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Abstract

Mosquitos within the Culex pipiens species complex are primary vectors of West Nile 

virus in North America. The most common member of this complex in New Jersey, Cx. pipiens 

f. pipiens, is adapted to a temperate climate and females enter a diapause state as adults each 

winter. In contrast, its co-occurring sister taxon, Cx. pipiens f. molestus, is unable to enter the 

diapause state and both males and females continue feeding and breeding during winter months. 

Females additionally continue to lay eggs. The molestus form can do so because it is highly 

adapted to urban environments and is predominantly found in manmade underground locations. 

Prior studies have shown that the genes associated with circadian rhythms (i.e. ‘clock genes’) 

also influence the photoperiodic induction of diapause in Cx. pipiens. Here I investigated 

whether New World Cx. pipiens f. molestus maintains circadian rhythms despite its inability to 

enter a diapause state. The adult emergence of mosquitos reared in 12:12 light:dark, constant 

light, and constant dark had circular means in or around early scotophase (dark period). The 

adult emergence of mosquitos reared in the contrasting cycle of 12:12 dark:light had a circular 

mean after lights on, which was scotophase in the incubator. These results indicate that circadian 

rhythms in New World Cx. pipiens f. molestus are entrained by environmental cues during the 

larval period. Genetic analysis using BLASTn compared the expression of known clock genes in 

Cx. pipiens f. molestus and the closely related species Cx. quinquefasciatus. All known clock 

genes were expressed in Cx. pipiens f. molestus and suggest that the lack of diapause in these 

mosquitos is unlikely to be caused by major inactivating mutations in known clock genes.
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Introduction

The body temperature of an ectothermic organism is determined by the temperature of its 

environment. In temperate climates, seasonal changes typically bring corresponding changes in 

the temperature of the environment. Ectothermic organisms have evolved biological adaptations 

in order to cope with the colder winter months. There are two common strategies used by 

ectothermic organisms to deal with colder temperatures. These are known as the freeze-tolerance 

strategy and the freeze-avoidance strategy. An ectotherm that uses the freeze-tolerance strategy 

can freeze a portion of its body water to control the amount of ice formed within the body. 

Freeze-avoidance ectotherms produce antifreeze proteins within their bodies to prevent the 

formation of ice within the body (Voituron et al. 2002). These two strategies allow ectothermic 

organisms to live in harsher climates. 

Insects are ectothermic organisms that are sensitive to seasonal changes due to their 

smaller size (Lazzari and Insausti 2008). While some insects have adapted the freeze-tolerance 

and freeze-avoidance strategies to survive the colder months, others will initiate diapause to 

survive the winter (Bale and Hayward 2009). Diapause is a state of dormancy in which growth 

and development of the insect is halted until environmental conditions are once again favorable 

(Tauber and Tauber 1976). To prepare for diapause, an insect must accumulate fat to ensure that 

it has enough energy to survive. It then needs to find a suitable shelter that reduces exposure to 

cold temperatures and dangerous environmental conditions. Finally, the insect must undergo 

other physical changes that are required for survival (Meuti et al. 2015). Diapause is common in 

insects living in temperate regions where the summers are warm with long days and the winters 

are cold with short days (Denlinger 2002; Lazzari and Insausti 2008). 
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One of the common initiators of diapause is the change in the environment's photoperiod, 

or amount of daylight. This is also known as the photophase. (Saunders 2002). For temperate 

insects this information is important because it indicates when the seasons are changing 

(Adkisson 1966). Insects use the shortening of the photophase and the increase of the scotophase, 

or dark period, as an exogenous cue indicating the need to enter diapause. For diapause to be 

initiated an insect must store the information about the environment’s photoperiod and translate 

it into hormonal cues that are needed to initiate any biological processes (Meuti and Denlinger 

2013, Saunders 2002). For certain adult insects, diapause is signaled by a delayed release in 

juvenile hormones (JH) instead of environmental changes. In the mosquito Culex pipiens, 

females that undergo diapause do not release JH after adult eclosion. Instead they experience no 

growth in their ovarian follicles and will not seek out a blood meal (Denlinger and Armbruster 

2014). Once the corpora allata starts to synthesize JH diapause is terminated, and the ovarian 

follicles start to grow (Denlinger 2002). Nondiapausing females of this species will experience 

the release of JH by the corpora allata sometime after the adult emerges and will immediately 

seek out a blood meal (Denlinger and Armbruster 2014). 

Prior studies (Meuti and Denlinger 2013, Ikeno et al. 2010) show that there is a 

connection between the use of photoperiod to initiate diapause and the genes that control 

circadian rhythms (i.e. ‘clock genes’). Circadian rhythms are produced by an organism’s internal 

clock in response to changes in the environment. There are four properties that the rhythms must 

adhere to, the first being that it must maintain endogeneity, or that the patterns will still run in the 

absence of environmental cues. The second property is that the rhythm reflects the environmental 

cycle, which is typically the 24-hour solar day. The third property is the maintenance of 

homeostasis across a variety of different variables, typically temperature. Finally, the rhythms 
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must be able to entrain to environmental variables, such as light (Andreani et al. 2015, Saunders 

2002).  

There are five primary clock genes associated with circadian rhythm that maintain the 

feedback loop. These genes are timeless (tim), period (per), Clock (clk), cycle (cyc), and 

doubletime (Saunders 2002). The basic model for circadian rhythm is the Drosophila molecular 

clock. per and tim are the negative elements in the loop and repress the expression of the positive 

elements clk and cyc. Overnight the proteins PER and TIM slowly accumulate outside of the 

nucleus in the cytoplasm and create a dimer. The morning light will then cause TIM to degrade, 

which will destabilize PER. However, they will start to accumulate again in the evening and 

move into the nucleus. There, PER-TIM will bind with CYC-CLK, which inhibits the 

transcriptional activities of the proteins. Once that happens DNA can bind at an E-box, and the 

loop is closed. The positive elements, clk and cyc, will then reset the cycle (Albrecht & 

Ripperger 2008, Andreani et al. 2015, Saunders 2002). 

Circadian rhythms become ingrained in an organism’s genome as the species evolves. 

The behaviors that are associated with the rhythms are not learned but are innate responses. 

However, external influences, such as temperature and light, can modify the behaviors. 

Zeitgebers, or environmental cues, can move the rhythm from endogenous to exogenous 

(Saunders 2002). A common environmental cue is the daily light-dark cycle an organism is 

exposed to (Lazzari and Insausti 2008). On a day-to-day basis, insects display a circadian rhythm 

that is approximately 24 hours with peak activity levels occurring at a particular time during that 

cycle. If an insect reared under 12:12 light:dark conditions is moved into a completely dark or a 

completely light environment it will still perform activities based on the cycle it was reared in 

(Meuti and Denlinger 2013). One example of this is the egg-hatching rhythm of the moth, 
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Pectinophora gossypiella. Moth eggs were raised at 20 oC under either 24h light, 24h dark, or a 

12:12 light:dark cycle The hatching of the eggs raised under 24h light and 24h dark conditions 

was aperiodic, which indicated there was not a certain period of the day in which the eggs would 

hatch. However, those raised in 12:12 light:dark displayed a rhythm where hatching happened 

shortly after dawn (Minis and Pittendrigh 1968). These experiments demonstrate the endogenous 

nature of an organism’s circadian rhythm. 

Studies have revealed that either mutating or using RNA interference (RNAi) to 

knockdown, or reduce the expression of, the clock genes will affect the photoperiodic induction 

of diapause (Meuti and Denlinger 2013). In a study performed on the bean bug, Riptortus 

pedestris, RNAi was used to suppress the expressions of per and cyc to determine the role these 

two genes play in the photoperiodic induction of diapause. When cyc expression was suppressed 

females bean bugs entered diapause when they were moved into a diapause-averting 

photoperiod. Under a diapause-averting photoperiod, the photophase is longer and female bean 

bugs typically experience ovarian development. On the other hand, the suppressed expression of 

per resulted in the aversion of diapause and ovarian development in diapause-inducing 

conditions. In a diapause-inducing photoperiod, the photophase is shorter and there is typically 

for no ovarian development occurring in female bean bugs. The bean bugs display a 

photoperiodic response that will be disrupted when the expression of cyc and per are suppressed. 

(Ikeno et al. 2010). This study demonstrates the role of clock genes in the induction of 

photoperiodic diapause.  

Mosquito species in the Cx. pipiens complex are the primary vectors of West Nile virus 

in North America (Fonseca et al. 2004). In New Jersey the most common member of the 

complex is Cx. pipiens f. pipiens, or the Northern House Mosquito, which are adapted to 
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temperate, aboveground environments. Female Cx. pipiens f. pipiens are  anautogentic meaning 

they require a blood meal before their first ovipostion (Byrne and Nichols 1999). Mating takes 

place in large open spaces, while flying when an adult female approaches a swarm of males 

(Byrne and Nichols 1999). Swarming activity and mating typically occur around twilight. After 

mating prior to winter, females will enter diapause and males will die off (Vinogradova 2000). 

These mated females then seek a blood meal and lay eggs the following spring, after they emerge 

from the diapause state.  

Female Cx. pipiens f. pipiens require functioning clock genes to initiate diapause. Under 

long day, diapause-averting conditions, the supressed expression of per, tim, and cryptochrome2 

(cry2) results in an elevated expression of pigment dispersing factor (PDF), which is known to 

play a part in circadian timing. The suppressed expression of these genes also leads to the non-

diapause phenootype. However, if PDF expression is suppressed in the females that are reared in 

long day conditions, the diapause phenotype occurs. In short day, diapause-inducing conditions, 

the expression of per, tim, and cry2 is elevated and the diapause phenotype occurs (Hand et al. 

2016). 

Cx. pipiens f. pipiens’ co-occurring sister taxon, Cx. pipiens f. molestus is predominately 

found in urban environments and spends the winter months in warm, underground shelters. It has 

lost the ability to enter the diapause state (Byrne and Nichols 1997). It has been suggested that 

Cx. pipiens f. molestus populations may have arisen from local Cx. pipiens f. pipiens populations 

(Kothera et al. 2010). Since their sister taxon can diapause and diapause is considered an 

ancestral trait, it is possible that the loss of the ability to enter diapause is due to genetic 

differences. 
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The difference in the behaviors and physiology of the two mosquitos could be attributed 

to Cx. pipiens f. molestus adaptation to the underground environment (reviewed in Fonseca et al 

2004). Cx. pipiens f. molestus are found in and adapted to manmade, underground environments 

with standing water (i.e. sewers, cellars, drainage pumps, subway tunnels, etc.) where light is 

either inconsistent or not available.  In the warmer months Cx. pipiens f. molestus will emerge 

from their underground dwellings and feed on mammals (Bajwa and Zuzorsky 2016). Their 

aboveground sister taxon feeds on birds. While female Cx. pipiens f. pipiens diapause during the 

winter, male and female Cx. pipiens f. molestus continue to actively feed and breed. They are 

found to enter human inhabited areas and feed on humans. However, females do not require a 

blood meal for their first ovipostion (autogeny), but in order to keep breeding they must seek one 

out (Byrne and Nichols 1997).   

It is thought that New World and Old World Cx. pipiens f. molestus have separate 

evolutionary origins (Aardema et al. 2020). Previously, a study done in Russia investigated the 

effect of light and temperature on the rhythm of adult eclosion in Cx. pipiens. Researchers found 

that under an artificial photoperiod and constant temperature Old World Cx. pipiens f. molestus

have peak adult eclosion activity in the evening during early scotophase. This experiment looked 

at three different day lengths (12, 16, and 20h) and found the adult eclosion peak shifted to 

match the dark phase (Karpova 2005). 

 In this study, I investigate circadian rhythms of New World Cx. pipiens f. molestus to 

determine if they maintained similar rhythms despite an inability to enter the diapause state. I 

postulate that New World Cx. pipiens f. molestus has lost its ability to express circadian rhythms. 

There are two observations to support this hypothesis. First, there is no consistent light cycle in 

the underground locations where Cx. pipiens f. molestus is typically found, and the photoperiodic 
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clock is important for the maintenance of circadian rhythm (Saunders 2002). Second, prior 

studies have found a link between clock genes and diapause (Meuti and Denlinger 2013, Ikeno et 

al. 2010). An inactivating mutation in known clock genes could simultaneously cause an 

inability to diapause and a loss of circadian rhythm. Adult emergence is one of the biological 

processes controlled by circadian rhythm in mosquitos (Vinogradova 2000). If New World Cx. 

pipiens f. molestus do not have a circadian rhythm then adult emergence will be arrhythmic no 

matter the light cycle during larval development. 

Materials and Methods

Mosquito Maintenance. I kept adult Cx. pipiens f. molestus originating from New York City in 

cages where they were fed a diet of 8% sucrose solution. To collect eggs, I placed oviposition 

trays into the cages for 48 hours. After I removed the trays from the cage, egg rafts were 

collected, and each raft was placed into an individual jar with 50ml of dechlorinated water to 

ensure that each family was separate from one another. The larvae were fed a diet of TetraMin 

fish food, and individuals from the families were never mixed. 

After hatching, I placed five to fifteen larvae from each family into one of four 

treatments: 12:12 light:dark (lights on at 06:00, lights off at 18:00), 12:12 dark:light (lights off at 

06:00, lights on at 18:00), 24 hours of light, and 24 hours of dark. The jars containing the larva 

had 50ml of dechlorinated water. They were then moved to an incubator that was kept at 23 oC 

and they were kept there until pupation. 

Trials. After pupation, I transferred each pupa into individual Drosophila vials (Genesee 

Scientific) that contained approximately 25 mL of dechlorinated water and were labeled 
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according to family and light cycle. The vials containing the pupae were then moved into a dark 

chamber and placed onto one of four shelves. The dark chamber had a light regime of 12:12 

light:dark (lights on at 06:00, lights off at 18:00). During the dark period, a red light would come 

on once every hour for one minute in order to help detect any emergence activity. It is important 

to note that after the fifth trial, I replaced the fluorescent light bulb with an equivalent LED bulb 

due to the fluorescent bulb burning out. The emergence of the adults was filmed using a YI 

1080p home security camera.  

Video technology has been used to film mosquito behavior and activity in laboratory 

settings previously. In a recent study the behavior of Anopheles gambiae and Aedes aegypti was 

filmed using a Flybox. The use of the device in this experiment demonstrated an easy way to 

monitor the behaviors for several days under light-dark and constant dark conditions (da Silva 

Araujo et al. 2020).  

Video Analysis. I viewed all the video recordings and documented the times of all emergences 

that occurred during the trials. An emergence was identified as a mosquito emerging from its 

pupal case or a mosquito treading on the surface of the water (Fig. 1). 

Figure 1. A) Cx. pipiens f. molestus pupae before emergence. B) Cx. pipiens f. molestus adult after 
emergence. 
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Statistical Analysis. I plotted the obtained emergence times on a clock (Lund et al. 2017) 

associated with the treatment using RStudio (RStudio Team 2015). In order to appropriately plot 

the times on the clock, I had to convert the minutes into decimals. For example, if an adult 

emerged at 12:30 and 30 minutes is half of an hour (i.e. 60 minutes), the time became 12.50. I 

analyzed the results using a Rayleigh Test (Lund et al. 2017) to test for uniformity with α = 0.05. 

The aim for this test was to see if adult emergence occurred at a certain time of the day. I tested 

the null hypothesis that there is no pattern displayed in the adult eclosion of Cx. pipiens f. 

molestus. 

Genetic Analysis. To assess potential genetic expression of known clock genes, the 

transcriptomes of two Cx. pipiens f. molestus samples, one from North America (Price & 

Fonseca 2015) and one from Europe (Honnen et al. 2006), were de novo assembled from data 

publicly available on NCBI-SRA using the program TRINITY v2.6.6 (Haas et al. 2013). I then 

used a nucleotide-to-nucleotide blast (BLASTn) to compare the nucleotide sequences of the two 

Cx. pipiens f. molestus samples to the already known and annotated nucleotide sequence of Cx. 

quinquefasciatus (Arensburger 2010).  
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Results 

Emergences. The Rayleigh test found there was significant evidence of adult emergence 

occurring at a certain time of the day for all four treatments. For mosquitos reared under 12:12 

L:D the test statistic was 0.6042 (p < 0.001) and for mosquitos reared under 12:12 D:L 

conditions it was 0.3413 (p < 0.001). The Rayleigh test statistic for constant light was 0.2051 (p 

= 0.009) and for constant dark it was 0.2301 (p = 0.0045). 

I also found the circular mean to find the mean emergence time for the four treatments, 

which is indicated by an arrow on the clock. (Fig 2). The circular mean for 12:12 L:D was 21.96 

(21:58) with a circular standard deviation of 2.26. For 12:12 D:L the circular mean was 10.14 

(10:08) with a circular standard deviation of 1.91. Under constant light the circular mean was 

20.25 (20:15) with a circular standard deviation of 2.22. Finally, the circular mean for constant 

dark was 17.84 (17:50) with a circular standard deviation of 2.42.  
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Figure 2.  Cx. pipiens f. molestus adult emergences on a 24-hour clock, divided by treatment. Each dot represents 
one sample’s emergence time and the arrows indicate the circular mean of the treatment. 
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Presence of Clock Genes. BLASTn hit percent similarity found that clock genes were present in 

both the North American Cx. pipiens f. molestus (M_USE_1) and the European Cx. pipiens f.

molestus (M_EUR_1) (Table 1). The minimum percentage of nucleotide similarity between Cx. 

pipiens f. molestus and Cx. quinquefasciatus was set at 95%. Most genes in both Cx. pipiens f.

molestus samples had over a 95% nucleotide similarity with the genes found in Cx. 

quinquefasciatus. 

Table 1. Presence of expressed clock genes in North American Cx. pipiens f. molestus (M_USE_1) and European 
Cx. pipiens f. molestus (M_EUR_1). Accession numbers are from the reference Cx. quinquefasciatus genome. Given 
are the top BLASTn hits percent nulecotide similarities.
Gene Name Accession Number M_USE_1 M_EUR_1
cryptochrome-1 XM_001865552.1 97.358 96.443
cryptochrome-1 XM_001867860.1 95.222 95.499
cryptochrome 2 XM_001869421.1 95.536 95.474
clock protein XM_001864988.1 94.612 95.449
timeout/timeless-2 XM_001842172.1 96.237 96.204
timeout/timeless-2 XM_001842173.1 97.124 97.224
timeless protein XM_001848559.1 97.227 97.015
period protein XM_001849247.1 96.624 96.275
circadian locomoter output cycles kaput protein, 
mRNA XM_001843362.1 97.213 97.096
circadian locomoter output cycles kaput protein, 
mRNA XM_001843363.1 94.915 95.206
lark XM_001850644.1 96.747 99.145

Discussion

 The results of this experiment show that New World Cx. pipiens f. molestus retains 

circadian rhythms despite its an inability to diapause. The Rayleigh tests for all four treatments 

showed significant evidence of adult eclosion occurring at near or during early scotophase. For 

mosquitos reared in the reverse photoperiod 12:12 D:L, scotophase occurred during 06:00 and 

18:00. It also significant that the circular means for 12:12 L:D, constant light, and constant dark 
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are similar and occur during the time period state before.  The genetic analysis found that the 

known clock genes are expressed in these mosquitos and it is unlikely that inactivating mutations 

in these clock genes cause the lack of diapause. These findings along with the qualitative data 

(Fig 2) contrast to my initial prediction that no rhythms would be displayed. 

 Although I predicted that no rhythms would be displayed, the results I obtained are not 

surprising. The results for New World Cx. pipiens f. molestus reared in 12:12 L:D matched the 

results found in Karpova’s study of Old World Cx. pipiens f. molestus in that a majority of adult 

eclosion would take place in early scotophase. Karpova’s study also found that adult eclosion 

would shift to match any changes in the photoperiod so that it would occur during early 

scotophase (2005). I found that mosquito larva reared under the reverse period experienced a 

shift in the rhythm of adult emergence to match the photoperiod of the incubator. This suggests 

that these rhythms are endogenous in Cx. pipiens f. molestus and can be entrained by the 

photoperiod exposed to during larval development (Saunders 2002). 

 When the mosquitos reared in 12:12 D:L were moved into a 12:12 L:D light regime, 

these mosquitos maintained a rhythm that matched the photoperiod of the incubator. The 

maintenance of the larval photoperiod when moved to a new photoperiod is seen in other species 

of insects. A study on the Mediterranean flour moth, Anagasta kühniella, found that under 

natural light conditions moths kept in a reverse photoperiod during larval development 

experienced shifts in the rhythms of adult emergence. Like Cx. pipiens f. molestus, the moth’s 

rhythm shifted so adult eclosion occurred during the scotophase period (Bremer 1926, as cited in 

Beck 1980). An earlier study found this to also be true for the intertidal midge, Clunio marinus. 

After being moved from a 12:12 D:L light regime to a 12:12 L:D light regime, the eclosion 

rhythm for the midges occurred during the time of the dark period they were kept in during larval 
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development (Neumann 1973 as cited in Beck 1980). These demonstrate how photoperiod can 

influence adult eclosion when kept under constant temperature conditions (Beck 1980). 

Under constant conditions (i.e. complete darkness or complete light), insects display free-

running rhythms. The previously mentioned studies on the intertidal midges (Neumann 1973 as 

cited in Beck 1980) and the Mediterranean flour moths found such results. Interestingly, the 

study on the Mediterranean flour moth found that moths reared under constant light appeared to 

become entrained to a photoperiod introduced as late as 48 hr before adult emergence 

(Giebultowicz and Cymborowski 1976; Moriarty 1959 as cited in Beck 1980). I found that Cx. 

pipiens f. molestus maintained circadian rhythms even when larval development occurred under 

a constant light condition. Mosquitos kept as larva under constant light had a circular mean 

during scotophase, and those kept in the constant dark treatment had a circular mean that was 

near the beginning of scotophase. I predicted that adult emergence would be arrhythmic, and 

these results did not match that prediction. Further study can investigate whether there was 

entrainment to the light cycle exposed to as pupa. 

 I initially postulated that inactivating mutations in the known clock genes caused the lack 

of diapause of Cx. pipiens f. molestus. However, I found that all known clock genes plus lark, a 

gene known to play a role in eclosion (Saunders 2002), were expressed in both the North 

American Cx. pipiens f. molestus and the European Cx. pipiens f. molestus. The basis for my 

original prediction was based on the knowledge that the sister taxon Cx. pipiens require 

functioning clock genes to initiate diapause (Meuti et al. 2015). Since it is believed that Cx. 

pipiens f. molestus arose from Cx. pipiens f. pipiens (Kothera et al. 2010), diapause is thought to 

be an ancestral trait and a loss of the ability to enter a diapause would be due to genetic 

differences. Another reason I thought that the lack of diapause was caused by an inactivating 
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mutation is that there is a relationship between clock genes and photoperiodic induction of 

diapause (Meuti and Denlinger 2013). Also, previous studies have shown that knocking out 

clock genes can cause aversion to diapause (Ikeno et al. 2010). Since the level of expression of 

the clock genes in Cx. pipiens f. molestus was unknown, the lack of diapause could be caused by 

an under or over expression of said genes. 

A similar study done on the nondiapausing (nd) variant of the flesh fly, Sarcophaga 

bullata found that the nd variants do not undergo pupal diapause due to an elevation in the 

expression of per and tim. This elevated expression also caused arrhythmic adult emergence 

when compared to the wild type flesh flies that undergo pupal diapause. These wild type flesh 

flies also displayed a diel adult eclosion rhythm. The authors suggested that a disruption in the 

circadian clock mechanism might be the cause of the arrhythmic eclosion (Goto et al. 2006). 

Although a rhythm is expressed in Cx. pipiens f. molestus, it would be beneficial to look at the 

expression levels of the clock genes in the future in order to accurately determine the role the 

genes play. 

It is possible that the lack of diapause in Cx. pipiens f. molestus may not be due to 

abnormalities in the clock genes. In Cx. pipiens microRNAs, which are non-coding RNAs that 

will regulate the expression of genes after transcription, are associated with the regulation 

diapause. A difference in microRNAs between Cx. pipien and Cx. pipiens f. molestus could 

influence the avoidance of diapause in Cx. pipiens f. molestus (Meuti et al. 2018). Diapause in 

Cx. pipiens is also controlled by the insulin-signaling pathway and FOXO (forkhead 

transcription factor). Sim and Denlinger demonstrated that they control important aspects of 

diapause, such as stopping ovarian development (2008). In Cx. pipiens, the nondiapause 

phenotype is promoted by long day conditions and the diapause phenotype is caused by short day 
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conditions. Mosquitos with the nondiapause phenotype experience the synthesis of insulin-like 

peptide 1, which stimulates the synthesis of JH and the suppression of FOXO. It is thought the 

presence of insulin will suppress the expression of FOXO. On the other hand, the insulin-

signaling pathway is shutdown in mosquitos with the diapause phenotype, which leads to no JH 

being synthesized and the activation of FOXO (Denlinger and Armbruster 2014). Although there 

are no data on the role of FOXO and the insulin-signaling pathway in Cx. pipiens f. molestus, 

this can be an avenue of future study if it is shown that clock genes do not cause the lack of 

diapause in these mosquitos.  

Many studies have shown that clock genes and the circadian clock play important roles in 

the induction of diapause in insects. However, it is still unknown why Cx. pipiens f. molestus do 

not undergo diapause while the above ground sister taxon Cx. pipiens f. pipiens does. Further 

study into the mechanical aspects of Cx. pipiens f. molestus circadian clock is needed and can 

lead to better understanding of why and how they avoid diapause. 

Conclusions 

The urban mosquito Cx. pipiens f. molestus maintains circadian rhythms despite lack of 

ability to enter diapause. There are no inactivating mutations in the known clock genes, and they 

are all expressed. Further studies should investigate the mechanical aspects of the circadian clock 

and to check for under or over expression of the clock genes. There is also the possibility that 

there is a hormonal cause for the lack of diapause. More research is needed in this area. 
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