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Abstract

We provide an overview of the mathematical modeling of deterministic and stochastic in-
fectious disease models. These models enable one to understand the outbreak, spread, and
extinction of disease. We then focus on stochastic models with a disease reservoir to understand
outbreak vulnerability for zoonotic diseases such as Ebola Virus Disease (EVD). Numerical
results from a more complicated EVD model are compared with the theoretical results of a
simplified stochastic SISκ model. We also demonstrate the effect that vaccine has on outbreak
vulnerability in a population that is connected to a disease reservoir.
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”The single biggest threat to man’s continued dominance on the planet is the virus.”
Joshua Lederberg, Nobel laureate in Physiology and Medicine

1 Introduction

Epidemiology comes from the Greek words epi, demo, and logy which mean “upon”, “the common
people”, and “study” respectively. When combined, epidemiology becomes “the study of that
which falls upon the common people.” The modern day definition is the study of the distribution
and determinants of disease frequency in human populations and the application of this study to
control health problems [1]. Epidemiology is a vital tool in the public health industry. It is a cross-
disciplinary field combining knowledge from biologists, mathematicians, statisticians, engineers
and computer scientists, to name just a few. According to the U.S. Centers for Disease Control
and Prevention (CDC), epidemiology serves five core functions: public health surveillance, field
investigation, analytic studies, evaluation, and linkages. Epidemiologists perform public health
surveillance by collecting and monitoring incoming data. In particular, they analyze and interpret
the data to see if anything is out of the ordinary. Epidemiologists also conduct relevant tests if any
data analysis suggests more investigation is required. Sometimes this involves field investigations
to look for additional cases. Other analytical work involves the development of epidemic models
which provide predictions and possible trajectory paths based on preliminary results from field
investigations. Finally, epidemiologists evaluate their results and link their discoveries and research
with other organizations and public health workers to best assess the spread of a disease and
different methods of containment [2].

Epidemiologists around the world use different data analysis methods in hopes of understanding
the cause of an outbreak. They study the origin of the outbreak, spread patterns, and the optimal
way to slow and eventually eradicate the disease. Epidemiologists also examine the possible source
of a disease such as water, soil, plants, animals, or human made toxins. They investigate all classes
of diseases, whether chronic, contagious, infectious or non-infectious. Epidemiologists use models
to better understand key characteristics of disease spread and the most dynamically important
trajectories of the spread. While human behavior is erratic and unpredictable to some extent, there
has been much success in using different modeling approaches to better understand the outbreak
and spread of infectious disease. In light of the COVID-19 world-wide epidemic, this thesis will shed
some light onto the history, development, and modern day modeling techniques epidemiologists and
other scientists use to process information and understand the outbreak and spread of diseases.

1.1 History of Mathematical Epidemiology

Infectious diseases have affected human populations for centuries. To limit the extent of disease
spread, the number of individuals who become infected, and the number of individuals who die,
scientists have developed different models to help explain the outbreak and spread of infectious
disease, and to understand the effect of control measures on disease spread. One of the first
individuals who tried to explain and predict the spread of disease was John Graunt, who performed
his studies in London at the time of King Charles II. Graunt published his “Natural and Political
Observations Made upon the Bills of Mortality” [3] after analyzing weekly death reports when the
city was infected with the bubonic plague. His work did not model nor explain the outbreak and
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spread of disease, but it was one of the first completely statistical pieces that kept track of the
infected and non-infected populations of London at the time.

In 1766, Daniel Bernoulli used statistical data in “An attempt at a new analysis of the mortality
caused by smallpox and of the advantages of inoculation to prevent it” [4] where he modeled
the growth of the population with vaccines to persuade people of the effectiveness of universal
vaccination and its effects on life expectancy. A few years later, in 1798, the Malthusian growth
model was developed by Thomas Robert Malthus. In “An Essay on the Principle of Population” [5],
he modeled population growth with the exponential equation

N(t) = N0e
(rt), (1)

where N0 is the initial population, r is the growth rate and t is time. This is the solution to the
linear ordinary differential equation

dN

dt
= rN, (2)

which simply states that the change in population is proportional to itself.
The Gompertz model was developed in 1825 by Benjamin Gompertz in “On the Nature of the

Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value
of Life Contingencies” [6], and is given by

N(t) = N0e
−ceat−1, (3)

where a and c are constants. This model was constructed in an attempt to better understand
human mortality. Gompertz was an actuary and his model was later used by insurance companies
to estimate the cost of life insurance. His model confirmed that a person is more likely to succumb
to death as they grow older. Between 1838 and 1847 the Belgian mathematician Pierre-Francois
Verhulst developed the logistic equation to model population growth. The logistic equation is a
nonlinear differential equation given by

dN

dt
= rN − aN2, (4)

where N and t are population size and time respectively, and a is the density dependent crowding
effect [7]. One can rewrite Eq. (4) as

dN

dt
= rN(1− N

k
), (5)

where k represents the maximum number of individuals that can be supported by an environment
without destroying it. This equilibrium point at N = k is the carrying capacity. At carrying
capacity we have an unchanging population given by dN

dt = 0 . When N > k, the population size
will decline, approaching the carrying capacity from above, and when N < k, the population size
will increase, approaching the carrying capacity from below.

In the early 1900s, approximately 100 years later, Anderson Gray McKendrick and William
Ogilvy Kermack published “A Contribution to the Mathematical Theory of Epidemics” [8] in which
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they developed the first compartmental model for infectious disease. This classical Susceptible-
Infectious-Recovered, or SIR model is given as

dS

dt
= −βIS

N
,

dI

dt
=
βIS

N
− γI,

dR

dt
= γI, (6)

where S is the number of susceptible individuals, I is the number of infectious individuals, and R is
the number of recovered individuals in the population. By adding these three equations we obtain

dS

dt
+
dI

dt
+
dR

dt
= 0, (7)

which demonstrates that S(t) + I(t) + R(t) is equal to a constant. This constant, N , is the total
population size. Since R is decoupled from the S and I equations, the constant population means
that we only need to study the first two of the three equations given by Eq. (6). We must also
take note that the dynamics of the model depends on the basic reproduction number, R0, which
provides the number of secondary infections that will be caused by a single infectious individual in
an otherwise entirely susceptible population [9]. In the model given by Eq. (6), R0 = β

γ . Over the
past century since Kermack and McKendrick many researchers have used compartmental models to
study infectious disease. The models have gotten more complicated, and accurate, by considering
vitality rates, seasonality, age structure, etc., as well as the effect of control measures such as
vaccine and quarantine. There are also stochastic models, network models, and spatial models, all
of which are used to more accurately predict the spread of disease. These discoveries collectively
are the basis of what is used by modern epidemiologists to understand and predict the outbreak,
spread, and control of disease, including the recent COVID-19 pandemic.

2 Theory and Background

2.1 Compartmental models

Different compartmental models are used to study the outbreak, spread and control of a variety
of infectious diseases. The more complicated the population of interest, the more factors and
compartments that need to be accounted for in a model. In a compartmental model, the population
could be experiencing a surge of immigrants or coupled completely with another population far away
due to economic reasons. As discussed in the introduction, the simplest compartmental model
divides the population into susceptible, infectious, and recovered groups. More complex models
could also include exposed, hospitalized, deceased, or burial classes to name just a few. These
models can easily be adapted to consider age structure, individuals with a compromised immune
system, and many other features relevant to disease spread. To understand disease outbreak,
spread, and extinction in a certain population, we need to know the rates at which all processes
in the model occur (birth, death, transmission, recovery, etc.) The model includes these rates
of change for each process which describes how individuals transition from one compartment to
another. These mathematical models help us understand and investigate the spread of the disease
as well as the implementation of strategies to control or contain the disease [10].
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Figure 1: Schematic of the SIR compartmental model.

In the classic SIR model developed by Kermack and McKendrick [11], individuals in the popula-
tion are divided into S, I, and R compartments representing susceptible, infectious, and recovered
individuals respectively. Other similar models that are often used include the SIS, SEIR and
SEIRS models, where the S, I, and R compartments are as defined in the SIR model, and the E
compartment is defined as the exposed individuals (who are infected with the disease but are not
yet infectious). More specifically, the different groups of individuals are defined as follows:

1. Susceptible (S): group of individuals who are vulnerable to the disease and may be infected
if they come in contact with an infectious individual.

2. Exposed (E): group of individuals who are infected but are not yet infectious, and typically
do not show any signs of the disease.

3. Infectious (I): group of infectious individuals who have the ability to transmit the disease to
susceptible individuals.

4. Recovered (R): group of individuals who have recovered from the disease and are considered
immune.

Details for three basic compartmental models of infectious diseases are discussed below.

2.1.1 Susceptible-Infectious-Recovered (SIR) Model:

The first epidemiological compartmental model due to Kermack and McKendrick [11] is the SIR
model. This model is appropriate for any infectious disease in which permanent immunity is at-
tained after recovery. Figure 1 shows a schematic outline of the compartment model with associated
processes.

The governing equations for the SIR model with vital dynamics can be formulated as

dS

dt
= µN − βIS

N
− µS, (8)

dI

dt
=
βIS

N
− (µ+ γ)I, (9)

dR

dt
= γI − µR, (10)

where S, I, and R are the number of susceptible, infectious and recovered individuals respectively,
N = S + I + R is the total population size, µ is the birth and death rate, β is the contact rate,
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and γ is the recovery rate. In these SIR equations, the µN term represents the number of healthy
individuals born into the susceptible class, while the µS, µI, and µR terms give respectively the
number of individuals leaving the S, I, and R classes due to natural death. Additionally, the
βIS
N term represents the number of susceptible individuals who become sick after contact with an

infectious individual and move into the infectious class, while γI gives the number of individuals
who transition from the infectious to the recovered compartment.

One can easily describe the SIR equations. For example, in Eq. (8), the rate of change of
susceptible individuals in time is equal to the gain of individuals from healthy birth, the loss
of individuals from the susceptible class to the infectious class due to infection, and a loss from
natural death. Similarly, the rate of change of infectious individuals in time can be given as a gain
of individuals due to infection, a loss of individuals from natural death, and a loss of individuals
due to recovery. Lastly, the rate of change of recovered individuals in time is given by the gain due
to recovery, and the loss of individuals due to natural death.

2.1.2 Susceptible-Infectious-Susceptible (SIS) Model

When the recovery does not give any immunity against the infection the model is known as the SIS
model since recovered individuals immediately become susceptible to the disease again. Figure 2
shows a schematic outlining the compartmental model with associated processes. For this model,
the governing equations become

dS

dt
= µN − βIS

N
− µS + γI, (11)

dI

dt
=
βIS

N
− (µ+ γ)I, (12)

where S and I are the number of susceptible and infectious individuals respectively, N = S + I is
the total population size, µ is the birth and death rate, β is the contact rate, and γ is the recovery
rate. These equation can be described and analyzed in a similar manner to the SIR compartmental
model above.

Figure 2: Schematic of the SIS compartmental model.
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2.1.3 Susceptible-Exposed-Infectious-Recovered-Susceptible (SEIRS) Model

In the SEIR and SEIRS models the S, I, are R are the susceptible, infectious, and recovered
respectively as we have seen above. The E compartment represents the exposed class. A susceptible
individual who becomes infected with a disease is contained in the exposed class. During this latency
period the individual, although infected, is not yet infectious (i.e., not yet able to transmit the
disease to a susceptible individual). Eventually the individual moves to the infectious compartment
and then recovers. The SEIRS system’s compartmental model is shown in Figure 3.

The governing equations for the SEIR model can be formulated as:

dS

dt
= µN − βIS

N
− µS, (13)

dE

dt
=
βIS

N
− µE − σE, (14)

dI

dt
= σE − (µ+ γ)I, (15)

dR

dt
= γI − µR, (16)

where S + E + I + R = N , where N is the total population size, µ is the birth and death rate, β
is the contact rate, γ is the recovery rate, and σ is the disease latency rate.

As mentioned, there are many other compartmental models that have been developed over the
past century which include other groups and structures. Each compartmental model is used to
describe and understand a certain type of disease outbreak and spread along with the effect of
different control measures such as vaccine and quarantine policies. To mathematically model the
dynamics of an infectious disease in a population, there are two broad approaches that one can
consider. The classical compartmental approach, which was used by Kermack and McKendrick as
well as many others over the years, is a deterministic approach. As we have seen, the model is

Figure 3: Schematic of the SEIRS compartmental model.
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given by a set of ordinary differential equations whose solution determines exactly the state of the
disease in time. In contrast to the deterministic approach, one can consider a stochastic approach
which includes the noise or randomness that one finds in the real world.

2.2 Deterministic Models

In deterministic compartmental models a large population is divided into compartments. As dis-
cussed in the above example for the SIR model, the compartments are S, I and R. In this example,
the mathematical model is formulated using ordinary differential equations. The population size in
a compartment changes deterministically in time according to the transition rates and initial con-
ditions. In short, for a prescribed set of parameter values and initial conditions the model always
gives the same output no matter how many times we solve the equations. There is no randomness,
and hence we have one output solution. These deterministic compartmental models often have two
equilibria: an extinct state, in which there is no disease in the population, and an endemic state,
in which the disease is maintained without any external forcing.

The transmission potential of a disease can be determined using the basic reproduction number,
R0, which is the expected number of new infectious individuals generated by a single infectious
individual in an entirely susceptible population [9]. The basic reproduction number tells us how
quickly the disease could spread in a population. When R0 < 1, the number of infectious individuals
declines, and hence the disease will go extinct (possibly after a small outbreak). In this situation,
the extinct state is a stable equilibrium while the endemic state is an unstable equilibrium. When
R0 > 1, the number of infectious individuals increases and the disease will be maintained in the
population for a long period of time. In this scenario, the endemic state is stable while the extinct
state is unstable. Usually in these types of models, R0 = 1 serves as a threshold at which a
transcritical bifurcation occurs. Because of the stability of the endemic state when R0 > 1, in the
deterministic approach there is no chance for the disease to go extinct [12].

2.2.1 Theoretical Analysis - An Example

As an example consider the following SIS epidemic system:

dS

dt
= µN − µS − βIS

N
+ γI, (17)

dI

dt
=
βIS

N
− µI − γI, (18)

where, S and I represent the susceptible and the infectious classes respectively, µ is the birth and
death rate, β is the contact rate, and γ is the recovery rate. To find the equilibria points of such
systems one must find the solutions to Eqs. (17) and (18) when they are set equal to zero. For the
SIS compartmental model there are two equilibria states.

The first is (S0, I0) = (N, 0), and is known as the disease free equilibrium state (DFE) or extinct
state. In the DFE, all individuals of the population are in the susceptible class and the infectious
class contains zero individuals from the population. The second equilibrium state is the endemic
state and is given as (S∗, I∗) = (N(µ+γ)

β , (1− µ+γ
β )N).

To determine the stability of the equilibrium points, we must construct the Jacobian matrix
given as

J =

[
∂
∂S f(S, I) ∂

∂I f(S, I)
∂
∂S g(S, I) ∂

∂I g(S, I)

]
, (19)
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where f(S, I) = µN − µS − βIS
N + γI and g(S, I) = βIS

N − µI − γI are the right-hand sides of
Eqs. (17) and (18). Taking the appropriate partial derivatives gives

J =

[
−µ− βI

N
−βS
N + γ

βI
N

βS
N − γ − µ

]
. (20)

The Jacobian evaluated at the DFE is

J |(S0,I0) =

[
−µ −β + γ
0 β − γ − µ

]
, (21)

and the eigenvalues are given as λ1 = −µ and λ2 = β − γ − µ. To stabilize the DFE, β
γ+µ < 1

must be true. When R0 = β
γ+µ < 1, the DFE is stable, and when R0 = β

γ+µ > 1 the DFE is
unstable. Similarly, one can evaluate the Jacobian at the endemic equilibrium, and by computing
the eigenvalues it is easy to show that when R0 = β

γ+µ < 1 the endemic state is unstable, while

when R0 = β
γ+µ > 1 the endemic state is stable. The two equilibrium states switch stability at

R0 = 1 denoting a transcritical bifurcation. As seen in this example the value and power of the basic
reproductive number is a fundamental component of deterministic compartmental modeling [13].

The deterministic approach regards the time evolution as a continuous, wholly predictable
process which is governed by a set of coupled ordinary differential equations. From the example
above we see that when the endemic state is stable, extinction of the disease can essentially never
be achieved since even after a perturbation away from the endemic state, the system will run back
to the stable endemic equilibrium. However, one often sees local extinction events in data collected
in the real world. To properly capture the extinction events, one must include stochasticity or
random noise in the model. In contrast to the deterministic approach, the stochastic approach
regards the time evolution as a type of random-walk process, which typically is described using a
Langevin equation (for external noise) or a master equation (for internal noise) [12,14].

3 Stochastic Models

Historically, we see that disease outbreaks often do go extinct locally. In order to capture these
extinction events mathematically, we must use a stochastic model that includes the randomness or
noise in the system. In particular, in this work we will capture the effect of internal demographic
noise with the master equation. The master equation gives the probability of the system having a
particular number of susceptible, infectious, etc. individuals at any instant in time. The internal
noise can lead to a rare, large fluctuation that causes the disease to “escape” from the deterministi-
cally stable endemic state and go to the extinct state [12,14–20]. For the simplest of problems it is
possible to perform theoretical analysis to solve the master equation. However, in many instances,
one must simulate the stochastic solutions numerically to understand the system’s behavior. In the
following sections we present an overview of the theoretical and numerical tools used to understand
epidemic models that include internal noise.

3.1 Master Equation and Internal Noise

As we have seen, deterministic compartment models have equilibrium points that can be anlyzed
to see when they are stable or unstable. On the other hand, stochastic systems, by nature, are
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different. In reality, many systems have equilibria that are considered to be metastable [14], meaning
that the stochastic system fluctuates about the deterministic steady-state for a long period of time,
but can ultimately escape from the metastable state and transition to another metastable state or
an absorbing state.

To analyze stochastic systems similar to the ones constructed from the compartmental models
above, we assume the discrete transitions in a large enough population are short and independent
in time. Therefore, the system is a Markov process and the evolution of the system is described by
the master equation

∂ρ(X, t)

∂t
=
∑
r

[Wr(X − r)ρ(X − r, t)−Wr(X)ρ(X, t)], (22)

where X is a state of individuals in a population, ρ(X, t) is the probability of finding X individuals
at time t, and Wr(X) is the transition rate from X to X + r, and r may be a positive or a negative
integer increment. As can be observed, the first term in the master equation is the increase in X
from the X − r state, while the second term is the decrease of X to the X + r or X − r states.

Assuming a large enough population, a WKB approach can be used to approximate the master
equation [12]. Again, assuming a large population size, the time for disease extinction can be very
long and is determined by the tail of the quasi-stationary probability density function (PDF) where
∂ρ
∂t ≈ 0 and we can set the master equation equal to zero as shown by

0 =
∑
r

[Wr(X − r)ρ(X − r, t)−Wr(X)ρ(X, t)]. (23)

Now we will scale X by N , the usual population size in the metastable state. Using x = X
N , the

transition rate Wr(X) = Wr(Nx) and when Taylor expanded in N the rate becomes

Wr(Nx) = Nwr(x) + ur(x) +O(1/N), (24)

where wr and ur are O(1). We can also rewrite the scaled probability as

ρ(X) ≡ ρ(Nx) = π(x). (25)

Then the scaled master equation becomes

0 =
∑
r

[wr(x−
r

N
)π(x− r

N
)− wr(x)π(x)]. (26)

To apply the WKB approximation we assume that N � 1 and that

π(x) = A(x)e−NS(x)(1+O(1/N)), (27)

and after substituting the WKB ansatz into the master equation we obtain a Hamilton-Jacobi
equation with Hamiltonian

H(x, λ) =
∑
r

wr(x)e(rλ)−1 = 0, λ =
∂S
∂x

. (28)

14



Hamilton’s Equations are then given by

ẋ =
∂H
∂λ

=
∑
r

rwr(x)e(rλ),

λ̇ = −∂H
∂x

= −
∑
r

e(rλ−1)
∂wr(x)

∂x
. (29)

For single-step processes such as found in epidemic models, the mean time to extinction can be
approximated [12] by

τ = BeNSopt , (30)

where B is a prefactor that depends on the system’s parameters and the population size,

Sopt =

∫ x

λopt(x)dx, (31)

with limits of integration that depend on the equilibrium points, and

λopt(x) = − ln

(
w+1(x)

w−1(x)

)
. (32)

3.2 Gillespie Algorithm

To generate a solution of a stochastic equation where the noise is internal to the system we use the
Gillespie algorithm or Doob-Gillespie algorithm. The algorithm is a type of Monte Carlo method
popularized by Daniel T. Gillespie [21] as a method for simulating chemical reactions based on
molecular collisions. The results of a Gillespie simulation is a stochastic trajectory that correctly
captures the probability function that solves the master equation. Therefore the Gillespie algo-
rithm has become an integral part of understanding and analyzing disease spread where molecular
collisions are replaced by individual events associated with disease outbreak and spread [12].

The Gillespie algorithm can be described using the following steps:

1. Initialization and identification of reaction states and rates of change. Let x = (x1, . . . , xn)T

represent the compartments of a system, where xi is the number of individuals in compartment
xi at time t. Set the time and reaction counter to zero. Initialize uniform random number
generators for the event and the time the event occurs.

2. Calculation of transition rates. For a given state x, the transition rates are given as ai(x) for
i = 1 . . . l, where l is the number of transitions. Thus the sum of all transition rates is given

by a0 =
l∑

i=1
ai(x).

3. Generation of random numbers r1 and r2 and calculation of τ . One simulates the time
τ until the next transition by drawing from an exponential distribution with mean 1/a0.
This is equivalent to drawing a random number r1 uniformly on (0, 1) and computing τ =
(1/a0) ln (1/r1). During each random time step exactly one event occurs. The probability of
any particular event taking place is equal to its own transition rate divided by the sum of
all transition rates ai(x)/a0. A second random number r2 is drawn uniformly on (0, 1), and
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Figure 4: Infectious individuals in time for the SIS model. The red curve is a single stochastic
trajectory showing fluctuations about the deterministically stable endemic state (black line) before
the eventual extinction. The parameter values are: µ = 0.9, γ = 0.1, β = 1.4, and N =100.

it is used to determine the transition event that occurs. If 0 < r2 < a1(x)/a0, then the first
transition occurs; if a1(x)/a0 < r2 < (a1(x) + a2(x))/a0, then the second transition occurs,
and so on.

4. Iteration of τ and updating the individuals in each compartment. The process repeats until
extinction occurs or the simulation time limit is reached [12].

Figure 4 shows the number of infectious individuals in time for a single realization of the
stochastic SIS model found using the Gillespie algorithm. One sees the fluctuations around the
deterministically stable endemic equilibrium until eventually the disease goes extinct.

3.3 Complex Example: The Ebola Model

We now demonstrate the application of these stochastic modeling techniques to an Ebola virus
disease (EVD) model based on extending an SEIR model, and presented by Garrett T. Nieddu,
et al. in “Extinction Pathways and Outbreak Vulnerability in a Stochastic Ebola Model” [19].
EVD was first discovered in Zaire (currently the Democratic Republic of Congo) near the Ebola
river from which the disease was named. EVD is an infectious zoonosis, a disease found in animals
that can be transmitted to humans with symptoms that may or may not affect the animal host.
For example, EVD is very deadly in apes yet infected bats show no symptoms. Although it is

16



Figure 5: Schematic of the Ebola Virus Disease (EVD) compartmental model.

relatively difficult for EVD to invade human populations, there have been many spillover events,
when the disease is transferred from the animal reservoir into the human population, by contact
with bodily fluid. The CDC in the United States of America estimates that more than 28 thousand
infections and 11 thousand deaths occurred in the most recent West African epidemic. The sporadic
appearances and disappearances of the disease in the human population is more evidence that the
disease is maintained in animal populations. This implies that EVD must be analyzed under the
context of random interactions between the infected hosts that serve as a reservoir of disease and
human populations [19].

Given the incubation time of the disease which ranges from 7-21 days, an approach based on
the susceptible-exposed-infectious-recovered (SEIR) model is appropriate. A deterministic model
could be used, but to properly capture the random interactions between individuals, and to capture
the stochastic events in which disease from the reservoir enters the population, one should use a
stochastic version of the model. The stochastic EVD model presented in Ref. [19] accounts for
the random events and interactions taking place within the population, including birth and death,
and infection of susceptibles, but also includes hospitalization and burial. Burials in particular
are quite important as this was a large source of new infections during the recent West African
EVD outbreak. A complete flow chart of all the possible interactions accounted for in this model
is presented in Figure 5. Although this type of model has been used in previous EVD studies, the
random contact with the animal reservoir had never been accounted for. Table 1 lists the events
in the stochastic EVD model along with their associated rates, while Table 2 lists the various
parameter values.

By observing the transition events of the stochastic EVD in Table 1, one can see that there
are two distinct ways an individual might become infected. The infection may come from a human
interaction in which a susceptible individual comes into contact with an infectious, hospitalized, or
deceased individual, or the infection may be transmitted by a susceptible coming into contact with
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Figure 6: Outbreak vulnerability in the EVD model showing different outbreak scenarios. The
figure is taken from Ref. [19].
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Event Transition Rate

healthy birth φ −→ S µN

EVD transition (human) S −→ E (βiI + βdD + βhH)( SN )

EVD transition (animal) S −→ E κS

latency to infectious E −→ I σE

recovery I −→ R γirI

EVD death I −→ D µeI

hospitalization I −→ H τI

burial D −→ φ δD

death from hospital H −→ φ µeH

recovery from hospital H −→ R γhrH

natural death S,E, I,D,H,R −→ φ µ(S,E, I,D,H,R)

Table 1: Events, transitions, and rates in the stochastic EVD model.

the disease reservoir with reservoir transmission rate κS. The addition of the κS term in this model
is critical in the analysis to understand the behaviour of the disease spread in the population. The
disease state of the population will be directly affected by the strength of the coupling with the
animal reservoir. The stronger the coupling, the more frequent new infections appear. For smaller
values of κ, disease outbreaks will be less frequent, while for large values, the disease may become
endemic in the population. The effects of κ can be observed in Figure 6 which shows the different
types of outbreak states that can occur when the animal reservoir transmission rate is varied. The
top time series in the inset shows the number of infectious individuals over time when κ = 10−10,
and we see that the population with these parameters is mostly disease free while experiencing rare
outbreak events. This scenario is referred to as the rare outbreak zone (ROZ). In the middle time
series when κ = 10−8, the population is experiencing frequent outbreaks between periods of disease

Description Parameter Value

1/host life span (and birth rate) µ 0.00005d−1

contact rate for infectious βi 0.5d−1

contact rate for deceased βd 0.6d−1

contact rate for hospitalized βh 0.00016d−1

1/latency period σ 0.1d−1

1/recovery period (no hospital) γir 0.07d−1

death rate from EVD µe 0.12d−1

1/mean time to hospitalization τ 0.2d−1

1/burial time δ 0.33d−1

1/recovery period (hospital) γhr 0.10d−1

reservoir transmission κ 5.0× 10−9d−1

Table 2: Numerical values for the parameters in the EVD model.
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Event Transition Rate

healthy birth φ −→ S µN

transition (human) S −→ I (βISN )

transition (reservoir) S −→ I κS

recovery I −→ S γI

natural death (S, I) −→ φ µ(N, I)

Table 3: Events, transitions, and rates in the stochastic SISκ model.

extinction. This scenario will be referred to as the frequent outbreak zone (FOZ). The bottom time
series for κ = 6.0× 10−7 shows a population that is never free of disease and is in the perpetually
endemic zone (PEZ) [14].

It is worth noting that this EVD model is quite complex, and therefore the analysis performed
in Ref. [19] is almost entirely numerical. To better understand the outbreak vulnerability results
of the EVD model, we consider a simplified version, namely a Susceptible-Infectious-Susceptible-κ
(SISκ) model that includes reservoir transmission of disease for the SIS population model. In
addition, we will consider the effect of vaccination for the SISκ model.

4 Stochastic Zoonotic SIS Models

4.1 Susceptible-Infectious-Susceptible-κ (SISκ) Model

In a Susceptible-Infectious-Susceptible-κ (SISκ) compartmental model the S and I stand respec-
tively for susceptible and infectious individuals, just as in the other compartmental models discussed
previously. In this model the κ term is introduced to account for disease introduction from an ex-
ternal zoonotic source, adding a generic infection event. The transition rates β, γ, and µ remain
contact rate, recovery rate, and birth/death rate respectively. The additional κ rate is the trans-
mission rate between the population and the reservoir. Table 3 describes all the transition rates
for this model while Figure 7 shows the relationship between the different compartments and the
associated transition events.

Figure 7: Schematic of the SISκ compartmental model.

20



The governing equations of the system are given by

dS

dt
= µN − µS − βIS

N
− κS + γI,

dI

dt
=
βIS

N
+ κS − (µ+ γ)I. (33)

Assuming a constant population so that N = S+ I, the two-dimensional system in S and I can be
reduced to a one-dimensional system in I that is given by

dI

dt
= (βI + κN)−

(
βI2

N
+ (κ+ µ+ γ)I

)
. (34)

Recall that the classic SIS compartmental model discussed previously had two distinct equilib-
rium points, one for the disease endemic state and another for the disease free state. In the SISκ
compartmental model, the addition of the κ term effectively eliminates the disease extinction state.
There is still however a disease endemic state given by

I∗ = N

[
β − γ − κ− µ+

√
(β − γ − κ− µ)2 + 4kβ

2β

]
(35)

Since the one-dimensional model of disease transfer is assumed to be a Markov processes, the
master equation can be used to understand the stochastic model. To construct the master equation
we begin by rewriting it in terms of its different structures, namely the growth and decay rates of
the infectious class. The SISκ system has a master equation given as

dPI
dt

= λ(I − 1)PI−1 − λ(I)PI + δ(I + 1)PI+1 − δ(I)PI , (36)

where PI denotes the probability of having I individuals at time t, and where the growth term
λ(I), and the decay term δ(I), are defined in Eq. (34) as

λ(I) = (βI + κN), and δ(I) =
βI2

N
+ (κ+ µ+ γ)I. (37)

Thus the master equation of the system becomes

dPI
dt

= [β(I − 1) + κN ]P(I−1)

−
[
βI + κN +

βI2

N
+ (κ+ µ+ γ)I

]
P(I)

+

[
β(I + 1)2

N
+ (κ+ µ+ γ)(I + 1)

]
P(I+1). (38)

A master equation of this form has a stationary solution that can be found analytically as [22]

ρ(I) = π0

I∏
n=1

λ(n− 1)

δ(n)
, (39)
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where π0 is a normalization factor and which for our choice of λ and δ can be rewritten as

ρ(I) =
π0N

I

Γ(I + 1)
·

Γ
(
Nκ
β + I

)
Γ
(
Nκ
β

) ·
Γ
(
(µ+γ+κ)N

β + 1
)

Γ
(
(µ+γ+κ)N

β + 1 + I
) , (40)

where Γ(x) denotes the Gamma function. The mean value of this probability density function
(PDF) is given by I∗, and by evaluating the above equation for a specified set of parameter values,
one can find the probability of having I infectious individuals in the population [14].

Figures 8 and 9 represent respectively nine PDFs and stochastic realizations of the stochastic
SISκ using parameter values (µ, γ, β)=(5.0 × 10−5, 0.33, 0.1) and varying N and κ values in each
of the nine sub-plots. In Figure 9, observe that the blue graphs show dynamics associated with the
frequent outbreak zone (FOZ), so that there are many extinction and outbreak event with little
time spent disease free. The red graphs represent dynamics associated with the perpetually endemic
zone (PEZ), so that the disease is endemic. Lastly, the green graphs represent dynamics in the rare
outbreak zone (ROZ), where the population experiences rare outbreaks with plenty of disease free
time [14]. Looking back to Figure 8 we see that the PDFs have different shape corresponding to
whether they lie in the FOZ, PEZ, or ROZ.

Figure 8: Probability density functions of the stochastic SISκ model for a range of N and κ values.
The figure is taken from Ref. [14]. Parameter values are β = 0.1, γ = 0.33, and µ = 5.0× 10−5.
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(a) N=1e7, κ=1e-9 (b) N=1e7, κ=1e-6.5 (c) N=1e7, κ=1e-6

(d) N=1e4, κ=1e-9 (e) N=1e5.25, κ=1e-7.5 (f) N=1e6.5, κ=1e-6

(g) N=1e3, κ=1e-9 (h) N=1e3, κ=1e-8 (i) N=1e3, κ=1e-6

Figure 9: Stochastic realizations of the SISκ model for a range of N and κ values. Parameter
values are β = 0.1, γ = 0.33, and µ = 5.0× 10−5.
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4.2 Susceptible-Infectious-Susceptible-κ (SISκ) Model with Vaccine

We now extend the stochastic SISκ model to consider the effect of vaccine on the disease dynamics.
We add a vaccine V compartment which contains individuals who were vaccinated and therefore are
no longer susceptible. In this model, c represents the vaccination rate. All events and associated
transitions and rates are shown in Table 4, while Figure 10 shows a schematic of the stochastic
SISκ model with vaccination (SISκ− V ).

Event Transition Rate

healthy birth φ −→ S µN

natural death S, I, V −→ φ µ(S, I, V )

transition S −→ I βIS
N + κS

recovery I −→ S γI

vaccination S −→ V cS

Table 4: Rates and events in SISκ− V model.

The governing equations of the SISκ− V model are given by

dS

dt
= µN − µS − βIS

N
+ γI − cS − κS,

dI

dt
=
βIS

N
+ κS − (µ+ γ)I,

dV

dt
= cS − µV. (41)

As before, we assume a constant population so that N = S + I + V . The endemic equilibrium is

Figure 10: Schematic of the SISκ− V compartmental model.
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given as

I∗ = (−[µ2N + cNµ+ κNµ+ µNγ + cNγ − βµN ]+√
(µ2N + cNµ+ κNµ+ µNγ + cNγ − βµN)2 + 4βµ2κN2

)
/2βµ. (42)

Because of the additional complexity from the vaccine class, unlike the SISκ model, we will not be
able to analytically find a stationary solution to the master equation. Nevertheless, we can numer-
ically solve the system to understand the changes in dynamics due to varying levels of vaccination.

Figure 11 shows the effects of varying the amount of vaccination using the same parameter
values used in the non-vaccine model (Figure 9). Each sub-figure of Figure 11 shows nine stochastic
realizations for different N and κ values, with each sub-figure showing results for different values of
c ranging from c = 10% to c = 90% increasing in uniform increments of 10% from top to bottom,
and left to right. In all realizations one can observe a difference in the population dynamics with
the vaccine control added to the SISκ compartmental model.

In the realizations across the diagonal which showed a FOZ previously, we now have comparable
behavior to the ROZ realizations. In sub-figure (a), the realizations can clearly be now classified
as the ROZ, with more disease extinction events clearly visible in all realizations to no outbreaks
at all in the realization corresponding to c = 90%. In sub-figure (e) one can see that there are far
fewer outbreaks compared to the scenario with the same parameters in the SISκ model without
vaccination. For sub-figure (i) one can observe that the difference is not as drastic as in the others
along the diagonal. The population is still in the FOZ but with an average of only one infected
person per outbreak, an improvement is seen.

In the realizations that were previously in the PEZ we can observe sub-figures (b), (c) and
(f) to see the effect of vaccine. One sees that vaccine has dramatically decreased the number of
infected individuals in the population as time evolves. The vaccine has moved these populations
from the PEZ to the FOZ. In the bottom left corner are realizations that were all previously in the
ROZ. One can observe in sub-figure (h) that not much has changed to the population dynamics
with c values between 10% and 50%. On the other hand, when c is between 60% and 90% one sees
that the number of outbreaks has decreased dramatically to an almost constant disease free state.
In sub-figures (d) and (g) we observe a similar effect to the population dynamics where there are
rare outbreaks, if there are any at all, and the number of infections does not pass two infectious
individuals. We can confidently say that the vaccine has positively improved the situation of the
previously ROZ to one with essentially no outbreaks at all.

Overall, the effects of the vaccine to the initial SISκ compartmental model are clearly visible
in all realizations with c ranging from 10% to 90%. The effects are all positive with respect to
the population dynamics. Most realizations from the SISκ vaccine group could be classified as
having less severe outbreak vulnerability zones as compared to the non-vaccine case. In general,
scenarios that were in the PEZ become FOZ, FOZ scenarios become ROZ, and ROZ scenarios move
to disease free states. Figure 12 is similar to Figure 11 but with smaller rates of vaccination. Here
the vaccine rate, c, ranges from 1% to 9%. One can observe that the effects are almost mirrored
from Figure 11. We have similar effects on a smaller scale with no major differences. Figure 13 for
vaccine rates ranging from 91% to 99% also shows similar results to those seen in Figure 11. Here
the scale of change in the the dynamics of the population is steeper and sharper. In the previously
FOZ scenarios, the decrease in the number of infectious individuals in the population is dramatic,
and the disease has very rapidly approached extinction.
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(a) N=1e7, κ=1e-9 (b) N=1e7, κ=1e-6.5 (c) N=1e7, κ=1e-6

(d) N=1e4, κ=1e-9 (e) N=1e5.25, κ=1e-7.5 (f) N=1e6.5, κ=1e-6

(g) N=1e3, κ=1e-9 (h) N=1e3, κ=1e-8 (i) N=1e3, κ=1e-6

Figure 11: Stochastic SISκ− V realizations with 10% to 90% vaccination rates for varying N and
κ values. Each sub-figure shows nine stochastic realizations with each sub-figure showing results
for different values of c ranging from c = 10% to c = 90% increasing in uniform increments of size
10% from top to bottom, and left to right.
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(a) N=1e7, κ=1e-9 (b) N=1e7, κ=1e-6.5 (c) N=1e7, κ=1e-6

(d) N=1e4, κ=1e-9 (e) N=1e5.25, κ=1e-7.5 (f) N=1e6.5, κ=1e-6

(g) N=1e3, κ=1e-9 (h) N=1e3, κ=1e-8 (i) N=1e3, κ=1e-6

Figure 12: Stochastic SISκ− V realizations with 1% to 9% vaccination rates for varying N and κ
values. Each sub-figure shows nine stochastic realizations with each sub-figure showing results for
different values of c ranging from c = 1% to c = 9% increasing in uniform increments of size 1%
from top to bottom, and left to right.
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(a) N=1e7, κ=1e-9 (b) N=1e7, κ=1e-6.5 (c) N=1e7, κ=1e-6

(d) N=1e4, κ=1e-9 (e) N=1e5.25, κ=1e-7.5 (f) N=1e6.5, κ=1e-6

(g) N=1e3, κ=1e-9 (h) N=1e3, κ=1e-8 (i) N=1e3, κ=1e-6

Figure 13: Stochastic SISκ− V realizations with 91% to 99% vaccination rates for varying N and
κ values. Each sub-figure shows nine stochastic realizations with each sub-figure showing results
for different values of c ranging from c = 91% to c = 99% increasing in uniform increments of size
1% from top to bottom, and left to right.
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5 Summary

Epidemiology is an integral field of science in a modern day world where disease outbreaks have
become increasingly more common in human populations. Understanding and analyzing the be-
havior and the spread of these diseases is an essential task in driving them to extinction. In this
thesis, we have provided an overview of different epidemiological compartmental models, and we
have discussed both deterministic and stochastic versions. By implementing the the Gillespie al-
gorithm, we are able to simulate stochastic solutions where the stochasticity is due to the internal
noise in the system. Specifically we considered stochastic versions of zoonotic models including
complex models needed for Ebola Virus Disease modeling as well as simplified models that enable
theoretical analysis. Lastly, we considered the effect of vaccine on outbreak vulnerability for a type
of zoonotic model. In comparing the SISκ and SISκ−V with vaccination models, one can observe
that vaccine leads to beneficial changes in the population dynamics and vulnerability to disease
outbreak. The positive changes include both a decrease in the number of infectious individuals
during an outbreak as well as the frequency of outbreaks.
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