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Abstract

During the summer, seagrass blades are frequently released into the water column 

as a method to reduce respiration demands of the plant and through physical disruption of 

the bed (e.g., crab foraging, boat propellers). This wrack has the potential to serve as both 

food and habitat for organisms dislodged or actively moving within the system. The 

purpose of this research was to determine how benthic organisms may use floating wrack 

as a food resource and shelter. Three experimental floating wrack bag treatments were 

assembled containing using artificial Zoster a marina (i.e., poly-ribbon), Z. marina blades, 

and a wrack bag control in order to examine if organisms prefer to use wrack for food, 

shelter, or both. Wrack bags were placed in Bamegat Bay, NJ during the summer of 2015 

with collection and replacement of experimental bags occurring bi-weekly. Benthic core 

samples were taken as well to determine if the benthic organisms matched that of the 

fauna found in floating wrack. The major organisms identified in this study include 

Peracarid crustacean dominated by Corophiidae, Aoridae, Caprellidae, Idotea balthica, 

Erichsonella spp., Gammaridae, and Melitidae. In general, the results demonstrate a clear 

preference by amphipods and isopods for Z. marina wrack over the artificial Z. marina. 

The same taxa found in treatment bags were also found in core samples, albeit their 

relative abundances differed among the different taxa. The stable isotope analysis showed 

carbon signatures for faunal taxa similar to algae and/or Ruppia maritima. However, it 

appears that isopods showed combined N and C signatures similar to R. maritima, while 

the amphipods showed signatures closer to algal food resources. When assessing the 

overall results of my research, results showed that there was a lack of solitary response to 

the artificial Z  marina. Therefore, I conclude that benthic organisms use wrack as refuge
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and potential transport mechanism, but also may obtain trophic resources from them. 

However, the trophic resources are not coming from Z  marina, but most likely from 

associated epiphytic algae. As such, there may be a potential benthic-pelagic link 

occurring due to a clear distribution of organisms from the benthos into the pelagic zone 

via floating wrack.
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Introduction

Seagrass wrack is floating vegetation found in estuaries and oceans around the 

world. Seagrass wrack can be beneficial in many aspects like when it is collected for 

fertilizer and as a soil improver as seen in South Australia (Kirkman and Kendrick,

1997). Seagrass wrack coming from Zostera marina (eelgrass) can promote diversity in 

saltmarshes by shading soil and reducing physical stress and/or by providing nutrients to 

nutrient-poor soil (Chapman et al., 2004). The grasses may come to the surface after 

catastrophic events or in some cases increases in temperature causes blade release in 

order minimize respiration demands of the plant. Waycott et al. (2009) notes natural 

disturbances that are most commonly responsible for seagrass loss include hurricanes, 

disease, and grazing by herbivores. Human activities most affecting seagrasses are those 

which alter water quality or clarity and include nutrient and sediment loading from runoff 

and sewage disposal, dredging and filling, pollution, upland development, and certain 

fishing practices (Waycott et al., 2009). However, recreational activities like boating 

often result in blades being cut or entire plants being uprooted. As such, seagrass wrack 

can be substantial at times, but little research has been done to identify the role seagrass 

wrack may play in estuarine systems. However, another group of estuarine vascular 

plants, salt marsh grasses, also produce large quantities of floating wrack and they have 

been studied extensively.

The salt marsh plant Spartina alterniflora has been extensively researched in 

many aspects such as production in estuarine systems and fate and transport of wrack 

biomass (Teal, 1962; Squires and Good, 1974). Marsh plant’s biomass entering detrital 

pathways has been proposed to explain high secondary production of estuarine

10



consumers (Nixon 1988; Keller et al., 1990; Mallin and Paerl, 1994; Deegan et al., 1995). 

Vascular plants are hard to break down because they have lignin and cellulose, but fungi 

and bacteria can degrade these plants. In aerobic conditions, fungi may break down cord 

grass faster than bacteria in estuarine systems (May, 1974; Sieburth et al., 1974; Gessner, 

1977, 1978; Rublee et al., 1978). Spartina spp. is generally shed during the fall and 

winter times when the plants normally die off and are then deposited into estuarine 

systems. During this time, bacteria and fungi do not have high metabolic activity and 

break down the marsh grass slowly. During this period and into the spring, the salt marsh 

plant biomass can be liberated and enter coastal waters.

Through previous unpublished experimentation I conducted, it was determined 

that when Zoster a marina grass blades are at the surface, there is a presence of benthic 

organisms such as amphipods and isopods. Benthic organisms could utilize the grass 

blades for food, protection, or potentially as a transport mechanism which provides both. 

The presence of these organisms shows that benthic fauna are an option for pelagic 

predators. Food type may be considered as a universal mechanism that partly determines 

the presence of grazers in seagrass habitats and is, in the absence of a predator, more 

important than shelter (Bostrom and Mattlic, 1999). The possibility of this can link 

interactions between benthic and pelagic food webs, which can help scientists determine 

food web dynamics between pelagic and benthic individuals via seagrass wrack.

Stable Isotopes are used as integrators and tracers of both natural and 

experimental ecological processes (Robinson, 2001). Knowing where food sources derive 

from is important in understanding trophic linkages. 515N values are related to inorganic 

Nitrogen incorporation by seagrasses, algae, sediment, and the water column (Fourqurean
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et al., 1997). 813C values are determined primarily from photosynthesis, but seagrasses 

obtain their high values from their ability to use bicarbonate as an inorganic carbon 

source (Beer et al., 2002). Further analysis into both Carbon and Nitrogen values from 

this research can determine food sources of different invertebrates. If organisms are 

deriving nutrition from the floating wrack, then their isotopic signature should match to 

some degree the potential food resources in the system. Consequently, analyzing the 

stable isotopes of Carbon and Nitrogen can identity which invertebrates are utilizing what 

food sources. The 813C of seagrasses is often depth-related and shows variations 

according to season, location, and community structure (Rose and Dawes, 1999; Boyce et 

al., 2001; Anderson and Fourqurean, 2003; Lepoint et al., 2003; Vizzini et al., 2003). 

Essentially, herbivorous organisms should show similarities in 813C content to their food 

sources and relative enrichment in 815N as you increase trophic level (Middelburg,

2014). Coupling these types of data with density of organisms in floating wrack should 

help to distinguish the relative importance of floating wrack as food and habitat for 

associated organisms.

Site Analysis and Research Objectives

The study site was located in Bamegat Bay adjacent to Island Beach State Park, 

New Jersey. The exact coordinates were 39.79074 degrees north, 74.09881 degrees west. 

The bay is relatively shallow (average depth at mean low water 1.7 m; Durrand, 1984) 

with water temperatures ranging from -2  to 28 °C (Able et al., 1992). Experiments were 

located about 10 meters off the coast line and the core samples were taken within 

seagrass beds close to the wrack experiment.
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Figure 1. A google map representation of my study site.
https://www.google.com/maps/place/39047'25.9%22N+74°05'56.5%22W/@39.7899874, 
-74.0979248,306m/data=!3ml! 1 e3 !4m2!3ml! 1 s0x0:0x0

Research Objective A: Floating seagrass wrack has the potential to support organisms 

seeking refuge, trophic resources, or both. If organisms are seeking refuge, there should 

be no difference between experimental treatments providing refuge with or without 

trophic resources.

Research Objective B: Do local populations of invertebrates act as the primary source of 

organisms occupying floating wrack. If they do, there should be a positive relationship 

between the abundance of these organisms in benthic cores and their relative abundance 

in floating wrack.
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Methodology

Research Objective A

In order to analyze food and structure of seagrass wrack, a controlled experiment 

using a control leaf litter bag with nothing in it, a leaf litter bag with artificial Z  marina 

inside of it, and finally a leaf litter bag with natural Z  marina inside was conducted. 

Artificial plants have been used in past experiments to study ecological processes within 

seagrass ecosystems (Bell et al., 1985; Virnstein et ah, 1986; Sogard, 1989). The blank

'j
litter bag was used as a structural control and consisted of a 400 cm (20x20cm) plastic 

mesh ‘envelope’ (5 mm mesh). The other two treatments used the same envelope, but had 

either artificial Z  marina blades or field collected floating Z. marina blades. Artificial 

grass for Z  marina was constructed from green poly-ribbon. This ribbon was measured 

to 20 meters, which when compressed into a pitcher was measured to be approximately 

500ml and placed into leaf litter bags. To construct the treatment using natural Z. marina, 

mesh litter bags were brought to the field where they were filled with ~500ml of Z. 

marina wrack to approximate the structural complexity provided by the artificial Z. 

marina treatments. Each litter bag was then attached to a buoy using a cable tie that was 

placed above a knot to prevent sinking of the bag and simulate floating wrack. Each 

individual litter bag treatment was then anchored to the bottom by tying the line to a 

submerged brick.

The in situ site of experimentation is located off of Island Beach State Park which 

contains Z. marina and R. maritima grass beds. Five empty litter bags (control), five litter 

bags with artificial Z. marina, and five litter bags with Z. marina were placed out into the
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water (N=15). Experimental treatments were allowed to undergo colonization for 

approximately two weeks when treatments were retrieved and new, independent wrack 

bags were replaced (Table 1). When experimental treatments were collected, the wrack 

bag was placed directly into a Ziploc bag and then cut from the buoy assembly. Each 

treatment was labeled with date of collection and treatment and then transported to MSU 

for processing and evaluation. After return to MSU, samples were frozen until processed 

in the laboratory.

Table 1. Sampling Event timing and collection of experimental wrack bags. Due to 
extraneous events (e.g., storms, human curiosity), not all experimental treatment wrack 
bags placed were retrieved during the subsequent sampling time frame, resulting in 
unequal sample sizes for some events.

Date Placed in Field Treatments Placed Date Retrieved Treatments

Retrieved

June 17,2015 5 Control

5 Artificial Zostera 

5 Natural Zostera

June 30, 2015 5 Control

5 Artificial Zostera 

5 Natural Zostera

June 30, 2015 5 Control

5 Artificial Zostera 

5 Natural Zostera

July 14,2015 5 Control

4 Artificial Zostera 

4 Natural Zostera

July 14,2015 5 Control

5 Artificial Zostera 

5 Natural Zostera

July 29, 2015 4 Control

4 Artificial Zostera

5 Natural Zostera

July 29, 2015 5 Control August 12, 2015 2 Control

15



5 Artificial Zostera 

5 Naturai Zostera

3 Artificial Zostera 

2 Naturai Zostera

August 12, 2015 5 Control August 26, 2015 2 Control

5 Artificial Zostera 4 Artificial Zostera

5 Naturai Zostera 2 Naturai Zostera

August 26, 2015 5 Control September 13,2015 4 Control

5 Artificial Zostera 4 Artificial Zostera

5 Naturai Zostera 4 Naturai Zostera

Fauna Analysis

To determine the abundance of organisms associated with the floating wrack 

bags, samples were thawed and then processed in the following manner. Thawed 

samples were sieved through a graduated sieve series similar to the process outlined in 

Bologna (2006). Specifically, samples were sieved through 4mm, 2, mm, 1mm. 0.71mm 

and finally 0.5mm sieve. Each sieve size was then evaluated for each sample. Organisms 

were identified to lowest reasonable taxon and enumerated. All individuals from a given 

sample were then transferred into 95% ethanol for long-term storage.

Research Objective B

To assess the distribution and abundance of potential organisms which might be 

found in association with the floating wrack bag experiment, 6” benthic core samples 

were collected on the same dates that wrack bag experiments were placed/retrieved
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(Table 1). Specifically, 5 core samples were collected by pushing the corer into Z 

marina grass beds, capping and then removing the sample. In the field, the plant biomass 

was separated from the core and frozen until laboratory analysis. The remaining material 

(i.e., sediments and fauna) were field sieved through a 0.71mm sieve, placed into sample 

jars and preserved in 95% ethanol. Both types of samples were returned to MSU where 

they were either frozen (plant) or stained with Rose Bengal (fauna) prior to laboratory 

analysis.

Core Flora Analysis

The grass from experimental wrack bags was thawed and then placed on a tray. 

Spirorbids and other sessile objects attached to the grass were scraped off. After the grass 

was cleaned from the excess sessile objects and organisms, the grass was then placed into 

a large aluminum pan that was afterwards, dried in a drying oven at 80°C and weighed 

after a drying period of one week. Samples were then placed into a muffle furnace at 

500°C for at least 8 hours which was afterwards removed and weighed to determine the 

ash weight. The ash weight was then recorded and the difference between dry weight and 

ashed weight provided the ash free dry weight (AFDW) of the sample. Grass from core 

samples followed the same cleaning process, but it was separated into above ground 

biomass (shoots), below ground biomass (roots and rhizome), algae, and detritus. The 

leaf shoot lengths and widths were recorded to the nearest millimeter before being placed 

into a pan and the total number of shoots in a sample was recorded. Each component of a 

grass core sample (i.e., above, below, algae, and detritus) followed the same drying and 

ashing process as the leaf litter bags.
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Carbon and Nitrogen Isotope Analysis

Samples of Z  marina blades, R. maritima blades, green algae (Ulva lactuca), and 

several of the most common faunal organisms associated with the wrack were isolated 

and sent to Cornell University’s Isotopic Analysis Laboratory. The fauna included Idotea 

balthica, Erichsonella spp., Melitidae, Aoridae, and Caprellidae. At Cornell, samples 

underwent Isotopic analysis to determine their individual 813C and 815N content which 

could then show trophic linkages to a food resource. For the sample submitted for my 

research Cornell stated that they used, “the standard deviation for the internal Deer 

standard was 0.11 parts per thousand for Nitrogen 15 and 0.06 parts per thousand for 

Carbon 13” (Cornell Data Interpretation guide). Also according to the guide, the values 

obtained between “500mV and 14000mV for Nitrogen 15 had an error of 0.49 parts per 

thousand and 300mV and 12000mV for Carbon 13 had an error of 0.28 parts per 

thousand” (Cornell Data Interpretation Guide). Results from these analyses were then 

plotted to assess potential trophic linkages among the three primary producers and the 

content of the grazing organisms.

Statistical Analyses

To determine the spatial and temporal patterns of fauna using the experimental 

wrack bags and to assess these patterns in benthic cores, the following statistical analyses 

were conducted. A One-Way ANOVA (PROC GLM, SAS ®) with date of collection as 

the independent variable was used to assess differences among dates from core data 

related to plant biomass and animal densities. A Two-Way ANO VA with wrack bag 

treatment and date of collection as independent variables was used to assess differences
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among treatments and date of collection for animals and determine if they demonstrate a 

preference among the treatments. Finally, relationships among organisms and floral 

biomass components within core samples were determined using a correlation analysis 

(PROC CORR, SAS ®) as well as relationships among organisms using the experimental 

wrack bags.

Results

Experimental Treatment Bags

Experimental Wrack Bags Results showed that significantly more organisms were 

collected from natural Z  marina compared to Artificial Z. marina and control treatments 

(F2,49= 30.26, P< 0.0001; Figure 2). Additionally, there were significant differences 

among dates of collection ^ 5  49= 23.5, P< 0.0001). Specifically, more animals were 

collected on June 30, August 26, and September 13 as compared to July 14 through 

August 12 (Figure 2). The most abundant organisms from samples were amphipod and 

isopod taxa including: Aoridae, Phoxocephalidae, Melitidae, Corophiidae, Gammaridae, 

Caprellidae, Erichsonella spp., and Idotea balthica. Analyzing the temporal trends of 

wrack bags, natural Z  marina wrack bags are preferred over artificial Z. marina wrack 

bags and control bags from June until August, but in September there is an increase in 

organisms utilizing the artificial wrack bags. A full listing of all taxa identified during the 

experiment are listed in Appendix 2.
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Figure 2. Temporal trends in the average abundance of dominant organisms within 
treatment bags for the dates of collection.

When assessing the organisms that caused the switch from Z  marina wrack bags 

to artificial wrack bags, it appears that Caprellidae populations cause the preference to 

alter. Without Caprellidae, as illustrated in Figure 3, the trend is normalized with Z 

marina being the most preferred microhabitat as compared to artificial Z  marina and 

control treatment bags. Given that Caprellidae were equally abundant among all 

treatments, including the controls (Figure 2), their response is most likely a response to 

the mesh associated with the wrack bags and not indicative of any habitat preference.
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Figure 3. The average abundance of dominant organisms within treatment bags 
excluding Caprellidae.

Further analysis also shows that the most dominant organisms prefer Z  marina treatment 

bags over artificial and control bags. While overall results showed natural Z marina 

treatment bags were favored over artificial and control bags, individual taxa also showed 

preferences associated with food and/or refuge (Table 2). Specifically, Aoridae were 

significantly more abundant in Z  marina bags and Artificial Z  marina bags as compared 

to controls (F2,49=5.52, P< 0.0068; Table 2). Furthermore, Aoridae showed significant 

differences among collection dates (Fs,49=22.82, P< 0.0001) with significantly more 

collected in September compared to other dates (Figure 3). Melitidae were significantly 

more abundant in Z. marina and Artificial Z. marina treatments as compared to controls 

(F2,49=64.07, P< 0.0001) (Table 2.). Melitidae also were significant in terms of collection 

dates (F5 49=25.12, P< 0.0001) with the majority of Melitidae collected in every date 

except September (Figure 3). Corophiidae populations were collected in Z. marina and 

Artificial Z marina treatments equally, but were found less or about at equally as much 

in control bags (F2.49=64.07, P< 0.0001; Table 2). Corophiidae were significant in terms
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of collection dates (F5,49=3.69, P< 0.0064) with significantly fewer being collected in 

September.

Table 2. Prevalent Taxa relative preference among experimental treatments. Significance 
levels provided as: * P< 0.05, ** P< 0.001, *** P< 0.0001; with significant differences 
distinguished as >. NS indicates no significant differences, but order of preference is 
Dased on total abundance.
ABUNDANT TAXA Treatment Preference

Aoridae* Z marina > Artificial Z  marina = Control

Melitidae*** Z. marina > Artificial Z  marina = Control

Corophiidae* Z  marina = Artificial Z. marina > Control

Gammaridae NS Z  marina = Artificial Z  marina = Control

Caprellidae NS Z  marina = Artificial Z  marina = Control

Erichsonella spp. NS Z. marina = Artificial Z. marina = Control

Idotea balthica NS Z marina = Artificial Z. marina = Control

The correlation analysis showed numerous relationships among the taxa identified 

(Table 3). Among all taxa, the only significant relationships were positive. Specifically 

Aoridae, Phoxocephalidae, Melitidae, and Gammaridae were all significantly related to 

one another. Melitidae also showed significance with Caprellidae. Corophiidae, 

Erichsonella spp., and Idotea balthica showed no significant relationships with any other 

organisms.
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Table 3. Correlation analyses among taxa identified associated with the experimental 
wrack bags. Values in table represent R-values between individual taxa. Significant 
relationships designated as * P < 0.05, **P < 0.01, *** P< 0.001. Taxa abbreviations: 
Aor=Aoridae, Phoxo=Phoxocephalidae, Melit=Melitidae, Coro=Corophiidae,
Capre=Caprellidae, Gam=Gammaridae, EY\c\\=Erichsonella, IdBal= Idotea balthica

Aor Phoxo Melit Coro Capre Gam Erich IdBal

Aor 1 0.68*** Q ^4*** -0.11 0.47
0.84**
* -0.11 -0.2

Phoxo
0.68**
* 1 0.55** -0.02 0.29

0.66**
* 0.33 0.14

Melit
0.64**
* 0.55** 1 0.04 0 9i*** 0.44** 0.1 -0.09

Coro -0.11 -0.02 0.04 1 0.16 -0.14 -0.08 0.38
Capre 0.47 0.29 0 9i*** 0.16 1 0.27 -0.09 -0.05

Gam
0.84**
* 0.66*** 0.44** -0.14 0.27 1 -0.06 -0.07

Erich -0.11 0.33 0.1 -0.08 -0.09 -0.06 1 0.16
IdBal -0.2 0.14 -0.09 0.38 -0.05 -0.07 0.16 1

Temporal Trends for the Dominant Taxa 

Melitidae Population Trends in Treatment Bags

The trend in Melitidae suggests a strong preference for Z. marina wrack (Figure 

4), but also a seasonal signal. Melitidae showed significant differences among dates of 

collection and treatment type (Fs,49=38.97, P< 0.0001, F2,49=610.5, P< 0.0001). Initial 

colonization was high in June with a rapid drop in early July. However, their abundance 

in the floating wrack continued to increase throughout the summer then declined 

dramatically in September. This suggests that they may be active movers during the 

summer, but as fall approaches they actively seek refuge in the benthos.
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Figure 4. Temporal trends in Melitidae populations from the Experimental Wrack Bags.

Aoridae Population Trends in Treatment Bags

The Aoridae population within treatment bags follows the standard trend of Z  

marina treatment bags being preferred over artificial Z. marina and control (Figure 5). 

Aoridae populations show significant differences among dates and treatment type 

(F5,49=32.5, P< 0.0001, F2,49=6.4, P< 0.0004) with significantly more occurring in 

September and in Z  marina experimental treatments. The abundance spike on August 12, 

2015 in the Z. marina treatments is unexplainable, but might reflect a storm event during 

that time dislodging benthic individuals who colonized the treatment providing refuge 

and trophic resources.
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Figure 5. Temporal trends in Aoridae populations from the Experimental Wrack Bags.

Caprellidae Population Trends in Treatment Bags

Caprellidae population trends show initial colonization of wrack bags in June with 

a preference for Z  marina, but later in the experiment there is a massive and significant 

increase in their population in September ^5,49=6.6, p<0.0001), with no apparent habitat 

choice and the lowest abundances occurring in the Z  marina treatments (Figure 6). This 

increase in abundance most likely is a result of seasonal reproduction and their lack of 

habitat preference may reflect their small size and the mesh associated with the mesh bag 

providing adequate refuge quality.
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Figure 6. Temporal trends in Caprellidae populations from the Experimental Wrack 
Bags.

Core Samples 

Floral Analyses

The biomass of above and below ground Z. marina from core samples appears to 

increase from June into July, but then decreases from August into September (Figure 7) 

and suggests a typical seasonal growth pattern. Along with this pattern is the increase in 

detrital material observed in August, suggesting the release of Z. marina leaves 

accumulating on the bottom. In terms of plant biomass, there was no significance 

difference between below/above ground biomass, detritus, or algae among all the dates. 

However, there was positive correlation between below and above ground biomass of Z  

marina (r value= 0.4768 P< 0.0067).
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algae, and detritus recovered from core samples against the date per meter square.

Core Faunal Analyses

The overall density of major taxa from benthic cores shows substantial variability 

from June through to September (Figure 8). This may reflect natural reproductive cycles, 

emigration, predation, or mobile organism leaving the floating wrack and seeking refuge 

in the benthos to over-winter. Aoridae were very abundant in core samples showing 

significant increases in September (F6,3i=3.28, p<0.016). Isopods (both ldotea balthica 

and Erichsonella spp.) were collected in cores in early summer, but were relatively 

absent in collection dates past June. Erichsonella spp. doesn’t show any significance with 

date, but ldotea balthica does (F6,3i=7.37, pO.OOOl). Corophiidae show significantly 

higher average abundance on June 30, 2015 and low abundance for other dates 

(F6,3i==4.24, p<0.0044). Gammaridae population sizes were minor within core samples
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and showed no significance among dates. Other organisms found within core samples 

such as decapods, gastropods, Polychaeta, and bivalves were not as abundant as the 

amphipods and isopods found in the core samples and showed no significant temporal 

patterns. Appendix 1 provides a listing of all taxa collected during core sampling.
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Figure 8. The average number of dominant organisms within core samples is represented 
by the average number of organisms against the date at which each organism was 
sampled.

Comparison of Core and Wrack populations

Three dominant taxa found within both treatment bags and core samples were 

compared to determine if there is a possible migration between treatment bag populations 

and the benthos. In the case of Aoridae, there appears to be similarities in both treatment
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bags and core samples, with elevated abundances in September, but a spike in the Z. 

marina wrack on August 12, 2015 (Figure 9). This may reflect overall population 

increases and possible dispersal in the fall or competition for space and displacement 

from the benthos in August.

a>ra
to’üo<
M -o
QJu
cfO

73C
=3JQ<
QJtbO
COi _
QJ><

600
500
400
300
200

100

Date

•Zostera •Artificial Zostera ■Control •Core

Figure 9. Average abundance of Aoridae from treatment bags and core samples.

Caprellidae were found in both core and treatment bag samples (Figure 10), but 

were abundant only in wrack bags. Additionally, they showed significant differences 

among dates in experimental wrack bags (F5,49=5.24, p<0.0006), meaning that 

populations are primarily found there and dominated the September samples for all wrack 

bag results (see Figure 2). Caprellidae are epiphytic on seagrass blades, so cores may not 

reflect their distribution in the water, but floating structures seem to be a valuable habitat 

for these amphipods. Additionally, they were equally abundant on all treatments
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including the controls so they may merely be reacting to the structure of the mesh 

envelope.
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Figure 10. Average abundance of Caprellidae from treatment bags and core samples.

When examining Melitidae, they showed a significant preference for Z. marina 

wrack (Figure 11). Additionally, there may be active migration occurring between the 

water column and the benthos. Specifically, there is a general inverse relationship 

between abundance in wrack experiments and the benthos. This is especially prevalent in 

September when abundance in the wrack drops substantially, but increases dramatically 

in the core sample. This suggests active migration from the water column to the benthos 

which may signal a preparation strategy for over-wintering.
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Stable Isotope Analysis

Results from the isotopic analyses show variation among the fauna tested and the 

potential food resources (Figure 12). In terms of food resources, 813C results show 

enrichment by Z marina, followed by lower values for R. maritima and the lowest values 

for Ulva. For the fauna tested, the amphipods showed signatures similar to Ulva for 

Carbon (-15 to -20), while the isopods showed some similarities to R. maritima. (-11 to - 

15). In terms of Nitrogen enrichment and trophic placement, Ulva showed wide ranges of 

N content, but R. maritima was centered at ~5.5 and Z marina was at ~8. Given the 

expectations of carbon similarities and nitrogen enrichment affiliated with stable 

isotopes, none of the fauna tested showed signatures suggesting that Z marina was an 

important component in their diet. Rather, it appears that amphipod food resources were
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dominated by algae and isopods showed signatures similar to expectations for feeding on 

R. maritima and possible mixed diet with algae (Figure 12). These results suggest that 

the response of organisms affiliated with the wrack bag experiment were most likely due 

to the potential presence of epiphytic algal food resources on natural Z. marina, rather 

than obtaining trophic resources directly.
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Discussion

Zostera marina as a habitat supports large and diverse faunal assemblages 

(Thayer et ah, 1984; Heck et al., 1995). Its biomass represents both refuge and trophic 

resources for many organisms (Best et ah, 2013; Duffy et ah, 2015), but when this 

biomass is released to the water column, its value is relatively unknown. Results from my 

core samples contained numerous taxa, but were dominated by several Peracarida taxa 

including Corophiidae, Caprellidae, Aoridae, Gammaridae, Erichsonella spp., and Idotea 

balthica. When analyzing the dominant taxa within core samples, the relative abundance 

of various organisms shifts during the summer. Initially, isopod abundance is high, but 

diminishes in July when Aoridae and Melitidae abundances increase. In August, all taxa 

density is reduced but recovers in September (Figure 8). These patterns are somewhat 

similar to plant biomass, which showed increases in the early summer, but reductions in 

August (Figure 7). Consequently, there may be some underlying structural or trophic 

interactions occurring in benthic cores driving faunal abundance.

Biomass from core samples did not correlate to any organism or show any 

significance in organism abundance. One may assume that the greater biomass may result 

in more places to hide from predators or more epiphytes that can be attached resulting in 

a better food resource (Orth and van Montfrans, 1984; van Montfrans et al., 1984). Based 

on the core data, below ground biomass did not change dramatically during the season, 

but large reductions in above ground biomass occurred in August, and this corresponds to 

the reduction in the densities of benthic organisms.

It is well recognized that organisms may not use Z. marina for a direct food 

resource, but for the epiphytes among the grass blades (Caine, 1980; van Montfrans et al.,
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1982). Invertebrates are known to graze on seagrasses for epiphytic algae (Kitting et al., 

1984) and the results from the stable isotope analysis support this (Figure 12). Studies in 

seagrass meadows have shown that epiphytic primary production may often exceed 

seagrass production in both weight specific (Pollard and Kogure, 1993) and total annual 

production (Morgan and Kitting, 1984; Moncreiff et al., 1992). Additionally, 

experimental work by Bologna and Heck (1999) demonstrated that the critical factor for 

mobile epifauna was the presence of a natural epiphytic algal community on artificial 

seagrass blades and not the structural resources that they provide. If the reduction in Z. 

marina biomass impacted the epiphytic algal resources, this might suggest that the fauna 

is merely responding to reduced food resources. The stable isotopic analyses suggest that 

most amphipods are receiving their nutrition from algal resources and not Z  marina. 

Consequently, this supports the reduction in faunal density in August relating to 

reductions in Z  marina above ground biomass as a corollary with potential epiphytic 

algal resources. A reduction in biomass may also reduce the refuge capacity of the grass 

bed as well. As such, multiple system factors may be influencing the patterns observed. 

In a similar Z  marina habitat in Bamegat Bay, Bologna (2006) showed trophic cascades 

in two difference Z  marina grass beds relating to the relative abundance of large 

predators. While large fish predators were not assessed in this research, the potential that 

the coupled lower trophic resources and reduced refuge quality could both explain the 

drop in faunal density in August. The reduction in plant biomass in August may also 

signal greater wrack volume in the system as plants compensate for respiration demands.

It is known that seagrass detritus can be transported by currents and waves 

(Robertson and Lucas, 1983; Hemminga et al., 1994). Organisms can be associated with
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this floating wrack and can be added into the food chain. The production value of 

eelgrass does not come from the grass directly, but rather the epiphytes attached (Heck et 

al., 2008). Epiphytes can be eaten directly by small benthic organisms which increases 

the trophic interactions occurring (Orth et al., 1984; Greenway, 1995). My isotope 

analysis concurs with these findings. It appears that amphipods are generally receiving 

their nutrition through algal resources (Figure 12), but the trophic pathway for isopods is 

not quite as clear. According to their C l3 content, both Idotea balthica and Erichsonella 

spp. appear to derive their carbon from a mixed diet of R. maritima and algae, but the 

N15 signatures point to more algae in their diet. While these results suggest a more robust 

diet for isopods, greater research is needed to fully evaluate the trophic interactions. 

Consequently, there is a great deal of research that is needed to fully understand the role 

of eelgrass biomass in coastal systems. In particular, there is little research to determine 

the full value of seagrass wrack production, but analysis of my experiment shows the 

potential value of seagrass wrack.

Results from the experiment show a generalized pattern where taxa appear to 

show a preference for Z  marina wrack over artificial Z. marina wrack bags and control 

bags. Zostera marina appeared to be preferred due to a probable food component (i.e., 

epiphytic algae), while artificial Z  marina may be utilized as a refuge. When evaluating 

individual groups, Melitidae populations in natural Z. marina treatment bags appeared to 

be supported and could reflect both refuge and trophic interactions, but could also signal 

potential emigration using wrack. This corresponds to higher abundances in the wrack 

during July and August, but their virtual disappearance in September (Figure 4). At the 

same time, Melitidae densities dramatically increase in core samples from September,
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suggesting they have stopped emigrating and are returning to the benthos to over-winter 

(Figure 11).

Aoridae populations appear to follow a pattern that showed natural wrack 

treatment bags have more organisms than artificial bags and control but Aoridae 

correlation to Melitidae populations is an interesting component to this research. The 

shift of dominant taxa within a sample from Melitidae to Aoridae dominating may be 

represented by carrying capacity issues, competition for resources (MacArthur 1969), or 

other issues that may not involve any interaction. Another explanation may be the two 

species may follow niche partitioning (Schoener, 1982). When an organism disappears 

from a habitat, there may be a niche that can be filled. If Melitidae are top consumers in 

wrack, when they are not present, Aoridae may step in to fulfill their consumer role 

(Jackson et al., 2001).

The unusual patterns noted in the treatment bag portion of the experiment derive 

from Caprellidae. These organisms cause the abundance of organisms sampled within 

artificial treatment bags to peak. After removing skeleton shrimp, treatment bag trends 

then followed an expected pattern of greater individuals associated with Z marina wrack 

then artificial Z  marina. An explanation for Caprellidae may explain why these dictated 

patterns in treatment bags might be due to abiotic factors. According to Vimstein et al. 

(1984), “Caprellidae like to live on top of seagrass blades”. If seagrass is exposed to too 

much sunlight and temperatures fluctuate causing seagrass leaves to detach. Caprellidae 

may be swept to the surface which would force populations to look for structure within 

wrack. Organisms that may cut away seagrass (i.e., blue crabs) or any other organism that
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may disturb seagrass meadows (i.e., waterfowl), may cause populations of Caprellidae to 

relocate into the pelagic zone via floating wrack.

The similarity in taxa between experimental treatments and core samples 

demonstrates that there is a probable link that the organisms utilizing wrack originate 

from nearby benthic sources. Organisms may be moving from seagrass habitats into 

wrack bags as a food resources or refuge structure if dislodged from the benthos. A study 

conducted by Hyndes and Lavery (2005) demonstrated that fish in the near shore waters 

consume mainly small crustacean and polychaete prey. The fishes rely on the 

consumption of invertebrates that graze either directly on fresh plant material or 

indirectly through detritus, which was determined through isotopic analysis. The 

Amphipods food source of algae was similar in this experiment to experimentation done 

by Smit et al. (2005). Isopods utilizing seagrass as food was also noted in research 

elsewhere (Bostrom and Mattila, 1999; Wootton and Bologna, 2004) and results from my 

work showed isopods had signatures similar to R. maritima mixed with algae (Figure 12). 

Other studies show support that fish rely on this benthic pelagic coupling for a food 

source in dislodged near shore seagrass wrack invertebrates (Robertson and Lenanton, 

1984).

Experimentation on floating wrack demonstrated that Z. marina wrack is 

preferred by organisms that utilize the seagrass epiphytic food resources (e.g. Melitidae 

and Aoridae populations) and refuge (e.g. Caprellidae population, sensu Vimstein et al., 

1986). The food source on wrack is associated epiphytes, as they are the usual food 

source for macrofauna (Kristensen, 1972; Kitting, 1984; van Montfrans et al., 1984;
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Nielsen and Lethbridge, 1989). The composition of organisms within the wrack was the 

same as that found within core samples. Why these organisms may move between the 

benthos and the floating wrack suggests multiple driving factors which may be taxa 

specific. The populations moving from the benthic zone into the pelagic zone may be 

due to predation related issues (Shurin et al., 2002; Morin, 2011), a lack of food 

resources, a lack of space generated from competitive interaction, active dispersal, or 

stochastic events merely dislodging them from the bottom. However, organisms moving 

from the pelagic zone into the benthos may be due to colonization of new habitat (e.g., 

immigration), predation avoidance, or survival strategies for overwintering.

Most studies of fauna and wrack have examined the role of the fauna (i.e. isopods, 

amphipods, oligochaetes and insect larvae) in breaking down wrack, particularly on 

sandy beaches (Inglis, 1989; Columbini et al., 2000). Transportation of organisms can 

establish new populations in different parts of a coastal embayment, coastline, or other 

areas that wrack may accumulate. When new individuals are established, this can lead to 

increased genetic diversity and population robustness.

Assessing patterns at time and spatial scale in seagrass habitat should be 

addressed to understand how the communities function (Bologna et al., 2007). This 

research found that Z  marina wrack is utilized mostly by amphipods for the algae 

associated with Z. marina, but more research must be conducted to analyze wrack as a 

habitat and feeding area for organisms. Furthermore, additional research on seagrass 

wrack is needed to understand how it can function as a habitat for benthic-pelagic 

coupling. Specifically, assessment of the epiphytic algal communities on seagrass wrack
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with regards to biomass and isotopic signatures would be useful in establishing trophic 

links. Future research should be able to use these results to also determine why seagrass 

wrack is a sufficient habitat for benthic organisms and its potential to act as a dispersal 

mechanism for benthic organisms.
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Appendix 1. Average abudance of organisms (±SD) within Core Samp
6/17/15 6/30/15 7/14/15 7/29/15 8/12/15 8/26/15 9/13/15

Aoridae 0.8±1.8 2.8±2.8 19.2±23.3 4.0±2.4 15.2±6.4 9.8±5.6 101.0±102.2

Ampelisca spp. 0.4±5.9 O.OiO.O 0.6±1.3 0.6±1.3 0.2±0.4 O.OiO.O O.OiO.O

Phoxocephalidae 6.2±5.9 4.0±4.1 3.2±2.2 1.8±2.0 2.8±2.6 1.8±1.1 9.3i9.4

Melitidae 11.4±10.9 6.5±5.6 3.0±3.8 4.8±5.8 4.6±5.9 4.0±3.1 30.3i27.3

Ischyroceridae O.OiO.O O.OiO.O 0.2±0.4 0.2±0.4 0.2±0.4 O.OiO.O 0.3i0.4

Tanais spp. O.OiO.O O.OiO.O O.OiO.O O.OiO.O O.OiO.O 0.2±0.4 O.OiO.O

Lillibjordae 0.2±0.4 O.OiO.O O.OiO.O O.OiO.O O.OiO.O O.OiO.O O.OiO.O

Corophiidae O.OiO.O 21.8±22.0 3.6±3.6 4.0±6.2 1.4±2.2 2.4±1.7 1.0i0.9

Gammarus spp. 0.2±0.4 O.OiO.O O.OiO.O O.OiO.O 0.2±0.4 O.OiO.O 1 .Oil .3

Caprellidae 0.2±0.4 3.0±4.3 O.OiO.O O.OiO.O O.OiO.O 0.6±1.3 9.3i9.4

Erichsonella 28.0±47.9 18.3±12.4 2.4±4.3 0.8±0.8 2.8±2.6 O.OiO.O 0.3i0.4

Idotea baithica 17.4±12.3 17.8±15.5 9.0±19.6 0.4±0.9 0.4±0.9 O.OiO.O 0.3i0.4

Cyathura polita O.OiO.O 4.8±6.9 0.0i0.4 o.o±o.o O.OiO.O O.OiO.O O.OiO.O

Edotea 0.6±0.9 O.OiO.O 0.0±0.9 O.OiO.O O.OiO.O O.OiO.O 0.7i0.9

Pycnogonid 1.2±1.8 O.OiO.O O.OiO.O O.OiO.O O.OiO.O O.OiO.O O.OiO.O

Ostrocods 6.8±14.1 3.3±4.0 0.8±1.8 O.OiO.O O.OiO.O O.OiO.O O.OiO.O

Palomaenetes O.OiO.O 0.5±0.5 0.2±0.4 1.0±1.4 0.2±0.4 O.OiO.O O.OiO.O

Crangon O.OiO.O O.OiO.O O.OiO.O 0.2±0.4 O.OiO.O O.OiO.O O.OiO.O

septemspinosa

Polychaete 19.6±12.0 12.5±8.8 1.6±3.7 1.4±1.5 0.6±0.5 2.0±1.4 8.3i7.1

Mytilus edulis 2.2±3.3 0.8±0.5 O.OiO.O O.OiO.O O.OiO.O O.OiO.O O.OiO.O

es
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Gemma gemma 90.8±75.2 19.3±20.0 7.2±5.2 8.2±12.2 0.0±0.0 0.0±0.0 4.3±5.3

Argopecten

irradians

0.0± 0.0 0.5±0.9 0.0± 0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Hippolyte spp. 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.4±0.9 0.2±0.4 0.2±0.4 0.0±0.0

Panopeus herbstii 0.6±0.9 0.0± 0.0 0.2±0.4 0.0± 0.0 0.0±0.0 0.0±0.0 0.0±0.0

Rhithropanopeus

harrisii

0.0± 0.0 0.5±0.9 0.6±1.3 0.0± 0.0 0.4±0.5 0.0±0.0 0.3±0.4

Pinnotheres 0.0± 0.0 0.0± 0.0 0.0±0.0 0.0± 0.0 0.4±0.9 0.0±0.0 0.0±0.0

Solemya velum 2.8±1.9 1.5±2.7 7.4±13.8 3.2±1.1 1.6±1.8 1.0± 1.0 0.0±0.0

Syngnathus fuscus 0.0± 0.0 0.3±0.4 0.0± 0.0 0.0± 0.0 0.0±0.0 0.0±0.0 0.0±0.0

Apeltes quadracus 0.0± 0.0 0.3±0.4 0.0± 0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

BotryUus schlossen 0.0± 0.0 0.8±1.3 0.0± 0.0 0.0± 0.0 0.0±0.0 0.0±0.0 0.0±0.0

Panopeus herbstii 0.0± 0.0 0.3±0.4 0.0± 0.0 0.0± 0.0 0.0±0.0 0.0±0.0 0.0±0.0

Dysanopeus sayi 0.0± 0.0 0.3±0.4 0.0± 0.0 0.0± 0.0 0.0±0.0 0.0±0.0 0.0±0.0

Euryanopeus 

depress us

0.0±0.0 0.3±0.4 0.0± 0.0 0.0± 0.0 0.0±0.0 0.0±0.0 0.0±0.0

Illyanasa 0.0±0.0 0.0±0.0 0.0± 0.0 0.0± 0.0 0.0±0.0 0.0±0.0 1.0±1.3

Geukensia demissa 0.6±1.3 0.0± 0.0 0.0±0.0 0.0± 0.0 0.0±0.0 0.0±0.0 0.0±0.0

Ens is spp. 0.2±0.4 0.0± 0.0 0.0±0.0 0.2 ±0.4 0.0±0.0 0.4±0.5 0.0±0.0
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Appendix 2a. Average abundance of organisms (±SD) within Zoster a marina Treatment 
Bags._________________________________________________________________________

6/30/15 7/14/15 7/29/15 8/12/15 8/26/15 9/13/15

Aoridae 7.4±11.3 6.3*5.3 51.2*58.0 312.5*258.3 23.0*16.9 1543.8*307.2

Ampelisca spp. O.OiO.O O.OiO.O O.OiO.O O.OiO.O O.OiO.O O.OiO.O

Phoxocephalidae 13.0*5.3 2.3±4.0 1.0*1.7 O.OiO.O 1.0*0.9 0.3±0.4

Melitidae 787.4±198.6 114.0*58

.9

238.6*92.

4

318.5*206.6 582.5*339.3 2.3*4.0

Ischyroceridae O.OiO.O O.OiO.O 1.4*3.1 2.5*1.7 9.5*5.5 O.OiO.O

Tan a is spp. O.OiO.O O.OiO.O O.OiO.O 0.5*0.4 O.OiO.O O.OiO.O

Hausteridae O.OiO.O O.OiO.O O.OiO.O O.OiO.O O.OiO.O O.OiO.O

Amphithoidae O.OiO.O 26.5*47.

4

O.OiO.O O.OiO.O O.OiO.O O.OiO.O

Corophiidae 101.0*106.7 20.3*16.

4

81.8*37.8 68.0*37.2 44.5*25.3 68.0*63.0

Gammarus 72.6±98.7 19.5*18.

8

0.8*1.3 O.OiO.O O.OiO.O 9.5*17.0

Caprellidae 326.4*234.2 30.8*19.

6

99.4*29.2 70.0*39.1 371.5*315.2 446.3*520.6

Erichsonella spp. 5.2±7.9 6.5*9.5 2.6*3.2 2.5*2.2 7.5*4.1 1.0* 1.3

Idotea balthica 28.6*14.8 63.5*54.

1

0.6*0.9 O.OiO.O 1.5*1.3 0.3±0.4

Cyathnra polita 0.0± 0.0 O.OiO.O O.OiO.O O.OiO.O O.OiO.O O.OiO.O

Edotea spp. O.OiO.O O.OiO.O O.OiO.O O.OiO.O O.OiO.O O.OiO.O

Pycnogonid 0.2±0.4 0.5±0.9 5.2*4.0 10.5*9.4 O.OiO.O 7.0±8.3

Palaemonetes O.OiO.O O.OiO.O O.OiO.O O.OiO.O O.OiO.O O.OiO.O
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Polychaete 1.8±0.8 0.5±0.9 1.2±1.3 0.0± 0.0 0.0± 0.0 0.3±0.4

Mytiìus eduìis 0.8±0.8 0.0±0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0±0.0

Gemma gemma 2.0±2.7 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0

Mercenaria

mercenaria

0.0±0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.5±0.4 0.0± 0.0

Tunicates 0.0± 0.0 0.3±0.4 0.0± 0.0 0.0± 0.0 0.5±0.4 0.0±0.0

Panopens herbstii 0.0±0.0 0.3±0.4 0.4±0.5 1.5±1.3 0.0± 0.0 0.0± 0.0

Rhithropanopeus

harrisii

5.0±2.6 0.5±0.5 0.0± 0.0 0.0±0.0 0.0± 0.0 0.3±0.4

Macoma 0.0± 0.0 0.3±0.4 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0

Crepidnla

fornicata

1.0± 1.0 0.8±0.9 0.2±0.4 0.0± 0.0 0.0± 0.0 0.0± 0.0

Tunicate Larvae 0.0± 0.0 2.0±2.3 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0±0.0

Megalopa 0.0±0.0 0.0± 0.0 0.0± 0.0 o.o±o.o 0.0± 0.0 0.0± 0.0

49



Appendix 2b. Average abundance of organisms within(±SD) Artificial Zostera marina 
Treatment B ags___________ ______________________ _________ ___________ ________

6/30/15 7/14/15 7/29/15 8/12/15 8/26/15 9/13/15

Aoridae 17.8±11.7 8.5±7.0 14.8±8.7 38.3±22.0 73.0±50.5 365.8i222.8

A m pelisca  spp. O.OiO.O O.OiO.O O.OiO.O O.OiO.O O.OiO.O 0 .8 il.3

Phoxocephalidae O.OiO.O O.OiO.O 0.3±0.4 O.OiO.O 0.3±0.4 0.3i0.4

Melitidae 173.2±119.0 31.3±29.5 155.3±92.3 57.7±39.3 289.8±151.6 7 .5 il2 .3

Ischyroceridae O.OiO.O O.OiO.O O.OiO.O 9.0±7.5 65.0±115.2 2.0i3.6

Tanais spp. O.OiO.O O.OiO.O O.OiO.O O.OiO.O O.OiO.O O.OiO.O

Hausteridae O.OiO.O 5.8±10.3 O.OiO.O O.OiO.O O.OiO.O O.OiO.O

Amphithoidae O.OiO.O O.OiO.O O.OiO.O O.OiO.O O.OiO.O O.OiO.O

Corophiidae 54.0±38.8 16.0±14.4 51.3±28.2 16.7±9.5 21.0±16.4 84.5i42.7

G am m arus  spp. 9.2±16.3 10.3±6.3 7.3±10.4 5.3±4.4 O.OiO.O 6 6 .3 il 18.5

Caprellidae 50.8±45.3 0.5±0.9 124.8±82.1 16.0± 12.1 480.3±739.2 846.8i835.7

E richsonella  spp. 11.6±16.9 14.0±17.0 2.5±2.8 0.7±0.5 4.8±3.6 0 .8 il.3

Ido tea  balthica 58.6±31.2 46.3±27.5 0.5±0.5 0.7±0.9 0.3i0.4 0.8i0.5

C yathura p o lita 0.2±0.4 O.OiO.O O.OiO.O 0.3±0.4 O.OiO.O O.OiO.O

E dotea O.OiO.O O.OiO.O O.OiO.O O.OiO.O O.OiO.O O.OiO.O

Pycnogonid O.OiO.O O.OiO.O 4.5±2.6 0.3±0.4 O.OiO.O 1.8i3.1

P alaem onetes O.OiO.O 0.3±0.4 O.OiO.O 1.0±0.9 O.OiO.O O.OiO.O

Polychaete 1.0±0.7 O.OiO.O O.OiO.O 0.7±0.9 O.OiO.O O.OiO.O
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MytUus edulis 0.0± 0.0 0.3±0.4 0.0± 0.0 0.0± 0.0 0.0±0.0 0.0± 0.0

Gemma gemma 0.0± 0.0 0.0± 0.0 0.0±0.0 0.0± 0.0 0.3±0.4 0.0± 0.0

Mercenaria

mercenaria

0.0±0.0 0.0± 0.0 0.0±0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0

Tunicates 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0±0.0

Panopeus herbstii 0.0±0.0 0.0± 0.0 0.0± 0.0 0.3±0.4 O.OiO.O 0.0± 0.0

Rhithropanopeus

harrisii

0.8±1.1 0.0± 0.0 0.3±0.4 0.0±0.0 0.5±0.9 0.0± 0.0

Macoma 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0±0.0 0.0±0.0

Crepidula

fornicata

0.0± 0.0 0.3±0.4 0.0± 0.0 0.0±0.0 0.0± 0.0 0.0± 0.0

Tunicate Larvae 0.0±0.0 13.5±20.4 0.0± 0.0 0.0± 0.0 0.0±0.0 0.0±0.0

Megalopa 0.0± 0.0 0.0± 0.0 0.5±0.5 0.0± 0.0 0.0± 0.0 0.0±0.0

Appendix 2c. Average abundance of organisms within (±SD) Control Treatment Bags.
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6/30/15 7/14/15 7/29/15 8/12/15 8/26/15 9/13/15

Aoridae 8.8±12.9 3.4±1.9 2.8±2.0 12.0±6.6 29.5±23.7 191.0±186.0

A m pe lisca 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Phoxocephalidae 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 22.5±20.1 63.0±112.7

Melitidae 19.0±21.5 8.8±9.7 67.0±53.3 21.5±11.8 23.5±21.0 9.5±15.4

Ischyroceridae 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 1.5±1.3 0.8±1.3

Tanaid 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Hausteridae 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Amphithoidae 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Corophiidae 14.0±14.2 8.6±7.3 52.5±39.5 11.0±6.0 30.0±16.5 94.0±90.3

G am m arus  spp. 9.6±15.8 1.2±2.2 1.5±2.7 0.0±0.0 0.0±0.0 0.0±0.0

Caprellidae 10.4±14.3 1.6±1.5 73.3±79.1 2.5±1.7 43.5±34.6 582.8±439.0

E richsonella  spp. 4.4±6.4 2.8±4.8 0.5±0.5 0.5±0.4 1.0±0.9 0.0±0.0

Ido tea  baìthica 21.2±30.6 14.2±11.3 0.8±0.9 0.0±0.0 0.0±0.0 1.0±0.8

C yathura p o lita 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

E dotea 0.0±0.0 0.0±0.0 0.0±0.0 0.5±0.4 0.0±0.0 0.0±0.0

Pycnogonid 0.0±0.0 0.0±0.0 2.0±2.6 0.0±0.0 0.0±0.0 8.5±15.2

Palaem onetes 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Polychaete 0.2±0.4 0.2±0.4 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

M ytilus edulis 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

G em m a gem m a 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

M ercenaria 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

m ercenaria

Tunicates 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.3±0.4
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P anopeus herbstii O.OiO.O O.OiO.O O.OiO.O O.OiO.O O.OiO.O O.OiO.O

Rhithropanopeus O.OiO.O O.OiO.O O.OiO.O 0.5±0.4 O.OiO.O O.OiO.O

harrisii

M acom a O.OiO.O O.OiO.O O.OiO.O O.OiO.O O.OiO.O O.OiO.O

C repidula O.OiO.O O.OiO.O O.OiO.O O.OiO.O O.OiO.O O.OiO.O

fo rn ic a ta

Tunicate Larvae O.OiO.O O.OiO.O O.OiO.O O.OiO.O O.OiO.O O.OiO.O

Megalopa O.OiO.O O.OiO.O 0.3±0.4 O.OiO.O O.OiO.O O.OiO.O
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