that fibers oriented at 6o = 225° oscillate 

at lower flow speeds than the 0o =  315°. This apparent discrepancy can be attributed to 

lack of a sufficient range of speeds in the observations, non-constant stiffness across the 

fiber and three dimensional effects.
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Critical Speeds 225° 270° 315°
2cm 75.08 cm/s 42.63 cm/s 305.18 cm/s
4cm 39.68 cm/s 54.43 cm/s 83.93 cm/s

Table 4.1: Critical flow speeds at which the fibers display periodic oscillations.

Yet another way to classify the effect of the flow upon the bending configurations of 

the fiber is by examining the overall drag on the system. It is well known that for rigid 

bodies the drag force varies as the square of the velocity.4 However for flexible bodies, 

since the bodies can bend to reduce drag, the relation is markedly different from the rigid 

body case and can be given by Fp <x u a29 where, the exponent, 1 <  a  < 2. Several 

studies performed on flexible bodies of different shapes and materials seem to put the 

exponent in the range 1-1.5.1,12,29 It is to be noted that in these studies the body is always 

initially held perpendicular to the flow direction. The results of our calculation of the drag 

exponent are indicated in the table 2. A least squares fit to the drag force values applied 

to the results of our two dimensional numerical computations (see figure 4.6) yield the 

values of a  which seem to conform to the previously reported ranges. The exponents 

are seen to be sensitive to the orientation and length of the fiber although it is not quite 

clear if there is any distinct pattern. It has been observed12 that there is a critical length 

below which the drag shows an increasing trend and above which the drag decreases with 

increasing length. While no such trend is seen here, it is plausible that such a reversal also 

shows itself as we combine the fiber length with its orientation. The values obtained in 

our computations clearly correspond to the case of small deformations12 Table 1; after all 

the velocities considered in our study are well below lm s~l.
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Drag Exponent 315°

oOr-(N 225°
2cm 1.19 1.24 1.22
4cm 1.19 1.26 1.29
6cm 1.14 1.28 1.40

4cm (small sphere) 1.20 1.33 1.30

Table 4.2: The drag exponents for fibers of varying lengths and orientations based on least 
squares fit of our 2D simulations.
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(a) (b) (c)

Figure 4.4: The time evolution of a 4 cm fiber at various orientations are depicted along 
with the corresponding flow structure. The fibers acheive their steady configurations as the 
flow simultaneously evolves into its steady state. The wake vortex structure is also seen to 
depend on the fiber orientation.
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Figure 4.5: These graphs show the average bending of the fibers, between their suspension 
point and free end, versus Ca for three different fiber lengths and initial orientations, based 
on the 2d numerical simulations. The triangular points refer to the 4cm case where the 
body was reduced in size. Panel (a) corresponds to 0o =  225°, (b) to 6q = 270°, (c) to 
00 =  315°
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Figure 4.6: The panels (a), (b), and (c) show variations in drag versus U. Panel (d) shows 
the drag transition of a sample case, the 4 cm fiber at 6 = 270°. In all cases here, the fiber 
is seen to reach steady state at about 1 s with the highest drag when the fiber protrudes into 
the flow and the least drag when the fiber is in its most streamlined configuration.
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Chapter 5

Numerics: Optimal Body Shape with

Two Fibers

The previous section demonstrated that we could qualitatively model physical phe

nomena using two dimensional numerical simulations. After that success it was decided 

that we should broaden our investigations to a body with two fibers. This is because a 

basal body with a single fiber is rarely found in the natural world. For example, birds do 

not have a single wing and fish do not have a single fin. Thus a body with two fibers is a 

more realistic representation of the structures found in the physical world. In this section 

we will investigate an eccentric ellipsoid with two fibers. We will look at how drag and 

bending change as the orientation of the fibers, and the eccentricity of the body changes. 

We also look at the effects of computational parameters such as mesh density and and 

channel height.
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5.1 Set up

These simulations were conducted inside a two dimensional channel that was 50 cm 

long and 18 cm high. The front wall was set to be the channel inlet and the back wall was 

set to be the channel outlet. At the channel inlet the flow is taken to be fully developed 

and parabolic, while at the channel outlet zero pressure conditions are imposed. The top 

and bottom walls of the channel were set to have a no slip boundary condition.

The ellipsoidal body inside the channel was centered at the point x=9 cm, y=9 cm. 

The semi-major axis was parallel to the direction of the flow, while the semi-minor axis 

was perpendicular to the direction of the flow. Three different eccentricities were used 

for the ellipsoidal body, 0.00, 0.50, and 0.99. In all three cases the area of the ellipse 

was conserved. The area of the ellipse was based on the 0.00 eccentricity case, which 

had a radius of 1.25 cm. The dimensions of the ellipsoidal bodies can be found in table 5.1.

Eccentricity Semi-Major Radius (cm) Semi-Minor Radius (cm)
0.00 1.25 1.25
0.50 1.34 1.16
0.99 3.33 0.47

Table 5.1: The dimensions of the ellipsoidal bodies used, in centimeters.

As mentioned earlier, in this study two fibers were used. These fibers were attached 

to the ellipsoidal body with three different orientations. In first and second cases, the 

fibers were attached to the center of the body. In the first case the top fiber was oriented at 

an angle of 90° and the bottom fiber at an angle of 270°. In the second case the top fiber 

was oriented at an angle of 45° and the bottom fiber at an angle of 315°. In the third case, 

the fibers were affixed to the edge of the body along the semi-minor axis. The top fiber 

was oriented at an angel of 45° and the bottom fiber at an angle of 315°. This third case 

was done in order to create a more streamlined object, an object whose fibers both were
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swept back and free from wake effects. All angles are with respect to the direction of the 

flow. Visualizations of the different models used can be found in figure 5.4, as well as, in 

appendix C.

In the first and the second cases the fibers, attached at the center of the body, had a 

length of 4 cm. In the third case the length of the fiber was reduced in order to compensate 

for the fiber being fixed along the edge. This was necessary to ensure that the fiber in the 

third case did not protruded further from the body than the fibers in the first and second 

cases. The following equation was used to determine the length of the fibers in the third 

case,

Fiber Length — 4 — Semi-Minor Radius. (5.1)

Due to the availability of better computing hardware, this study used the physics 

based mesh that is built into COMSOL, rather than the user controlled mesh which had 

been used in the equilibrium configuration study. The physics based mesh was chosen 

in order to reduce the numerical error in the simulations. This in no way invalidates the 

previous study, which was qualitatively similar to the physical experiments that were per

formed. This was merely an attempt to tighten up the numerical results and reduce any 

errors. The mesh density was set to "Fine" and consisted of 87,277 elements.

5.2 Biological Models

For the biological comparison two sets of two dimensional models were created 

in COMSOL Multi-physics based on biological organisms. The data for these models
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came from Determination o f Body Density for Twelve Bird Species, by Hamershock et 

al.13 In order to determine the densities of the twelve bird species, careful measurement 

were taken of, among other factors, the length, circumference, and wingspan of twelve 

specimens from each of the twelve species.13 These measurements were then averaged 

out to give a mean length, circumference, and wingspan for each of the twelve species 

measure.13 Note that we are not trying to model birds, just bird like shapes. Bird like 

shapes were chosen due to a lack of readily available data on the bodily dimensions of 

other types biological organisms.

In the first set of biological models, three different organisms were modeled using 

the data from Hamershock et al. These organisms were the Herring Gull, the House 

Sparrow, and the Canadian Goose. All three fiber orientations were investigated in this set 

of models. The fiber lengths were maintained at 4cm. Meanwhile, the eccentricity of the 

ellipsoidal body was modified to be in agreement with the general shape of the organism’s 

body. For all of the biological models that were created the area of the body was kept the 

same as the area of the ellipses that had previously been used.

In the second set of biological models, nine different organisms were modeled using 

the data from Hamershock et al.13 As before, the eccentricity of the ellipsoid was modified 

to be in agreement with the general shape of the organism’s body. In this set only the 90° 

case of fiber orientation was investigated. This orientation was chosen because, often when 

organisms are gliding in a steady state their appendages are roughly at a 90° orientation. 

Of course real appendages have joints and are significantly more complicated, however, 

only a qualitative idea for the forces involved was being sought. Furthermore, the length 

of the fibers were also modified in this set of models, so as to match length of organism’s 

presented in Hamershock et al.13 In all of the biological models that were created the
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area of the body was kept the same as the area of the ellipses that had previously been used.

In order to scale the biological models down to fit the computational domain the 

following equation was used,

1 oc2 _  c2 Organism Length 1.25 = Sb ----------- -----------
Organism Circumference 

2 k
(5.2)

Where 1.25 was the original radius of the 0.00 eccentricity ellipse and Sb is the scaling 

factor. The semi-major radius was then became,

Organism Length 
Semi-Major Radius = Sb----------- —----------.

Meanwhile the semi-minor radius became,

(5.3)

_ . , Organism Circumf erence
Semi-Minor Radius =  Sb --------------- ----------------- . (5.4)

2 k

As mentioned before fiber length was altered in the second set of biological models. 

This was done in order to get a more qualitative idea of the drag forces experienced by the 

biological models. The fiber length was based on the measurements of the wingspan re

ported by Hamershock et al.13 Like the body measurements, the wingspan measurements 

were also scaled. In order to scale the wingspan down so as to fit the computational do

main, first the ratio between the wingspan and body length was calculated. This was done 

using the equation,

Wingspan =  Sw • Organism Length. (5.5)
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Where Sw is the ratio of wingspan to organism length. Then the length of each fiber was

set to

Fiber Length =  Sw- Semi-Major Radius. (5.6)

The dimensions used for the second set of biological models can be found in Table 5.2.

Model Semi-Major Radius Semi-Minor Radius Fiber Length
D. Chicken 2.78397 0.56125 4.22153
R. Dove 2.98340 0.52373 5.87402
Mallard 3.20940 0.48685 4.55125
H. Sparrow 3.16092 0.49432 4.87487
H. Gull 3.15654 0.49501 7.50682
E. Starling 3.04393 0.51332 5.28086
C. Grackle 3.25777 0.47962 4.77260
C. Goose 3.04477 0.51318 5.39231
B. Cowbird 3.02547 0.51645 5.20394

Table 5.2: Dimensions of the biological models in centimeters.

For the second set of biological models the width of the channel was increased from 

18 cm to 50 cm. This was done in order to reduce the effect of the channel wall on the 

results of the simulations. The length of the channel remained constant at 50 cm, as in the 

previous simulations.

5.3 Convergence Tests

In order to determine the effect of computational parameters, two convergence tests 

were performed. The first convergence test was performed to determine what effect the 

various meshes had on the results of the numerical simulations. The second convergence 

test was performed to determine what effect the channel heigth had on the results of the

36



numerical simulations. In both tests the 0.00 eccentricity ellipsoid with fibers at 90° was 

used and the mean flow speed was set to 0.451 m/s.

For the mesh convergence test the steady state drag force and deformation angles

Figure 5.1: The two-dimensional triangular fine mesh generated in COMSOL for the fluid 
structure problem under investigation

were computed using each of the nine mesh density settings. The results of this test can 

be found in figure 5.2, where drag and deformation angle are shown as a function of mesh 

density. The density settings checked are, in order from coarsest to finest: ’Extremely 

Coarse’ (10701 elements), ’Extra Coarse’ (13883 elements), ’Coarser’ (21637 elements), 

’Coarse’ (36736 elements), ’Normal’ (53742 elements), ’Fine’ (87277 elements), ’Finer’ 

(160060 elements), ’Extra Fine’ (347474 elements), and ’Extremely Fine’ (589025 el

ements). The test cases that used the four coarsest meshes, Extremely Coarse, Extra 

Coarse, Coarser, and Coarse, failed to compute the entire simulation. The test cases that 

used the other five meshes successfully completed the computations. The test cases that 

used the three finest meshes, Extremely Fine, Extra Fine, and Finer, were deemed to take 

excessively long to compute. The computational times for each mesh setting can be found 

in table 5.3. All of the mesh density settings, which completed the computations, gave
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similar results with no more than a 2% difference between the highest and lowest drag 

values, and no more than a 4% between the largest and smallest deformation angles.

Mesh Density Computation Time

Normal 2 min, 52 sec

Fine 4 min, 57 sec

Finer 9 min, 33 sec

Extra Fine 23 min, 38 sec

Extremely Fine 46 min, 45 sec

Table 5.3: Comparison of the time taken to perform each numerical simulation arranged 
by mesh density.

As in the previous chapter, the computational domain was chosen to match with 

experimental configurations. Fourteen different channel heights were checked. These 

heights ranged from 13 cm to 78 cm in 5 cm intervals. The results of this test can be 

found in figure 5.3, where drag and bending are shown as a function of channel height. 

This test found that beyond 33 cm the channel height did not play a significant role in 

bending or drag. However, at the channel height this study was using, 18 cm, the channel’s 

height indeed contributed to the drag force and bending experienced by the ellipsoid fiber 

system. There was a nearly 69% change in both the drag force and deformation angle as 

the channel expands from 13 cm to 78 cm, with a smooth convergence beyond 33 cm. It 

is important to once again keep in mind the the convergence of drag force and deforma

tion angle with respect to h is not in question; h is dictated by experimental considerations.
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5.4 Checks for Accuracy

Since there were no physical experiments performed for this study, two checks were 

performed in order to gauge whether or not the numerical simulations were providing 

accurate results. First, a series of benchmarking simulations was performed and the results 

of those simulations were compared to the existing literature. Second, the divergence of 

the velocity field was checked for each of the numerical simulation that was run.

While the types of numerical simulations that were performed in this study are not 

new, the types bodies that were investigated have not been previously studied numeri

cally. Because of this there was no data in the existing literature to compare the results 

of this study to. In order to check that the results of this study were reasonable a series 

of benchmarking simulations was ran. Previous work with this kind of cylindrical body 

using COMSOL was performed by Cortes et al.7 Cortes et al. ran simulations of a fluid 

flow past a cylindrical body, with Reynolds numbers between 31.25 and 312.5.7 Using the 

results of their simulations, they calculated the Drag Coefficient of their two dimensional 

cylindrical body.7 They found that their Drag Coefficient was in close agreement with the 

Drag Coefficient for a cylindrical body in the existing literature.7 For our benchmarking 

simulations we copied the setup that Cortes et al.7 used, with the exception of the meshing. 

Cortes et al. used a different mesh density for each case. Their mesh density ranged from 

8474 to 17376 elements.7 The mesh that was used for our benchmarking simulations had 

its density held constant at 6510 elements. It is worth noting at this point that the mesh 

in our benchmarking simulations only has 6510 elements, whereas in our simulations the 

mesh has 87,277 elements. This is due to the geometry of the body. In our simulations the 

mesh becomes finer around the fibers and very fine around the tips of the fibers. This sub

stantially increases the number of elements in the mesh. Meanwhile, in the benchmarking 

simulations there were no fibers attached to the body.
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The results of our benchmarking simulations can be found in table 5.4. The computed 

Drag Coefficient is the value that was calculated from the results of these benchmarking 

simulations. Corte’s Drag Coefficient is what was reported by Cortes et al. The Literature 

Drag coefficient is from the existing literature.7 The Error vs Lit is the percent error in our 

computed Drag coefficient versus that found in the literature.

Reynolds Number Our Computed Q Cortes’ Cd Literature Cd Error vs Lit
31.25 3.726884 2.937875 2.903 28.38%

59.375 2.321026 2.252767 2.258 2.79%
78.125 1.623477 1.609433 1.6129 0.65%

90.6 1.541203 1.551598 1.5564 0.97%
100 1.472457 1.501333 1.5 1.83%

312.5 1.432713 1.4225 1.3225 8.33%

Table 5.4: Results of the benchmarking simulations. The Computed Drag Coefficient is the 
value that was calculated from the results of these benchmarking simulations. The Cortes’ 
Drag Coefficient is what was reported by Cortes et al. The Literature Drag coefficient is 
from the existing literature. The Error vs Lit is the percent error in our computed Drag 
coefficient versus that found in the literature.

In all of the simulations that were ran the divergence of the velocity field, V • u, was 

checked. Since the fluid flow is incompressible, by conservation of mass, V • u is supposed 

to be equal to zero. However, COMSOL uses numerical solvers. For that reason V ■ u is 

unlikely to be exactly zero. Instead V • u should be a reasonably small number. If V • u is 

large, then it is an indication that the simulations are accumulating errors and generating 

inaccurate results. In all of the simulations that were ran, the largest value for V • u that was 

produced was of 6.33 x 10~3. This value occurred during the benchmarking simulations, 

when the velocity of the flow was set to 12.5 m/s. During the investigative simulations, 

with velocities ranging from 0.009 to 0.451 m/s, the divergence was consistently between 

the orders of 10~6 to 10“4. These values were deemed sufficiently small for the purposes 

of this study.
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5.5 Results

These simulations show that ellipsoidal bodies with higher eccentricity experience 

lower drag forces than bodies with lower eccentricity (figure 5.5). There was a slight 

reduction in the drag force of 0.50 eccentricity body versus the 0.00 eccentricity body. 

However, the reduction in the drag force experienced by the 0.99 eccentricity model 

was considerably greater. This reduction was versus both the 0.00 eccentricity and the 

0.50 eccentricity models. In all three of the eccentricities studied, the models with fibers 

oriented 45° fixed along the edge consistently experienced the lowest drag force. This was 

followed by the models with fibers oriented at 45°, which experienced a slightly higher 

drag force. Meanwhile, the models with fibers oriented at 90° experienced the largest drag 

force, by a considerable margin.

These simulations further show that fibers which are oriented with the flow experi

ence less bending than fibers which are oriented perpendicular to the flow (figure 5.6). 

This result is in agreement with the findings of the single fiber equilibrium configuration 

study. There was a slight reduction in the bending between the models with fibers oriented 

at 45° fixed along the edge versus the models with fibers oriented at 45°. While, the 

reduction in bending between the models with fibers oriented at 45°, both fixed along the 

edge and fixed at the center, versus the models with fibers oriented at 45° was considerably 

larger. It is interesting to note that the reduction in bending was not consistent between all 

three eccentricities investigated.

In both cases where the fibers were fixed at the center the 0.00 eccentricity models 

experienced the most bending. This was followed by the 0.50 eccentricity models, which 

experienced slightly less bending. Finally, the 0.99 eccentricity models experienced the 

least amount of bending. In the case where the fibers were fixed along the edge this pattern
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was reversed. The 0.99 eccentricity model experienced the most bending. Meanwhile 

the 0.00 eccentricity model experienced the least amount of bending. This reversal of 

the bending profile likely stems from the how the fiber length for bodies with fibers 

oriented at 45° fixed along the edge was determined. In equation (5.1) the length of the 

semi-minor radius is subtracted from the initial length of the fiber. This in turn results 

in the 0.99 eccentricity model having the longest fibers, which are thus more readily 

deformed. Note however, that even though the bending profile is reversed, the bodies with 

fibers oriented at 45° fixed along the edge sustained less bending than did bodies with 

other fiber orientations. Which is to be expected, since the bodies with fibers oriented at 

45° fixed along the edge are more streamlined than the bodies with other fiber orientations.

Taking all of the data together, these simulations reveal that drag was the least for 

models with high eccentricity and fibers positioned with the fluid flow (figure 5.7). In par

ticular the 0.99 eccentricity model with fibers oriented at 45° from the edge experienced 

the lowest drag force. From there the drag force increased in every case, with the 0.00 

eccentricity model with fibers oriented at 90° experiencing the greatest drag forces. These 

findings make intuitive sense, as more streamlined systems are expected to experience 

less drag than less streamlined systems.

The reduction in drag force was most strongly associated with the orientation of the 

fiber. All of the models with fibers oriented at 45°, both fixed along the edge and fixed 

at the center, experienced significantly less drag than the models with fibers oriented at 

90°. The eccentricity of the model was also associated with a reduction in drag force, 

thought not as strongly as fiber orientation. The higher eccentricity models consistently 

experienced lower drag forces than the lower eccentricity models. Both of these findings 

are consistent with earlier observations.

42



Three biological models were also investigated and compared to this data. The 

biological models were all highly eccentric ellipsoids with eccentricities between 0.97 

and 0.99. Even at these high eccentricities, more highly eccentric models experienced 

lower drag forces compared to their slightly less eccentric counterparts (figure 5.8).

Drag, or Vogel, exponents were also calculated and found to be in agreement with 

the existing literature. They ranged from a high of 1.271 to a low of 1.158. The highest 

was observed in the 0.50 eccentricity case with fibers oriented at 90°. The lowest was 

observed in the 0.00 eccentricity case with fibers oriented at 45°. The observed Vogel 

exponents for each eccentricity and orientation can be found in table 5.5.

0.00 Eccentricity 0.50 Eccentricity 0.99 Eccentricity
45° from the edge 1.209 1.206 1.170
45° 1.158 1.162 1.162
90° 1.269 1.271 1.270

Table 5.5: The drag exponents for bodies of varying eccentricities and fiber orientations 
based on least squares fit of our 2D simulations.

5.6 Biologically Relevant Results

The biological results are slightly more complicated (figure 5.11). In contrast to the 

other investigations of this study, the length of the fiber was varied in these investigations. 

This revealed that in general, drag force does decrease with higher eccentricity (figure 

5.9). However, there was a much stronger correlation between fiber length and drag force 

(figure 5.10). While in not every case the more eccentric bodies were subjected to a lower 

drag force, usually a higher eccentricity amounted to lower drag. By comparison, in each 

and every case that was investigated, the models with shorter fibers experienced a lower
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drag force compared to the models with longer fibers.
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Figure 5.2: Results of Mesh Convergence Study: drag force and deformation angle as 
functions of mesh density.
1 = ’Normal’, 2 = ’Fine’, 3 = ’Finer’, 4 = ’Extra Fine’, 5 = ’Extremely Fine’.

45



Fi
na

l D
ra

g 
Fo

rc
e 

/=m
al

 T
op

 F
ib

er
 D

ef
or

m
at

io
n 

A
ng

le

40

30

20

10

25 50

Channel Height (cm)

75

Channel Height (cm)
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Figure 5.4: Models in steady state configuration
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Drag Vs Fiber Orientation and Eccentricity

Figure 5.7: Drag Versus Fiber Orientation and Eccentricity. This graph shows that the 
drag force the ellipsoid-fiber system experiences is more strongly associated with the ori
entation of the fibers than the eccentricity of the body. Orientation 1: 90°, Orientation 2: 
45°, Orientation 3: 45° fixed along the edge
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Figure 5.9: Biological Model: Eccentricity vs Drag Force

51



Organism Drag Vs Fiber Length

Figure 5.10: Biological Model: Fiber Length vs Drag Force
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Organism Drag Vs Eccentricity and Fiber Length

Figure 5.11: Biological Model: Drag Vs Eccentricity and Fiber Length
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Chapter 6

Conclusion

In summary, this thesis examines the configurations of flexible fibers in a flow 

field through experiments and two dimensional numerical modeling. The results show 

qualitative similarity between experiment and two dimensional numerical simulation. Our 

investigations reveal that the length, orientation, and the placement of the fiber cause 

significant changes to the drag that the system experiences and the resulting deformation 

that the fibers undergo. These investigations further reveal that the eccentricity of the 

elliptical body, though less influential than fiber length, orientation, and placement, still 

causes changes to the drag that the system experiences and the resulting deformation that 

the fibers undergo.

The length of the fibers cause significant changes to the drag that the system experi

ences and the resulting deformation that the fibers undergo. Ellipsoid-fiber systems with 

longer fibers experience significantly more drag and fiber deformation. While Ellipsoid- 

fiber systems with shorter fibers experience less drag and less fiber deformation. This 

makes sense as the drag force a system experiences has a linear relationship to the length
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of the system.

The orientation, and the placement of the fibers cause significant changes to the drag 

that the system experiences and the resulting deformation that the fibers undergo. Systems 

with fibers oriented with the flow experience less fiber deformation than than systems 

with fibers oriented either into the flow or perpendicular to the flow. Likewise, systems 

with fibers oriented with the flow experience less drag on the system when compared to 

systems with fibers oriented either into the flow or perpendicular to the flow. Meanwhile, 

systems with fibers which are placed in the wake of the ellipsoidal body experience an 

increase in the drag on the system and a greater degree of fiber deformation compared 

with systems whose fibers are at the same orientation and placed outside the wake of the 

ellipsoidal body.

The eccentricity of the elliptical body, though less influential than fiber length, 

orientation, and placement, still causes changes to the drag that the system experiences 

and the resulting deformation that the fibers undergo. All other factors being held equal, 

the systems with a more highly eccentric body will experience lower drag and less 

fiber deformation compared to their less eccentric counterparts. However, the length, 

orientation, and placement of the fibers are the driving forces behind the drag that the 

system experiences, and the deformation that the fibers undergo. Systems with highly 

eccentric bodies and long fibers will experience greater drag and more fiber deformation 

than systems with less eccentric bodies and short fibers.

Putting all these findings together, we can conclude that more streamlined systems 

will experience less drag than less streamlined systems. Likewise, fibers attached to 

more streamlined systems will experience less deformation than fibers attached to less
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streamlined systems. This is a fairly intuitive finding, we naturally expect bodies that have 

to travel through a fluid to be streamlined. For example, fish have highly eccentric bodies 

and short fins. Likewise, birds have very narrow and elongated bodies.

Several significant questions remain and will be addressed in future reports on this 

subject. These include (i) the effects of fiber length versus fiber orientation on drag,

(ii) The effect of fiber length, orientation, and body eccentricity on the time dependent 

fluttering of the fiber at higher Reynolds numbers, (iii) The effect of body eccentricity on 

the wake structure of the flow past the fiber in steady and unsteady conditions, (iv) The 

effect a third fiber attached to the rear of the ellipsoidal body, representing a tail, has on 

the system. Furthermore, a more detailed study of eccentricity versus fiber length needs 

to be conducted in order to obtain a more complete picture of the effects that eccentricity 

and fiber length have on drag. Finally, past theoretical studies of this problem, though 

rigorous, have been conducted in the absence of an elliptical body structure. Creating 

a theoretical model of the flexible fiber problem that accounts for the existence of an 

elliptical body structure must also be addressed in future studies.
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Appendix A

Numerical Parameters: Equilibrium 

Configuration

Notation Description Values
Hd Domain Height 0.18 [m]
Ld Domain Length 0.5 [m]

hbar flag height 0.0005 [m]
1bar length of flag 0.06 [m]

C u c ir e x coordinate of cylinder 0.09 [m]
C u c ir e y coordinate of cylinder 0.09 [m]

r c irc radius of cylinder 0.0125 [m]
Ps density of solid 1000 [kg/m3]
v , Poisson ratio 0.4
Ps Shear modulus 0.7xlO9 [kg/(ms2)]
Es 2jUs(l+Vy) (Young’s modulus) -
Pf fluid density 1000 [kg/m3]

Vf Fluid kinematic viscosity 0.001 [m2/s]

P f V f p f  (fluid dynamic viscosity)
fA n e a n mean inlet flow 0.009-0.451 [m/s]

P Ps
P f

-
Ae E s

Pf*V m ean
-

Re t / m e a A f o  (Reynold number) 0-30,000
a initial angle of the fiber 135°(225°), 90°(270°), 45°(315°)

Table A. 1 : The table lists the numerical values of parameters assumed in the Equilibrium 
Configuration numerical investigations.
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Appendix B

Numerical Parameters: Optimal Body 

Shape
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Notation Description Values
X radius Semi-Major Radius 0.0125 -0.0333 (m)
Y radius Semi-Minor Radius 0.0047 - 0.0125 (m)
£/mean Mean inlet flow 0.009 - 0.451 (m/s)

H d Domain Height 0.18 (m)
L d Domain Length 0.5 (m)

h b a r Fiber Height 0.0005 (m)
Ibar Fiber Length 0.04 (m)

C x circ x coordinate of ellipse 0.09 (m)
C y tir c y coordinate of ellipse 0.09 (m)

P s Density of solid 1000 (kg/m3)
Vs Poisson ration 0.4
P s Shear modulus 0.7 x 109 (kg/(m s2))
Es 2jUy(l +  v5) (Young’s Modulus) -
p f Fluid density 1000 (kg/m3)
v f Fluid kinematic viscosity 0.001 (m2/s)
P f v f P f -
p Ps

p j
-

Ae E s
P f'^ m ean

-
Re umeanly radius (Reynolds number) 0-312.5
a Initial angle of the fiber 90° (270°), 45° (320°)

Table B. 1: The table lists the numerical values of parameters assumed in the Optimal Body 
Shape numerical investigations.
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Appendix C

High Definition Images

High Definition versions of the images in figure 11.

Figure C. 1: 0.00 eccentricity model with fibers at 45° fixed along the edge, at time 5 
seconds
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Figure C.2: 0.00 eccentricity model with fibers at 45°, at time 5 seconds

Figure C.3: 0.00 eccentricity model with fibers at 90°, at time 5 seconds
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Figure C.4: 0.50 eccentricity model with fibers at 45° fixed along the edge, at time 5 
seconds

Figure C.5: 0.50 eccentricity model with fibers at 45°, at time 5 seconds
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Figure C.6: 0.50 eccentricity model with fibers at 90°, at time 5 seconds

Figure C.7: 0.99 eccentricity model with fibers at 45° fixed along the edge, at time 5 
seconds
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Figure C.8: 0.99 eccentricity model with fibers at 45°, at time 5 seconds

Figure C.9: 0.99 eccentricity model with fibers at 90°, at time 5 seconds
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Appendix D

Bending Comparisons
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Appendix E

Drag Comparisons
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